首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 183 毫秒
1.
磁层顶压缩事件的磁场分析   总被引:2,自引:0,他引:2       下载免费PDF全文
向日面磁层顶在平静太阳风条件下,处于10RE(RE为地球半径)左右.但在异常的太阳风条件下,即南向行星际磁场很强和(或)太阳风的动压很大时,会被压缩,甚至到达同步轨道附近.集中分析2001年4月11日的磁暴事件,研究当磁层顶发生强烈压缩以后。在地球空间和地面上产生的磁场影响.磁层顶位形选取Shue(1998)模型计算.当把计算结果与GOESl0卫星的观测数据对比时发现:磁层顶在强的太阳风条件下的确会被压缩到同步轨道以内.Shue(1998)模型的预测基本正确,通常的漏报可能是由于预报的位置误差所致.实际磁层顶电流片的位置和强度与我们假设的理想磁层顶间断面计算结果基本吻合.在分析大磁暴过程时,磁层顶压缩使磁层顶电流对于中低纬度地磁场扰动有突出的贡献,在2001年4月事件中,这个贡献可以大于50nT,占主相的1/6左右.这一贡献可以使Dst指数产生相应的误差.  相似文献   

2.
1998年5月磁暴磁层电流体系的地磁效应分析   总被引:3,自引:3,他引:3  
低纬度地区地磁场的短时变化主要由以下电流体系产生:电离层发电机电流(IDC)、对称环电流(SRC)以及由部分环电流和Ⅱ区场向电流及其电离层回路组成的内磁层三维电流体系(PRFI).此外,由Ⅰ区场向电流及其电离层回路组成的电流体系(FACI)所产生的低纬地磁场也是不可忽略的.本文针对1998年5月1-6日的大磁暴,首先利用多个同子午线台站对的数据分离并消去由IDC电流产生的Sq场.然后,通过线性建模分离其他电流体系产生的磁场成分.结果表明:(1)发生在5月1-6日的磁暴可以分为两个过程,PRFI和FACI电流体系在1-3日不明显,在4-5日伴随着亚暴强烈发生.(2)SRC的变化情况在第一阶段同Dst指数相似,在第二阶段明显滞后于Dst指数.(3)在5月4-5日,PRFI在SRC之前增强,随着PRFI和FACI的恢复,SRC开始增强.这一结果为我们了解环电流和场向电流的形成以及它们的关系提供线索.  相似文献   

3.
用1978年和1982年36个磁暴期间的太阳风、行星际磁场(IMF)和地磁资料,分析和检验已有的两类太阳风-磁层能量耦合函数.结果表明:Akasofu提出的耦合函数ε能大致地预报亚暴和磁暴的发生。ε开始起重要作用时即出现亚暴;电离层能耗达到饱和值是发生磁暴的标志。ε与磁层体系能耗之间有接近于对数量的线性关系.用1978-1986年的资料,分析环电流和极光区电离层能耗在121个太阳自转周内的分布表明,日面上可能存在相对持久的活动区域  相似文献   

4.
本文通过对1982年磁扰期间琼中、北京两站地磁X分量变化的分析,证实了磁层-电离层电动耦合对中纬电离层电流的影响.分析发现:磁静、磁扰条件下的平均日变化中,两站X分量变化在白天有反向的趋势.这表明它们分处于与动力效应对应的电离层发电机电流圈中心之南北两侧.在磁暴主相期间,X分量变化形态与之明显不同,两站地磁南北分量有同向变化,且变幅相近,甚至有时北京站△X更大.对环电流能量增长指数R小于-25nT/h的21次事件所作的时序叠加分析(以R最负时为零时)进一步证明,这种同向变化是普遍存在的.两站零时之△X大小相近,相关系数高达0.98.该同向变化与R指数突然变负密切相关. 以上对比表明,与发电机电流造成两站X分量反向变化不同,同向变化是磁层源高纬扰动电流向中低纬直接穿透的结果.本文对动力和电动耦合两种过程的不同进行了初步讨论.  相似文献   

5.
内磁层电流体系的地磁效应   总被引:2,自引:2,他引:2       下载免费PDF全文
对Ⅱ区场向电流及其伴随的部分环电流和电离层电流组成的内磁层三维电流体系(PRFI电流系)的磁场效应进行了数值计算.这一三维电流体系在中低纬度地面产生的磁场呈现出特殊的纬度分布:X分量几乎不随纬度变化,Y分量随纬度增高近似呈线性变化.这些特征明显不同于对称环电流的磁场分布特征(X∝ cosφ,φ是纬度,Y=0),也不同于DP2、Sq、L等电流体系的磁场分布特征.利用这一特征我们可以从地磁台子午链观测到的磁场扰动中分离出PRFI电流系的贡献.用1989年3月磁暴的实例检验了上述模型,观测结果与理论结果符合得很好.分析结果还表明,最大的Dst指数并不一定对应着最强的对称环电流.  相似文献   

6.
磁暴的发生与环电流的变化密切相关.除了对称环电流外,部分环电流在磁暴的发展过程中也起到了重要的作用,同时部分环电流通过场向电流与极区电离层中的电流形成回路.本文应用INTERMAGNET地磁台网北半球中低纬区域地磁台站数据,对不同强度4个磁暴事件主相和恢复相期间部分环电流和场向电流的磁地方时分布进行了分析和讨论.对于每一个磁暴事件,在低纬地区(地磁纬度约0°—40°N)选用地磁经度上大致均匀的8个台站,通过坐标转换计算平行于磁偶极轴的地磁场水平分量H来分析磁暴期间环电流所引起的磁场扰动;在低纬地区8个台站的基础上增加中纬地区(地磁纬度约40°N—60°N)地磁经度上大致均匀的6个台站,计算地磁坐标系下地磁场东西分量Y来分析磁暴期间场向电流在中低纬地区引起的磁场扰动.结果表明,磁暴主相期间的部分环电流主要作用于磁地方时昏侧和夜侧扇区,并且主相和恢复相期间部分环电流引起的磁场变化随着磁暴级别的增大而增大;磁暴主相期间向下的场向电流多出现在夜侧至晨侧扇区,向上的场向电流多出现在昏侧至午后扇区,且中纬地区向下和向上场向电流的展布范围明显大于低纬地区;恢复相期间弱、中磁暴事件的场向电流呈现与部分环电流相同的减弱趋势,而强、大磁暴事件在恢复相末期场向电流引起的磁场变化明显不同于恢复相的其他时刻,这可能与高纬较强的亚暴活动有关.  相似文献   

7.
2001年3月2日磁通量传输事件特性的研究   总被引:3,自引:1,他引:2       下载免费PDF全文
2001年3月2日11:00 至11:15 UT 期间,Cluster Ⅱ在南半球极尖区晨侧附近磁鞘内探测到3个通量传输事件(简称FTEs). 本文利用Cluster Ⅱ星簇4颗卫星观测到的磁场和等离子体资料研究了这些通量传输事件的磁场形态和粒子特征. 并利用它们探测到的空间磁场梯度资料由安培定律直接求出星簇所在区域的电流分布. 结果指出:(1)BY占优势的行星际磁场结构在磁层顶的重联可以在极尖区附近发生;(2)FTEs通量管形成初期内外总压差和磁箍缩应力不一定平衡,达到平衡有一发展过程;(3)FTEs通量管截面在L M平面内的线度约为1.89RE;(4)FTEs通量管中等离子体主要沿轴向场方向流动,整个通量管以慢于背景等离子体的速度沿磁层顶向南向尾运动;(5)FTEs通量管中不仅有轴向电流,也存在环向电流. 轴向电流基本沿轴向磁场方向流动. 轴向和环向电流在管内均呈体分布,因而轴向电流产生的环向磁场接近管心时不断减小到零,而环向电流生成的轴向场则不断增大到极值;(6)在通量管的磁鞘部分观测到磁层能量粒子流量的增强,这表明通量管通过磁层顶将磁鞘和磁层内部连通起来了.  相似文献   

8.
采用GOES9卫星观测的能量大于2MeV和大于4MeV电子通量和行星际飞船ACE太阳风参数的高时间分辨率资料,以及磁暴指数Dst资料,分析了1998年4-5月期间地球同步轨道电子通量增强事件的时间和能量响应特征及其与行星际太阳风参数、磁暴和亚暴等扰动条件的对应关系.结果表明,地球同步轨道相对论性(MeV)电子通量增强事件有明显的周日变化,中午极大和午夜极小.4月22日和5月5日开始的两次大事件中,能量大于2MeV电子通量中午极大值上升到最大值的时间尺度分别约为4天和1天,中午极大值高于背景水平的持续时间分别为13天(4月22日-5月4日)和16天(5月4日-20日)以上.每次MeV电子通量增强事件的能量范围不完全相同.两次大事件的上升段都对应于磁暴的恢复相,与太阳风动压脉冲、高速流脉冲和负Bz分量关系密切.  相似文献   

9.
根据CRRES卫星上MICS离子成分探测器的观测资料以及前人有关AMPTE卫星的观测数据,研究了地磁活动和太阳活动性对环电流成分以及各种环电流离子的最大通量位置的影响. 观测表明相对于地磁平静时期,在地磁活动的活跃时期,环电流中O+、He++和He+离子的数密度和能量密度占环电流总数密度和总能量密度的份额增加,相反H+离子所占的比例却明显减少. 太阳活动极大年时环电流中H+离子丰度比极小年时低,而O+和He++离子的丰度却比太阳活动极小年时高. 卫星数据观测还表明,在地球磁暴期间,环电流中O+离子和He+离子的最大通量位置会随着地磁的活动径向移动,平均来看太阳活动极大年的能量粒子最大数密度位置距离地球比极小年时约小0.5RE (RE 为地球半径).  相似文献   

10.
本文通过分析两次大磁暴期间的中性原子(ENA)通量数据,试图揭示环电流离子通量的变化规律,进一步探讨环电流的形成和损失机制,以及磁暴和亚暴的关系.两次磁暴期间ENA通量的变化呈现出一些重要的特征:(1)通量随能量的增高而快速降低,磁暴主相期间高能端通量所占比重增大;(2)通量比例曲线的起伏远比通量曲线的起伏要平缓;(3)通量的起伏与AE指数之间没有简单的对应关系;(4)磁暴恢复相开始前,ENA通量出现短时间的猛烈增长,特别是低能端通量的增长异常迅速;(5)Dst/SYM-H指数快速恢复期间,ENA通量的变化表现为两个完全不同的阶段:先降低,后增大.忽略影响ENA通量的其他次要因素,ENA通量的上述特征直接反映了环电流的发展规律.环电流离子通量随能量的增高快速下降,磁暴主相期间可能由于高能O+的增加使得能谱有所变硬.离子主要受南向行星际磁场(IMF)所引起的对流电场的驱动注入到环电流区域,通量的变化大体上是无色散的.亚暴活动与环电流的增长没有直接的因果关系,但亚暴活动会引起环电流离子通量的短时间尺度波动.恢复相开始前,环电流离子在昏侧区域发生堆积,使得局部离子通量变大.这可能是由于屏蔽电场的形成削弱了内磁层对流电场,造成离子在磁层顶的逃逸损失过程减弱.在Dst/SYM-H指数的快速恢复期间,环电流离子通量的衰减速度也可能发生阶段性变化.这说明Dst/SYM-H指数并不能准确反映环电流的强度,环电流的衰减过程可能具有比先快后慢更为复杂的阶段性模式.  相似文献   

11.
Geomagnetic storms are large disturbances in the Earth's magnetosphere caused by enhanced solar wind–magnetosphere energy transfer. One of the main manifestations of a geomagnetic storm is the ring current enhancement. It is responsible for the decrease in the geomagnetic field observed at ground stations. In this work, we study the ring current dynamics during two different levels of magnetic storms. Thirty-three events are selected during the period 1981–2004. Eighteen out of 33 events are very intense (or super-intense) magnetic storms (Dst ⩽−250 nT) and the remaining are intense magnetic storms (−250<Dst ⩽−100 nT). Interplanetary data from spacecraft in the solar wind near Earth's orbit (ACE, IMP-8, ISEE-3) and geomagnetic indices (Dst and Sym-H) are analyzed. Our aim is to evaluate the interplanetary characteristics (interplanetary dawn–dusk electric field, interplanetary magnetic field component BS), the ε parameter, and the total energy input into the magnetosphere () for these two classes of magnetic storms. Two corrections on the ε energy coupling function are made: the first one is an already known correction in the magnetopause radius to take into account the variation in the solar wind pressure. The second correction on the Akasofu parameter, first proposed in this work, accounts for the reconnection efficiency as a function of the solar wind ram pressure. Geomagnetic data/indices are also employed to study the ring current dynamics and to search for the differences in the storm evolution during these events. Our corrected ε parameter is shown to be more adequate to explain storm energy balance because the energy input and the energy dissipated in the ring current are in better agreement with modern estimates as compared with previous works. For super-intense storms, the correction of the Akasofu ε is on average a scaling factor of 3.7, whilst for intense events, this scaling factor is on average 3.4. The injected energy during the main phase using corrected ε can be considered a criterion to separate intense from very intense storms. Other possibilities of cutoff values based on the energy input are also investigated. A threshold value for the input energy is much more clear when a new classification on Dst=−165 nT is considered. It was found that the energy input during storms with Dst<−165 nT is double of the energy for storms with Dst>−165 nT.  相似文献   

12.
We infer information about the nature of groundwater flow within a karst aquifer from the physical and chemical response of a spring to storm events. The spring discharges from the Maynardville Limestone in Bear Creek Valley, Tennessee. Initially, spring discharge peaks approximately 1–2 h from the midpoint of summer storms. The initial peak is likely due to surface loading, which pressurizes the aquifer and results in water moving out of storage. All of the storms monitored exhibited recessions that follow a master recession curve very closely, indicating that storm response is fairly consistent and repeatable, independent of the time between storms and the configuration of the rain event itself. Electrical conductivity initially increases for 0.5–2.9 days (longer for smaller storms), the result of moving older water out of storage. This is followed by a 2.1–2.5 day decrease in conductivity, resulting from an increasing portion of low conductivity recharge water entering the spring. Stable carbon isotope data and the calcite saturation index of the spring water also support this conceptual model. Spring flow is likely controlled by displaced water from the aquifer rather than by direct recharge through the soil zone.  相似文献   

13.
Under natural conditions, barrier islands might grow vertically and migrate onshore under the influence of long‐term sea level rise. Sediment is transported onshore during storm‐induced overwash and inundation. However, on many Dutch Wadden Islands, dune openings are closed off by artificial sand‐drift dikes that prevent the influx of sediment during storms. It has been argued that creating openings in the dune row to allow regular flooding on barrier islands can have a positive effect on the sediment budget, but the dominant hydrodynamic processes and their influence on sediment transport during overwash and inundation are unknown. Here, we present an XBeach model study to investigate how sediment transport during overwash and inundation across the beach of a typical mesotidal Wadden Sea barrier island is influenced by wave, tide and storm surge conditions. Firstly, we validated the model XBeach with field data on waves and currents during island inundation. In general, the XBeach model performed well. Secondly, we studied the long‐term sediment transport across the barrier island. We distinguished six representative inundation classes, ranging from frequently occurring, low‐energy events to infrequent, high‐energy events, and simulated the hydrodynamics and sediment transport during these events. An analysis of the model simulations shows that larger storm events cause larger cross‐shore sediment transport, but the net sediment exchange during a storm levels off or even becomes smaller for the largest inundation classes because it is counteracted by larger mean water levels in the Wadden Sea that oppose or even reverse sediment transport during inundation. When taking into account the frequency of occurrence of storms we conclude that the cumulative effect of relatively mild storms on long‐term cross‐shore sediment transport is much larger than that of the large storm events. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

14.
A physically-based distributed erosion model (MEFIDIS) was applied to evaluate the consequences of storm movement on runoff and erosion from the Alenquer basin in Portugal. Controlled soil flume laboratory experiments were also used to test the model. Nine synthetic circular storms were used, combining three storm diameters (0.5, 1 and 2 times the Alenquer basin’s axial length) with three speeds of storm movement (0.5, 1 and 2 m/s); storm intensities were synthesized in order to maintain a constant rainfall depth of 50 mm. The model was applied to storms moving downstream as well as upstream along the basin’s axis. In all tests, downstream-moving storms caused significantly higher peak runoff (56.5%) and net erosion (9.1%) than did upstream-moving storms. The consequences for peak runoff were amplified as the storm intensity increased. The hydrograph shapes were also different: for downstream-moving storms, runoff started later and the rising limb was steeper, whereas for upstream moving storms, runoff started early and the rising limb was less steep. Both laboratory and model simulations on the Alenquer basin showed that the direction of storm movement, especially in case of extreme rainfall events, significantly affected runoff and soil loss.  相似文献   

15.
本文利用低纬地磁台站的Pi1、Pi2地磁脉动(Pi1-2)资料和地球同步轨道的Pc5地磁脉动资料,对2004年1月到2006年12月38个磁暴事件的地磁脉动参数进行了统计分析.在此基础上,考虑相对论电子的局部加速机制,并加入损失机制,建立了一个初步的磁暴期间地球同步轨道相对论电子通量对数值的预报模型.利用该模型,我们对上述38个磁暴事件进行预报试验,最优化结果是:相对论电子通量对数值的预测值和观测值之间的线性相关系数为0.82,预报效率为0.67.这说明该模式具有较好的预报效果,也表明利用地磁脉动参数进行相对论电子通量预报是可行的.  相似文献   

16.
Less attention has been paid to runoff generation from semi-arid than from humid-temperate catchments. The SCS curve number approach is simple to apply and widely used, but lacks physical underpinning. Here output from a runoff generation models is compared with data from field measurements, making use of 11 years data from rainfall and runoff events at the Sierra de Enguera Soil Erosion Experimental Station in Eastern Spain. Runoff from natural rainfall events was monitored for 10 years on bare plots of 1–16 m length. The largest storm event was of 142 mm, generating runoff of up to 115 mm on the smallest plots. The model presented simulates overland storm flow on a sloping rough and unvegetated surface, representing an area of 320 × 320 m. Green-Ampt infiltration constants are randomly assigned to each cell in a 128 × 128 grid, and rectangular storms applied at a range of total amounts and intensities to simulate runoff at each transect across the area. A simple algebraic expression is developed to estimate total runoff and storage in terms of storm size and duration, and plot length, with parameters that reflect infiltration behaviour, and this expression is compared with the SCS curve number approach. For the very largest storms, both expressions converge asymptotically towards 100% runoff, but the revised expression greatly improves estimates of runoff from smaller events. Output of these simulations is compared with measured storm runoff data on bare runoff plots at the Sierra de Enguera experimental Station in SE Spain and gives further support to the proposed expression for storm runoff.  相似文献   

17.
The ordinary kriging method, a geostatistical interpolation technique, was applied for developing contour maps of design storm depth in northern Taiwan using intensity–duration–frequency (IDF) data. Results of variogram modelling on design storm depths indicate that the design storms can be categorized into two distinct storm types: (i) storms of short duration and high spatial variation and (ii) storms of long duration and less spatial variation. For storms of the first category, the influence range of rainfall depth decreases when the recurrence interval increases, owing to the increasing degree of their spatial independence. However, for storms of the second category, the influence range of rainfall depth does not change significantly and has an average of approximately 72 km. For very extreme events, such as events of short duration and long recurrence interval, we do not recommend usage of the established design storm contours, because most of the interstation distances exceed the influence ranges. Our study concludes that the influence range of the design storm depth is dependent on the design duration and recurrence interval and is a key factor in developing design storm contours. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
我们利用NOAA17卫星对内辐射带高能质子的观测结果研究了大磁暴期间内辐射带质子通量的变化过程.我们发现内辐射带质子出现两种不同的暴时损失事件.在大磁暴发生时,内辐射带外边界质子通量会迅速减小,然后缓慢恢复;而在内辐射带中心区的质子通量(即南大西洋异常区(SAA)质子通量最大值)的暴时变化表现为质子通量的一个迅速的减小和迅速恢复.内辐射带外边界的损失事件主要发生在较低能量质子能档,而内辐射带中心处的损失事件发生在所有质子能档.两种损失事件中质子通量的不同变化意味着内辐射带质子可能有不同的损失和产生机制.通过分析,我们认为内辐射带外边界处质子通量损失事件主要由磁场曲率散射机制造成,而其恢复机制主要是宇宙线反照中子衰变(CRAND).内辐射带中心区(即南大西洋异常区质子通量最大处)质子通量损失事件可能与Dst效应有关.  相似文献   

19.
Abstract

The effects of acidic precipitation on stream chemistry were measured on an east-central Pennsylvania basin. When combined with flow and chemical mass balances, the data can help quantify hydrological source areas and their contributions to acidic storm hydrographs. For small storms on the well-buffered agricultural basin, small volumes of acidic precipitation falling directly on the stream surface react with more alkaline inflows from subsurface flow and surface runoff components to reduce streamflow pH temporarily by approximately one-half unit. During larger storms, the pH of surface runoff approaches that of precipitation, causing a relatively large acidic loading to the stream. However, this large input is buffered by a correspondingly larger subsurface flow component which results in stream pH reductions similar to those observed during the smaller events. Hydrological interpretations derived from a pH based mass balance are reinforced by a mass balance based on electrical conductivity and are consistent with the variable source area concept of basin hydrology.  相似文献   

20.
Organic compounds are removed from the atmosphere and deposited to the Earth's surface via precipitation. In this study, we quantified variations of dissolved organic carbon (DOC) in precipitation during storm events at the Shale Hills Critical Zone Observatory, a forested watershed in central Pennsylvania (USA). Precipitation samples were collected consecutively throughout the storm during 13 events, which spanned a range of seasons and synoptic meteorological conditions, including a hurricane. Further, we explored factors that affect the temporal variability by considering relationships of DOC in precipitation with atmospheric and storm characteristics. Concentrations and chemical composition of DOC changed considerably during storms, with the magnitude of change within individual events being comparable or higher than the range of variation in average event composition among events. Although some previous studies observed that concentrations of other elements in precipitation typically decrease over the course of individual storm events, results of this study show that DOC concentrations in precipitation are highly variable. During most storm events, concentrations decreased over time, possibly as a result of washing out of the below‐cloud atmosphere. However, increasing concentrations that were observed in the later stages of some storm events highlight that DOC removal with precipitation is not merely a dilution response. Increases in DOC during events could result from advection of air masses, local emissions during breaks in precipitation, or chemical transformations in the atmosphere that enhance solubility of organic carbon compounds. This work advances understanding of processes occurring during storms that are relevant to studies of atmospheric chemistry, carbon cycling, and ecosystem responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号