首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radial velocity data for both components of W Crv are presented. In spite of providing full radial-velocity information, the new data are not sufficient to establish the configuration of this important system because of large seasonal light curve perturbations, which prevent a combined light curve/radial-velocity solution. It is noted that the primary minimum is free of photometric perturbations, and this property may help to explain the elusive source of these perturbations. Photometrically, the system appears to be a contact binary with poor or absent energy exchange, but such an explanation – in view of the presence of light curve perturbations – is no more plausible than any one of the semi-detached configurations, with either the more-massive or less-massive components filling the associated Roche lobes. Lengthening of the orbital period and the size of the less-massive component above its main-sequence value, both suggest that the system is the shortest-period (0.388 d) known Algol with non-degenerate components.  相似文献   

2.
The problem is considered within the framework of the elliptic restricted three-body problem. The asymptotic solution is derived by a three-variable expansion procedure. The variables of the expansion represent three time-scales of the asteroids: the revolution around the Sun, the libration around the triangular Lagrangian pointsL 4,L 5, and the motion of the perihelion. The solution is obtained completely in the first order and partly in the second order. The results are given in explicit form for the coordinates as functions of the true anomaly of Jupiter. As an example for the perturbations of the orbital elements the main perturbations of the eccentricity, the perihelion longitude and the longitude of the ascending node are given. Conditions for the libration of the perihelion are also discussed.  相似文献   

3.
A semianalytic method has been developed to calculate the radiation-pressure perturbations of a close-Earth satellite due to sunlight reflected from the Earth. The assumptions made are that the satellite is spherically symmetric and that the solar radiation is reflected from the Earth according to Lambert's Law with uniform albedo. By using expressions for the components of the radiation-pressure force due to Lochry, the expressions for the perturbations of the elements were developed into series in the true anomalyv. The perturbations within a given revolution can be obtained analytically by integrating with respect tov while holding all slowly varying quantities constant. The long-range perturbations are then obtained by accumulating the net perturbations at the end of each revolution.  相似文献   

4.
On the basis of the results by Huang et al. (1990), this paper further discusses and analyses the four post-Newtonian effects in a near-Earth satellite orbit: the Schwarzschild solution, the post-Newtonian effects of the geodesic precession, the Lense-Thirring precession and the oblateness of the Earth. A full analytical solution to the effects including their direct perturbations and mixed perturbations due to the Newtonian oblateness (J 2) perturbation and the Schwarzschild solution is obtained using the quasi-mean orbital element method analogous to the Kozai's mean orbital element one. Some perturbation properties of the post-Newtonian effects are revealed. The results obtained not only can provide a sound scientific basis for the precise determination of a man-made satellite orbit but also is suitable for similar mechanics systems, such as the motions of planets, asteroids and natural satellites.  相似文献   

5.
The formulae for the perturbations in radial, transverse and binormal components of the Earth artificial satellite motion have been derived. Perturbations due to the tesseral part of the geopotential are considered. The geopotential expressed in terms of the orbital elements has the form proposed by Wnuk (1988). The formulae for the perturbations have been obtained using the Hori (1966) method. They can be effectively applied in calculation of the perturbations in the components including the coefficients of the high order and degree tesseral harmonics. The derived formulae reveal no singularities at zero eccentricity.  相似文献   

6.
We present here the first numerical results of our analytical theory of an artificial satellite of the Moon. The perturbation method used is the Lie Transform for averaging the Hamiltonian of the problem, in canonical variables: short-period terms (linked to l, the mean anomaly) are eliminated first. We achieved a quite complete averaged model with the main four perturbations, which are: the synchronous rotation of the Moon (rate ), the oblateness J 2 of the Moon, the triaxiality C 22 of the Moon ( ) and the major third body effect of the Earth (ELP2000). The solution is developed in powers of small factors linked to these perturbations up to second-order; the initial perturbations being sorted ( is first-order while the others are second-order). The results are obtained in a closed form, without any series developments in eccentricity nor inclination, so the solution apply for a wide range of values. Numerical integrations are performed in order to validate our analytical theory. The effect of each perturbation is presented progressively and separately as far as possible, in order to achieve a better understanding of the underlying mechanisms. We also highlight the important fact that it is necessary to adapt the initial conditions from averaged to osculating values in order to validate our averaged model dedicated to mission analysis purposes.  相似文献   

7.
This paper deals with the perturbations which rotation can produce to the orbital elements of a close binary system. The rectangular components,R, S andW of the disturbing accelerations due to rotation have been substituted to the Gauss form of Lagrange's planetary equations to yield the first order approximation. The results obtained are exact for any value of orbital eccentricity between the values 0<e<1 and for arbitrary inclinations of the rotational axes to the orbital plane.First and second order approximations are given for the special case when equators are coplanar to the orbit.  相似文献   

8.
On the basis of expressions derived by Kozai, and new ones developed here, a detailed, semianalytic algorithm is presented for calculating radiation-pressure perturbations in the Keplerian elements. Through some simple modifications, the algorithm is also made to hold whene=0 and/ori=0. The perturbations are obtained by summing over the sunlit segment of the satellite's orbit during each revolution or part thereof. The end points of this segment are evaluated numerically once per revolution. The effect of the inherent uncertainties in the boundaries of the Earth's shadow is discussed. The algorithm is tested by means of numerical integration of the equations of motion and through comparisons with observations of the balloon satellite 1963 30D during a 200-day interval.  相似文献   

9.
A new formulation is presented for the perturbed Lambert problem. The formulation employs the variation-of-parameters method in the KS transformed state space to determine perturbations of a Keplerian Lambert solution. The approach is universal (in that its validity is not restricted to a particular energy domain). For the case of the second zonal harmonic (oblateness) perturbation, first order perturbations are carried out entirely analytically; non-iterative corrections are determined through solution of a pair of algebraic equations. For more general perturbations, numerical quadratures are required.  相似文献   

10.
A perturbation in the ratio of the matter temperature to the radiation temperature in the form of a Gaussian with amplitude A and width σ (in units of the redshift z) centered at some redshift z c is considered, with some “standard” temperature ratio obtained from a simultaneous solution of the cosmological recombination kinetics and energy equations being taken as the initial (unperturbed) one. Comparatively small (A = ± 0.01), fast (σ = 17) perturbations are shown to give rise to distinct narrow absorption (for A > 0) or emission (for A < 0) quasi-lines in each of the subordinate continua. The positions of these quasi-lines correlate with the position of the perturbation center, while their intensities are very sensitive to the perturbation amplitude. At the same time, the manifestation of the perturbation is much less clear in hydrogen lines (subordinate ones and the Ly-α line) and two-photon emission. As a result, the full perturbed spectrum is characterized by the presence of the narrow quasi-lines mentioned above and by a general decrease (for A > 0) or increase (for A < 0) in intensity with increasing wavelength.  相似文献   

11.
Assigning to the equivalent gravitational parameter of a two-body dynamic system, a periodic change of a small amplitude B and arbitrary frequency and phase, the behaviour of an elliptic-type orbit is studied. The first order (in B) perturbations of the orbital elements are determined by using Delaunay's canonical variables. According to the value of the ratio between oscillation frequency and dynamic frequency, three cases (non-resonant (NR), quasi-resonant (QR), and resonant (R) ones) are pointed out. The solution of motion equations shows that only in the QR and R cases there are elements (argument of pericentre and mean anomaly) affected by secular perturbations. The solutions are valid over prediction times of order of pericentre and mean anomaly) affected by secular perturbations. The solutions are valid over prediction times of order B−1 in the NR case and B−1/2 in the QR and R cases.  相似文献   

12.
Continuing a work initiated in an earlier publication (Yamada et al. in Phys Rev D 91:124016, 2015), we reexamine the linear stability of the triangular solution in the relativistic three-body problem for general masses by the standard linear algebraic analysis. In this paper, we start with the Einstein–Infeld–Hoffmann form of equations of motion for N-body systems in the uniformly rotating frame. As an extension of the previous work, we consider general perturbations to the equilibrium, i.e., we take account of perturbations orthogonal to the orbital plane, as well as perturbations lying on it. It is found that the orthogonal perturbations depend on each other by the first post-Newtonian (1PN) three-body interactions, though these are independent of the lying ones likewise the Newtonian case. We also show that the orthogonal perturbations do not affect the condition of stability. This is because these do not grow with time, but always precess with two frequency modes, namely, the same with the orbital frequency and the slightly different one due to the 1PN effect. The condition of stability, which is identical to that obtained by the previous work (Yamada et al. 2015) and is valid for the general perturbations, is obtained from the lying perturbations.  相似文献   

13.
This paper presents a Hamiltonian approach to modelling spacecraft motion relative to a circular reference orbit based on a derivation of canonical coordinates for the relative state-space dynamics. The Hamiltonian formulation facilitates the modelling of high-order terms and orbital perturbations within the context of the Clohessy–Wiltshire solution. First, the Hamiltonian is partitioned into a linear term and a high-order term. The Hamilton–Jacobi equations are solved for the linear part by separation, and new constants for the relative motions are obtained, called epicyclic elements. The influence of higher order terms and perturbations, such as Earth’s oblateness, are incorporated into the analysis by a variation of parameters procedure. As an example, closed-form solutions for J2-invariant orbits are obtained.  相似文献   

14.
The paper offers the fully analytic solution to the motion of a satellite orbiting under the influence of the two major perturbations, due to the oblateness and the atmospheric drag. The solution is presented in a time-explicit form, and takes into account an exponential distribution of the atmospheric density, an assumption that is reasonably close to reality. The approach involves two essential steps. The first one concerns a new approximate mathematical model that admits a closed-form solution with respect to a set of new variables. The second step is the determination of an infinitesimal contact transformation that allows to navigate between the new and the original variables. This contact transformation is obtained in exact form, and afterwards a Taylor series approximation is proposed in order to make all the computations explicit. The aforementioned transformation accommodates both perturbations, improving the accuracy of the orbit predictions by one order of magnitude with respect to the case when the atmospheric drag is absent from the transformation. Numerical simulations are performed for a low Earth orbit starting at an altitude of 350 km, and they show that the incorporation of drag terms into the contact transformation generates an error reduction by a factor of 7 in the position vector. The proposed method aims at improving the accuracy of analytic orbit propagation and transforming it into a viable alternative to the computationally intensive numerical methods.  相似文献   

15.
The periodic motion of a test particle (dust, grain, or a larger body) around a pulsating star with a luminosity oscillation of small amplitude (featured by a small parameterB) is being studied. The perturbations of all orbital elements are determined to first order inB, by using Delaunay-type canonical variables and a method whose bases were put forth by von Zeipel. According to the value of the ratio oscillation frequency/dynamic frequency, three possible situations are pointed out: nonresonant (NR), quasi-resonant (QR), and resonant (R). The solution of motion equations shows that only in the (QR) and (R) cases there are orbital parameters (argument of periastron and mean anomaly) affected by secular perturbations. These solutions (which indicate a secularly stable motion in a first approximation) are valid over prediction times of orderB –1 in the (NR) case andB –1/2 in the (QR) and (R) cases. The theory may be applied to various astronomical situations.  相似文献   

16.
The influence of short-wave turbulence on the expansion of a homogeneous and, on average, isotropic Universe was studied in Papers I–III. In the present paper we study the influence on the manner of expansion, for a complete spectrum of wavelengths, of scalar, tensor and vector perturbations. Ast»0, all waves become long (greater than the horizon); therefore, a knowledge of their influence on the averaged metric is required. It is shown that the long-wave modes of scalar and tensor perturbations which remain finite ast»0 deflect the metric for a homogeneous and, on average, isotropic Universe from the Friedmannian, giving it a form coinciding with the average quasi-isotropic solution of Lifshitz and Khalatnikov (1963). Ast»0 their contribution to the solution tends to zero. What remains to be determined is the contribution of those modes of scalar, tensor and vector perturbations which diverge ast»0. Att=0 the proposed solution for such modes becomes inapplicable. The behaviour of the metric of a homogeneous and, on average, isotropic Universe under the influence of all waves and all modes of perturbation is shown in Figure 1–3.  相似文献   

17.
The spectra of geopotential, Earth and ocean tidal perturbations on a satellite can be obtained using Kaula's linear theory, or an extension thereof, as summations of terms depending on four indices l, m, p, q. In this work algorithms are presented that generate the equivalence classes induced by the composition rule of frequency on the set of all (l, m, p, q) combinations up to a maximum degree L and maximum value Q of the last index. These algorithms eliminate the need to search the set of frequencies when the linear theory is programmed on a computer.  相似文献   

18.
The variations of perturbations in perigee distance for different values of the orbital eccentricity for artificial Earth's satellites due to air drag have been studied. The analytical solution of deriving these perturbations, using the TD model (Total Density) have been applied, Helali (1987). The Theory is valid for altitudes ranging from 200 to 500 km above the Earth's surface and for solar 10.7 cm flux. Numerical examples are given to illustrate the variations of the perturbations in perigee distance with changing eccentricity (e < 0.2). A stronge perturbations in the perigee distance have been shown when the eccentricity in the range 0.001 <e < 0.05, especially for perigee distance 200 km.  相似文献   

19.
A semi-analytical solution to the problem of the motion of a satellite of the moon is presented. Perturbative effects which are considered include those due to the attraction of the moon, earth, and sun, the non-sphericity of the moon's gravitational field, coupling of lower-order terms, solar radiation pressure, and physical libration. Short-period terms and intermediate-period terms, terms with the period of the moon's longitude, are produced by means of von Zeipel's method; it is proposed to obtain the secular perturbations, and those depending only on the argument of perilune, by numerical integration of the equations of motions. The short-period terms and intermediate-period terms are developed up to second order, where first order is 10–2. The secular perturbations and perturbations dependent on the argument of perilune are obtained to third order.  相似文献   

20.
The theory of the oscillations of axisymmetric gaseous configurations with a prevalent magnetic field is presented. The virial tensor method is used to obtain the nine second harmonic modes of oscillations of the system. It is found that out of the nine modes, three are neutral, four are non-radial, and two are coupled. For the Prendergast spherical model it is found that one of the coupled modes is radial and the other non-radial. Both the radial and the non-radial modes obtained in this case agree with the corresponding formulae obtained byChandrasekhar andLimber (1954) andWoltjer (1962).The equilibrium structure of gaseous polytropes with toroidal magnetic fields is also investigated in detail for values of the polytropic indexn=1, 1.5, 2, 3 and 3.5. For this model the components of the moment of intertia and potential energy tensors together with the non-zero components of the supermatrix potential are obtained. The final results in terms of the effect of weak toroidal magnetic fields on the characteristic frequencies of distorted polytropes are presented in the form of tables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号