首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
For flows associated with small strains, the rheology of rocks is described by the linear integral (having a memory) law, which reduces to the Andrade law in the case of constant stress. A continental lithosphere with such a rheology is overstable. Thermoconvective waves that propagate through the lithosphere with minimal attenuation have a period of about 200  Myr and a wavelength of the order of 400  km. An initial temperature point-concentrated perturbation in the lithosphere excites amplitude-modulated thermoconvective waves (wave packets). When the initial perturbation occurs in a finite area, thermoconvective waves propagate outwards from this area, and thermoconvective oscillations (standing waves) are established inside the area. Thermoconvective waves induce oscillations of the Earth' surface, accompanied by sedimentation and erosion, and can be considered as a mechanism for the distribution of sediments on continental cratons.  相似文献   

10.
11.
12.
13.
14.
15.
16.
Summary. An approximate analytical solution for flow in a mantle plume of constant radius, viscosity, and density contrast is obtained in cylindrical coordinates. the differential equations for vertical velocity of the mantle surrounding the plume and for topography are homologous to the equation for flexure of an elastic plate. Although the model is too simple to be fully applicable to the Earth, one can conclude that the vertical velocity in the mantle changes significantly away from plumes, that the viscosity of the plume is important for controlling flow rate, and that the long-wavelength geoid anomalies are sensitive to the viscosity of the surrounding mantle. the first induced upwelling away from a plume is quite weak and unlikely to control the spacing of plumes.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号