首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study describes variations in the vertical fluxes measured concurrently with sediment traps at both a shallow water (4 m) and a deeper water (7.5 m) position in a coastal lagoon in April 1995. A tripod equipped with five sediment traps (trap openings at 0.35 m, 0.75 m, 1.05 m, 1.40 m, and 1.80 m above the seabed) was placed at the shallow water position. This tripod was deployed three times during the study period and deployment periods varied between 2 d and 5 d. The second sediment trap, placed at the deep water position in the central part of the lagoon, measured vertical flux for intervals of 12 h at 1.4 m above the seabed. The horizontal distance between the sediment traps was 8 km. The average maximum vertical flux at the shallow water position reached 27.9 g m−2 d−1 during a period of high, westerly wind speeds, and a maximum vertical flux of 16.9 g m−2 d−1 was reached at the deep water position during a period of high, easterly wind speeds. Both strong resuspension events were closely related to increased wave shear stress derived from surface waves. Maximum wave-induced resuspension rate was 10 times higher at the shallow water position and 3.8 times higher at the deep water position compared with the net sedimentation rate in the lagoon. Small resuspension events occurred at the shallow water position during periods of increased current shear stress, Estimations of conditions for transport of sediment between shallow water and deep water showed that particles must be resuspended to a height between 3 m and 4 m and that current speeds must be higher than about 0.1 m s−1. An average sedimentation rate of 3.8 g m−2 d−1 was obtained at the shallow water position during a period without wave shear stress and low current shear stress. This rate measured by sediment traps is similar to a net sedimentation rate in the lagoon of 4.4 g m−2 d−1, which was determined by radiocarbon dating of a sediment core (Kristensen et al. 1995).  相似文献   

2.
Resuspension estimates given by two different trap methods in a shallow lake were compared. The sensitivity of the methods to errors in estimates of gross sedimentation and organic fraction of trapped material was explored. The methods were label method, in which resuspension is estimated by determining the organic fraction of surface sediment, suspended seston and trapped material, and SPIM/SPM method, where the relationship between settling particulate inorganic matter (SPIM) and total settling particulate matter (SPM) is used. During the whole 111 day study period, according to the label method, at a sheltered station 1949 g m−2 dry weight of sediment was resuspended, whereas SPIM/SPM gave an estimate of 1815 g m−2. The difference in the estimates was probably due to mineralization loss of organic material in the traps during the two week exposure periods. Sensitivity analysis showed that of the two methods, the label method was more sensitive to variations in the organic content of trapped material. At a wind-exposed station, the total amounts of resuspended matter given by the label method and by the SPIM/SPM method were 4966 g m−2 and 4971 g m−2, respectively. Due to wind effects, escape of trapped material took place, which caused underestimation of gross sedimentation and compensated the effects of mineralization loss to diminish the difference between the methods. Of the two methods, the SPIM/SPM method seems thus more suitable for lakes, where bacterial activity is high. If cyanobacterial blooms take place, the label method is probably more reliable, providing that the exposure time of sediment traps is kept adequately short.  相似文献   

3.
A hydrothermal plume forms in Lake Banyoles, NE Spain, as a result of convection above a springwater-fed suspension cloud ponded on the lake floor. The plume propagates upwards reaching a level of neutral buoyancy from where a turbidity current spreads out laterally. Two-dimensional temperature and particle concentration measurements show the fate of the hydrothermal plume and its associated turbidity current and reveal its seasonal development. Silt particles transported by the plume have been used as tracers to determine the maximum and equilibrium heights of the plume. When the lake is stratified, the vertical transport of sediment is confined to the lake hypolimnion, as the thermocline limits the vertical propagation of the plume. In contrast, when the lake water column is mixed, the plume reaches the surface of the lake. The field measurements have been compared with models for thermal convection from finite isolated sources. Measurements of the flow velocity at the source of the hydrothermal plume (i.e. the rim current velocity) indicate that cold hypolimnetic water is entrained by the plume. Sedimentation rates measured from sediment traps at the zone where the turbidity current develops vary between 10 and 25 g m−2 day−1, and result from continuous silt particle sedimentation from the turbidity current. Sedimentation rates in traps are higher for stations situated close to the source than those further away (<5 g m−2 day−1). Moreover, the results demonstrate that double diffusive sedimentation from the turbidity current was dominant over grain-by-grain settling, causing a mixed distribution of sediments in the region where the turbidity current spreads. The deposition of silt particles could explain the occurrence of silt layers interbedded with biocalcarenites in the littoral zones of the lake and the stratigraphy identified by seismic profiles and cores taken from the lake floor.  相似文献   

4.
Lake Houston is a man-made reservoir located northeast of Houston, Texas. The purpose of this investigation was to document suspended sediment transport, sedimentation, and resuspension in the lake with a view towards estimating the influence of sedimentation on water quality. Sediment traps were placed in strategic locations in the lake to collect suspended sediments. Samples were analyzed for bulk density, grain size, organic carbon, and a number of trace elements. These data were analyzed along with meteorological data to examine those factors which regulate suspended sediment input and dispersal, and the role of suspended sediments in controlling water quality within the lake. Sediment input to the lake depends primarily on the intensity of rainfall in the watershed. Sediment movement within the lake is strongly influenced by wave activity, which resuspends sediments from shallow areas, and by wind-driven circulation. The increased residence time of suspended sediments due to resuspension allows greater decomposition of organic matter and the release of several trace elements from sediments to the water column. Virtually all samples from sediment traps suspended between 1 and 5 m above the lake bottom contain medium to coarse silt, and even some very fine sand-sized material. This implies that circulation in Lake Houston is periodically intense enough to transport this size material in suspension. During winter, northerly winds with sustained velocities of greater than 5 m/sec provide the most suitable condition for rapid (<1 d) transport of suspended sediment down the length of the lake. Fluctuations in current velocities and the subsequent suspension/deposition of particles may explain variations in the abundance of coliform bacteria in Lake Houston.  相似文献   

5.
In Fayetteville Green Lake, past sedimentation rates can be accurately and precisely estimated by separating annual couplets or varves in dried sediment samples. Two measures were used, which serve as upper and lower limits on estimated sedimentation rate. They agree within 5 % with average annual sedimentation rate in couplets for recent years. Between 3 and 5 replicate samples are needed to reduce the half-width of 95 % confidence intervals on individual couplet sedimentation rates to 30 g m?2 yr?1 about 5 % of average recent rates. In the late 1800s sedimentation rate averaged 392 g m?2 yr?1 and ranged between 324 and 466 g m?2 yr?1, while in the 1970s the rate averaged 581 g m?2 yr?1 by the same measure, and ranged between 384 and 646 g m?2 yr?1. Sedimentation rate averaged for 13 years does not vary over short distances in the profundal zone, but lateral variation in sedimentation rate can be detected for individual years over the same distance. Not all this variation was associated with the non-uniform distribution of dark sublaminae and thin turbidites which cannot be separated from the annual layers. This indicates that although precise estimates of sedimentation rates can be made at different points in the lake, estimates will have to be made at numerous points before annual sedimentation rates for the lake as a whole can be accurately assessed.  相似文献   

6.
A geochemical–paleolimnological study was conducted to investigate human influences on three lakes (Nuasjärvi, Jormasjärvi and Kolmisoppi) located in an area with high background levels of metals and sulphur in bedrock and till overburden. Accordingly, background concentrations of Co, Fe, Mg, Mn, Ni and Zn were above average in sediments of the study lakes.The land use-related erosion and transport of particulate matter into Lake Nuasjärvi started as early as in the seventeenth century, while increased inputs to Lake Jormasjärvi date to the eighteenth century and Lake Kolmisoppi to the 1970s and 1980s. Local tills and fine-grained sediments are the source of the particles and hydraulic sorting has resulted in elevated sediment concentrations of Ca, Cr, Cu, K, Mg, Na and Ni. At the same time, sedimentation of carbon and autochthonous phases has decreased, leading to low concentrations of Co, Fe and Mn in the erosion-associated sediment layers in Nuasjärvi and Kolmisoppi. Despite the geochemical changes, no marked eutrophication of the lakes could be detected with diatom-based nutrient reconstructions during the early land-use period.Elevated amounts of sulphur and chalcophilic elements were deposited throughout the study area during the 1970s and 1980s. In Lake Nuasjärvi combination of the elements is associated with the Lahnaslampi mine and the difference in the sulphide degradation rate is reflected as a sequence of element mobility and sedimentation in the order 1) S, and 2) Co, Ni, Cu, Zn, Cd and Sb. Sulphur, Cu, Ni, Pb and Zn enrichment in the other two lakes is related to other land uses and to atmospheric deposition. In addition to sulphur and metals, these most recent inputs from the catchment have caused nutrient enrichment in all three study lakes, most notably in the lowest-lying Lake Nuasjärvi. This lake has the highest percentage of fine-grained soils in its catchment and also suffers from point source nutrient inputs. In addition, metals (Ni) had a signal in diatom assemblages in Lake Nuasjärvi that was statistically independent of eutrophication (N:C) but inseparable from mineral matter inputs (K).  相似文献   

7.
MIKE DICKMAN 《Sedimentology》1985,32(1):109-118
In a small meromictic lake near Toronto, Canada, a mass mortality of photosynthetic bacteria followed the ventilation of the chemocline during fall (autumn) and resulted in 3–8 g m-2 day-1 of organic matter being deposited as a dark layer in sediment traps which were suspended in the permanently anaerobic zone. This mass mortality of photosynthetic bacteria occurred in late autumn following the annual thermal destratification of the lake's mixolimnion. Wind mixing during this period of homeothermy resulted in the introduction of low levels of dissolved oxygen into the lake's chemocline. The ensuing mass mortality of photosynthetic bacteria resulted in the release of elemental sulphur as the sulphur-rich bacteria decomposed and sank to the bottom of the lake. The ferrous ions in the water below a depth of 15 m in Crawford Lake reacted with this sulphur to form black ferrous sulphides and pyrite which formed a dark microlamina on the lake floor. Each dark microlamina was overlain by a light coloured (calcite-rich) layer which was deposited each spring and summer during the 3 yr period of this study. The mechanism of microlamina formation elucidated here has been based on the examination of bi-weekly sediment trap information. This approach has permitted an explanation of the mechanisms by which specific events such as calcite precipitation and phytoplankton seasonal succession are transcribed into the sediment record.  相似文献   

8.
Sediment trap deployments in estuaries provide a method for estimating the amount of organic material transported to the sediments from the euphotic zone. The amino acid composition of suspended particles, benthic sediment, and sediment-trap material collected at 2.4 m, 5.8 m, and 7.9 m depths in the Potomac Estuary was determined in stratified summer waters, and in well-mixed oxygenated waters (DO) in late fall. The total vertical flow, or flux, of material into the top traps ranged from 3 g m?2 d?1 in August to 4.9 g m?2 d?1 in October. The carbon and nitrogen fluxes increased in the deepest traps relative to the surface traps during both sampling periods, along with that of the total material flux (up to 47.3 g m?2 d?1 in the deepest trap), although the actual weight percent of organic carbon and organic nitrogen decreased with depth. Amino acid concentrations ranged from 129 mg g?1 in surface water particulate material to 22 mg g?1 in particulate material in 9-m-deep waters and in the benthic sediment. Amino acid concentrations from 2.4-mg-depth sediment traps averaged 104±29 mg g?1 in stratified waters and 164±81 mg g?1 in well-mixed waters. The deep trap samples averaed, 77.3±4.8 mg g?1 amino acids in summer waters and 37±16 mg g?1 in oxygenated fall waters. Amino acids comprised 13% to 39% of the organic carbon and 12% to 89% of the orgnaic nitrogen in these samples. Analysis of the flux results suggest that resuspension combined with lateral advection from adjacent slopes can account for up to 27% of the material in the deep traps when the estuary was well-mixed and unstratified. When the estuary was stratified in late summer, the amino acid carbon produced by primary productivity in the euphotic zone decreased by 85% (86% for total organic carbon) at the pycnocline at 6 m depth, leaving up to 15% of the vertical organic flux available for benthic sediment deposition.  相似文献   

9.
Long time-series studies are critical to assessing impacts of climate change on the marine carbon cycle. A 27-year time-series study in the abyssal northeast Pacific (Sta. M, 4000 m depth) has provided the first concurrent measurements of sinking particulate organic carbon supply (POC flux) and remineralization by the benthic community. Sediment community oxygen consumption (SCOC), an estimate of organic carbon remineralization, was measured in situ over daily to interannual periods with four different instruments. Daily averages of SCOC ranged from a low of 5.0 mg C m?2 day?1 in February 1991 to a high of 31.0 mg C m?2 day?1 in June 2012. POC flux estimated from sediment trap collections at 600 and 50 m above bottom ranged from 0.3 mg C m?2 day?1 in October 2013 to 32.0 mg C m?2 day?1 in June 2011. Monthly averages of SCOC and POC flux correlated significantly with no time lag. Over the long time series, yearly average POC flux accounted for 63 % of the estimated carbon demand of the benthic community. Long time-series studies of sediment community processes, particularly SCOC, have shown similar fluctuations with the flux of POC reaching the abyssal seafloor. SCOC quickly responds to changes in food supply and tracks POC flux. Yet, SCOC consistently exceeds POC flux as measured by sediment traps alone. The shortfall of ~37 % could be explained by sediment trap sampling artifacts over decadal scales including undersampling of large sinking particles. High-resolution measurements of SCOC are critical to developing a realistic carbon cycle model for the open ocean. Such input is essential to evaluate the impact of climate change on the oceanic carbon cycle, and the long-term influences on the sedimentation record.  相似文献   

10.
《Applied Geochemistry》2003,18(9):1497-1506
Sedimentation and benthic release of As was determined in Baldeggersee, a eutrophic lake in central Switzerland. Sediment traps recorded As sedimentation during 1994, including a flood event in spring. Diagenetic processes were studied using porewater profiles at the sediment–water interface and in deeper sediment strata deposited in the mesotrophic lake (before 1885). Sediment cores were used to calculate the accumulation and to construct the balance of sedimentation and remobilisation. The results showed that the lake sediment acts as an efficient sink for As. Only 22% of the particulate As flux reaching the sediment surface was remobilised at the sediment–water interface. The As accumulation in the recent varved section of the eutrophic lake was 40 mg As m−2 a−1. Iron reduction in older sediment caused a remobilisation of 1.2 mg As m−2 a−1. This upward flux from the deeper sediment was quantitatively immobilised in the recent sulfidic sediments. The flood event in spring contributed about 34% of the yearly sediment load and led to distinct peak profiles of dissolved As in the porewater. This evidence for rapid remobilisation disappeared within months.  相似文献   

11.
In many areas of the North American mid-Atlantic coast, seagrass beds are either in decline or have disappeared due, in part, to high turbidity that reduces the light reaching the plant surface. Because of this reduction in the areal extent of seagrass beds there has been a concomitant diminishment in dampening of water movement (waves and currents) and sediment stabilization. Due to ongoing declines in stocks of suspension-feeding eastern oysters (Crassostrea virginica) in the same region, their feeding activity, which normally serves to improve water clarity, has been sharply reduced. We developed and parameterized a simple model to calculate how changes in the balance between sediment sources (wave-induced resuspension) and sinks (bivalve filtration, sedimentation within seagrass beds) regulate turbidity. Changes in turbidity were used to predict the light available for seagrass photosynthesis and the amount of carbon available for shoot growth. We parameterized this model using published observations and data collected specifically for this purpose. The model predicted that when sediments were resuspended, the presence of even quite modest levels of eastern oysters (25 g dry tissue weight m?2) distributed uniformly throughout the modeled domain, reduced suspended sediment concentrations by nearly an order of magnitude. This increased water clarity, the depth to which seagrasses were predicted to grow. Because hard clams (Mercenaria mercenaria) had a much lower weight-specific filtration rate than eastern oysters; their influence on reducing turbidity was much less than oysters. Seagrasses, once established with sufficiently high densities (>1,000 shoots m?2), damped waves, thereby reducing sediment resuspension and improving light conditions. This stabilizing effect was minor compared to the influence of uniformly distributed eastern oysters on water clarity. Our model predicted that restoration of eastern oysters has the potential to reduce turbidity in shallow estuaries, such as Chesapeake Bay, and facilitate ongoing efforts to restore seagrasses. This model included several simplifiying assumptions, including that oysters were uniformly distributed rather than aggregated into offshore reefs and that oyster feces were not resuspended.  相似文献   

12.
The goal of this paper is to find out whether suspended mussel culture affects the vertical fluxes of biogenic particles in the Ría de Vigo on a seasonal scale. With this aim, vertical fluxes of particulate organic carbon (POC) and the magnitude and composition of vertical export of phytoplankton carbon (Cphyto) collected in sediment traps were examined by comparing data obtained inside a mussel farming area (RaS) with those found at a reference station (ReS) not affected by mussels. Our results indicate that mussel farming has a strong impact on sedimentation fluxes under the rafts, not only increasing POC flux but also altering the magnitude and composition of Cphyto fluxes. Average POC flux at RaS (2564?±?1936 mg m?2 day?1) was four times higher than at ReS (731?±?276 mg m?2 day?1), and much of this increase was due to biodeposit fluxes (Cbiodep) which accounted for large proportion of POC flux (35–60 %). Indeed, because of this high Cbiodep flux, only a small proportion of the POC flux was due to Cphyto flux (3–12 %). At the same time, we observed an increased sedimentation of phytoplankton cells at RaS that could be explained by a combination of mechanisms: less energetic hydrodynamic conditions under mussel rafts, ballast effect by sinking mussel feces, and diatom aggregates. Moreover, mussel farming also altered the quality of the Cphyto flux by removing part of the predatory pressure of zooplankton and thus matching diatom composition in water column and sediment traps.  相似文献   

13.
A simple and inexpensive sampler to measure bedload sediment transport in shallow subtidal or intertidal areas is described. The cylindrical sub-sediment trap with an aspect ratio of 20 (height: diameter) is an improvement over conventional bedload samplers which are difficult to use in shallow areas or fail to collect the biological material associated with bedload. Traps deployed on a low-energy intertidal sandflat for six months provided daily estimates of bedload transport (quartz grains: 0.001–40 kg m?1 d?1), passive infaunal transport (e.g., the bivalveMya arenaria, max: 800 ind m?1 d?1), and organic detrital flux (e.g., macrophyte fragments, max: 400 g dry wt m?1 d?1). Bedload rates estimated with traps were compared to predictions from a numerical bedload model to evaluate the trap’s collection and retention efficiency. A significant linear regression between observed (trap) and predicted (model) rates (r2=0.65, p<0.001, n=97) indicated that the traps were useful for the measurement of high- and low-frequency variability in bedload transport. Potential applications of the traps in benthic oceanography include recruitment and recolonization studies.  相似文献   

14.
Three sediment stations in Himmerfjärden estuary (Baltic Sea, Sweden) were sampled in May 2009 and June 2010 to test how low salinity (5–7 ‰), high primary productivity partially induced by nutrient input from an upstream waste water treatment plant, and high overall sedimentation rates impact the sedimentary cycling of methane and sulfur. Rates of sediment accumulation determined using 210Pbexcess and 137Cs were very high (0.65–0.95 cm?year?1), as were the corresponding rates of organic matter accumulation (8.9–9.5 mol C?m?2?year?1) at all three sites. Dissolved sulfate penetrated <20 cm below the sediment surface. Although measured rates of bicarbonate methanogenesis integrated over 1 m depth were low (0.96–1.09 mol?m?2?year?1), methane concentrations increased to >2 mmol?L?1 below the sulfate–methane transition. A steep gradient of methane through the entire sulfate zone led to upward (diffusive and bio-irrigative) fluxes of 0.32 to 0.78 mol?m?2?year?1 methane to the sediment–water interface. Areal rates of sulfate reduction (1.46–1.92 mol?m?2?year?1) integrated over the upper 0–14 cm of sediment appeared to be limited by the restricted diffusive supply of sulfate, low bio-irrigation (α?=?2.8–3.1 year?1), and limited residence time of the sedimentary organic carbon in the sulfate zone. A large fraction of reduced sulfur as pyrite and organic-bound sulfur was buried and thus escaped reoxidation in the surface sediment. The presence of ferrous iron in the pore water (with concentrations up to 110 μM) suggests that iron reduction plays an important role in surface sediments, as well as in sediment layers deep below the sulfate–methane transition. We conclude that high rates of sediment accumulation and shallow sulfate penetration are the master variables for biogeochemistry of methane and sulfur cycling; in particular, they may significantly allow for release of methane into the water column in the Himmerfjärden estuary.  相似文献   

15.
A benthic annular flume for both laboratory and in situ deployment on intertidal mudflats is described. The flume provides a means of quantifying material flux (i.e., biodeposition of suspended particulates, sediment resuspension, nutrients, oxygen, and contaminants) across the sediment-water interface in relation to changes in current velocity and benthic community structure and/or population density of key macrofauna species. Flume experiments have investigated the impact of the infaunal bivalveMacoma balthica and the epifaunal bivalveMytilus edulis on seston and sediment flux at the sediment-water interface. The bioturbatorMacoma was found to increase the sediment resuspension and/or erodability by 4-fold, at densities similar to those recorded at the Skeffling mudflat (Humber estuary) (i.e., >1000 individuals m?2). There was a significant correlation between sediment resuspension andMacoma density (r=0.99; p<0.001), which supported previous in situ field observations indicating bioturbation byMacoma enhanced sediment erodability. Biodeposition rates (g m?2 h1) ofMytilus edulis andCerastoderma edule were quantified and related to changes in population density in a mussel bed (Cleethorpes, Humber estuary). Biodeposition rates were up to 40-times the natural sedimentation rates. At the highest mussel bed densities (i.e., 50–100% cover or >1400 mussels m?2) the physical presence of this epifaunal bivalve on the sediment surface reduced erosion by 10-fold. The shift from net biodeposition to net erosion occurred at current velocities of 20–25 cm s?1. These results demonstrate that infaunal and epifaunal bivalves can have a significant impact on seston flux or sediment deposition and on sediment resuspension or erodability in estuaries where there are extensive mudflats.  相似文献   

16.
Thirty two cores were collected from Lake Geneva sediments along one longitudinal and eight transverse profiles. Rates of sedimentation determined by137Cs vary from 0.01 to 1.86 g cm−2 y−1. The average deposition rates in coastal and slope areas amounts to 0.37 g cm−2 y−1 in the Upper Lake (Grand Lac) and 0.12 g cm−2 y−1 in the Lower Lake (Petit Lac). In the deep basins, average rates of 0.13 and 0.05 g cm−2 y−1 were found for the Grand Lac and Petit Lac, respectively. The estimated mass of sediment deposited yearly outside of the principal deltas and turbidity current depositional areas is about 1.0 million tons (about 13% of the estimated total river load). One turbidite is clearly identified in the deepest, central lake area. There is little variation of surface sediment texture (mean grain size about 8–9μm) with the exception of delta areas. Since the beginning of the twentieth century, both carbonate and organic matter have increased as a result of lake eutrophication.  相似文献   

17.
A 4·7 km2 field of sediment waves occurs in front of the Slims River delta in Kluane Lake, the largest lake in the Yukon Territory. Slims River heads in the Kaskawulsh Glacier, part of the St Elias Ice Field and discharges up to 400 m3 s?1 of water with suspended sediment concentrations of up to 7 g l?1. The 19 km long sandur of Slims River was created in the past 400 years since Kaskawulsh Glacier advanced and dammed the lake and the sandur has advanced into Kluane Lake at an average rate of 48 m a?1. However, this rate is decreasing as flow is diverted from Slims River because of the retreat of the Kaskawulsh Glacier. The sandur and a road constructed on the delta remove coarse‐grained sediment, so the river delivers dominantly mud to the lake. Inflow during summer generates quasi‐continuous turbidity currents with velocities up to 0·6 m s?1. The front of the delta consists of a plane surface sloping lakeward at 0·0188 (1·08°). A field of sediment waves averaging 130 m in length and 2·3 m in amplitude has developed on this surface. Slopes on the waves vary from ?0·067 (?3·83°, i.e. sloping in the opposite direction to the regional slope) to 0·135 (7·69°). The internal structure of the sediment waves, as documented by seismic profiling, shows that sedimentation on the stoss portion of the wave averages 2·7 times that on the lee portion. Rates of sediment accumulation in the wave field are about 0·3 m a?1, so these lacustrine waves have formed in a much shorter period of time (less than 200 years) and are advancing upslope towards the delta much more quickly (1 to 2 m a?1) than typical marine sediment waves. These waves formed on the flat surface of the lake floor, apparently in the absence of pre‐existing forms, and they are altered and destroyed as the wave field advances and the characteristics of the turbidity currents change.  相似文献   

18.
A variety of mechanisms have been proposed to explain how light and dark couplets are formed in the profundal sediments of meromictic lakes but none of these explanations acknowledges the significance of the sudden and massive mortality of mixolimnetic anaerobic bacteria. Data collected from sedimentation chambers suspended below the chemocline in a small meromictic lake indicate that a massive mortality of photosynthetic bacteria was induced by a sudden intrusion of partially oxygenated water into the anaerobic lower mixolimnion. The resulting deposition of anaerobic bacteria (0.45 mg dry wt cm?2 day?1) contributed 60% of the annual sediment influx during a 14-day period. It is postulated that the sudden sedimentation of the anaerobic bacteria inhabiting the lower mixolimnion of some meromictic lakes contributed to the formation of the dark-colored laminae in the sediments of these lakes.  相似文献   

19.
Tunnicliffe, J., Church, M. & Enkin, R. J. 2012 (January): Postglacial sediment yield to Chilliwack Lake, British Columbia, Canada. Boreas, Vol. 41, pp. 84–101. 10.1111/j.1502‐3885.2011.00219.x. ISSN 0300‐9483. Seismic records and evidence from sediment cores at Chilliwack Lake provide the basis for a long‐term (postglacial) sediment budget for a 324‐km2 Cordilleran catchment. Chilliwack Lake (11.8 km2 surface area), situated in the North Cascade Mountains, near Chilliwack, British Columbia, was formed behind a valley‐wide recessional moraine in the final phase of post‐Fraser alpine glaciation. Seismic surveys highlight the postglacial lacustrine record, which is underlain by a thick layer of sediments related to deglacial sedimentation. Sediment cores provide details of grain‐size fining from the delta to the distal lake basin. The cores also show a record of intermittent fire and debris flows. Magnetic measurements of lake sediments provide information on grain size, as well as a dating framework. The total postglacial lake‐floor deposit volume is estimated to be 397 ± 27 × 106 m3. Including estimates of fan and delta deposition, the specific postglacial yield to the lake is calculated to be ~86 ± 13 Mg km2 a?1. The sediment volume in the uppermost (Holocene) lacustrine layer is 128 ± 9 × 106 m3, representing ~41 ± 4 Mg km2 a?1 in the Holocene. Compared with other Cordilleran lakes of similar size, particularly those with glacial cover in the watershed, Chilliwack Lake has experienced relatively modest rates of sediment accumulation. This study provides an important contribution to a growing database of long‐term (postglacial) sediment yield data for major Cordilleran lakes, essential for advancing our understanding of the pace of landscape evolution in formerly glaciated mountainous regions.  相似文献   

20.
Sedimentation rates were determined with the 210Pb method in eight sediment cores from Lake Constance. The rate of deposition in the main basin (Obersee) varies from about 0.06 g cm?2 y?1 in the central part to 0.13 g cm?2 y?1 in the eastern part of the lake and then increases rapidly towards the Rhine delta. In the central lake area the rate of deposition has been approximately constant since 1900, and dating with the 210Pb method is in good agreement with sedimentological observations. In the Konstanzer Trichter area, the deposition rate has been increasing since about 1955 as a result of eutrophication and subsequent high carbonate production. Dating with 137Cs is fairly accurate for sediments deposited at a high rate, but is questionable for slowly accumulating ones. A positive correlation of 210Pb fluxes and sedimentation rates indicates that 210Pb flux into sediments follows the distribution pattern of solids. 210Pb profiles in four sediment cores interpreted in terms of a constant flux model display synchronous fluctuations of the sedimentation rate; however, their relation to long-range particulate input variations remains to be proved. Sedimentation rates determined with the 210Pb method were used to calculate recent nutrient and heavy metal fluxes. Anthropogenic fluxes of Zn and Pb are in the same range of magnitude as in other polluted areas in Europe and America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号