首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Apatite fission-track (AFT) data have been obtained along a traverse across the Marrakech High Atlas to constrain its tectono-thermal evolution. AFT ages vary between 212 ± 15 Ma and 20 ± 4 Ma. An Early Miocene AFT age accompanied by long mean track length from the central part of the chain has been interpreted as the timing of the main inversion of this region with the creation of relief because of the shortening induced by the interplay between the African and Eurasian plates. Thermal modelling of samples collected south of the South Atlas Fault Zone indicates a Middle-Late Miocene or even later cooling that has been attributed to the component of the uplift of the chain related to the thermal anomaly present beneath the Atlas Mountains.  相似文献   

2.
Apatite fission track (AFT) and (U–Th)/He data from the High Atlas have been obtained for the first time to constrain the tectono‐thermal evolution of the central part of the chain. Results from Palaeozoic basement massifs indicate long residence at low temperatures, consistently with their original location out of the deepest Mesozoic rift troughs and indicating minor exhumation. The best rocks for extracting the Alpine history of the Atlas Mountains are Jurassic intrusives, which yield AFT ages centred on c. 80 Ma; thermal models based on AFT data and constrained by (U–Th)/He suggest that these ages are included in a slow cooling trend from intrusion age to c. 50 Ma ago that we attribute to post‐rift thermal relaxation. This is followed by a stability period of c. 30 Ma and then by a final exhumational cooling until present exposure. Eocene intrusives yield AFT ages similar to those of Rb–Sr and K–Ar suggesting rapid emplacement in the uppermost crust.  相似文献   

3.
Apatite fission-track (AFT) and (U+Th)/He (AHe) data, combined with time–temperature inverse modelling, reveal the cooling and exhumation history of the Iberian Massif in eastern Galicia since the Mesozoic. The continuous cooling at various rates correlates with variation of tectonic boundary conditions in the adjacent continental margins. The data provide constraints on the 107 timescale longevity of a relict paleolandscape. AFT ages range from 68 to 174 Ma with mean track lengths of 10.7 ± 2.6 to 12.6 ± 1.8 μm, and AHe ages range from 73 to 147 Ma. Fastest exhumation (≈0.25 km/Ma) occurred during the Late Jurassic to Early Cretaceous main episode of rifting in the adjacent western and northern margins. Exhumation rates have decreased since then and have been approximately one order of magnitude lower. Across inland Galicia, the AFT data are consistent with Early Cretaceous movement on post-Variscan NE trending faults. This is coeval with an extensional episode offshore. The AHe data in this region indicate less than 1.7 km of denudation in the last 100 Ma. This low exhumation suggests the attainment of a mature landscape during Late Cretaceous post-rift tectonic stability, whose remains are still preserved. The low and steady rate of denudation prevailed across inland Galicia despite minor N–S shortening in the northern margin since ≈45 Ma ago. In north Galicia, rock uplift in response to NW strike-slip faulting since Early Oligocene to Early Miocene has caused insufficient exhumation (<3 km) to remove the Mesozoic cooling signal recorded by the AFT data.  相似文献   

4.
Coalbed methane (CBM) is a kind of burgeoning and enormously potential clean energy resource, and the temperature of the thermogenic CBM generation is close to that of the partial annealing zone (PAZ) of apatite fission tracks (AFT). In this study the thermo-tectonic history of the Huainan Coalfield and the potential CBM resource were studied and discussed by using the AFT method. The AFT data indicate that the apparent ages of AFT vary from 45.5 to 199.1 Ma. They are younger than the ages of their host strata (255–1800 Ma) except one sample, and the single-grain ages of AFT can be classified as a single age group for each sample. In combination with the geological setting, modeling results of the AFT ages, average lengths, and the thermal history based on the AFT single-grain ages and length distributions, some preliminary conclusions can be drawn as follows: (1) at least three thermo-tectonic events (in the periods of ∼240, 140 and 80 Ma, respectively) have occurred in the study area since the Late Paleozoic. The occurrence of both the first (during 240–220 Ma) and second (during 160–120 Ma) thermo-tectonic events is possibly responsible for the establishment of the patterns of gas generation and reservoir formation. The second thermo-tectonic event also led to slight accumulation of hydrocarbons and generation of thermogenic gas; (2) the AFT ages of most coal-bearing strata lie between 50 and 70 Ma. They should represent the cooling ages and the ages of inferred uplift and denudation, as well as the possible CBM release history. Therefore, the maximum burial depth of coal-bearing strata and the denudation thickness of the overlying strata are over 3000 and 2000 m in the Upper Cretaceous and Paleogene series, respectively; and (3) subsequently, a spot of secondary biogenic and scarcely thermogenic gas generation occurred due to negligible sedimentation during the Neogene and Quaternary periods. Thus, it can be presumed that subsequent tectonism would destroy the CBM reservoir after its formation in the Huainan Coalfield, especially in its structural development region. These AFT data may be helpful for a better understanding of the thermo-tectonic history of the Huainan Coalfield, as well as of CBM generation, storage and release in the Huainan Coalfield.  相似文献   

5.
嘉黎断裂带两侧晚新生代差异隆升的磷灰石裂变径迹纪录   总被引:5,自引:0,他引:5  
对嘉黎断裂带两侧的磷灰石裂变径迹年代学测试表明,断裂带北侧的磷灰石裂变径迹年龄在5.6~11.7Ma之间,属中新世晚期;断裂带南侧的磷灰石裂变径迹年龄明显较小,6个样品中有5个样品的磷灰石裂变径迹年龄在4.0~5.9Ma之间,属上新世早期.嘉黎断裂带北侧5.6~11.7Ma期间的隆升速率为0.07~0.09mm/a.5.8Ma以来平均剥露速率为0.50mm/a,平均隆升速率1.33mm/a.断裂带南侧4.7Ma以来平均剥露速率为0.62mm/a,平均隆升速率1.68mm/a.两侧样品都反映上新世以来有较强烈的隆升作用,并且南侧比北侧隆升作用更强烈.  相似文献   

6.
马楠  邓军  王庆飞  王长明  张静  李龚健 《岩石学报》2013,29(4):1223-1235
大松坡锡矿床是三江特提斯成矿域腾冲-梁河锡-钨多金属矿带内的典型锡矿床之一,与古永岩基有密切的成生联系.本文利用LA-ICP-MS锆石U-Pb定年手段对大松坡锡矿床小龙河含锡黑云母花岗岩和二长花岗岩进行制约,两件黑云母花岗岩样品分析结果分别为70.3±3.2Ma和75.3±4.2Ma,一件二长花岗岩样品结果为71.5±2.1Ma,代表了岩浆结晶年龄.LA-MC-ICP-MS U-Pb方法直接对锡石进行年龄测试在国内外研究报道尚少,本文首次对该矿床云英岩型锡矿石中锡石进行定年尝试,结果为75.5±2.6Ma,与岩体年龄在误差范围内一致.小龙河锡矿床含锡岩体与古永岩基年龄一致,表明该含锡岩体可能是古永岩基的一部分.大松坡锡矿床的成矿年龄与含锡岩体年龄一致,表明二者同时形成,共系新特提斯洋俯冲构造背景的产物.  相似文献   

7.
The Shi-Hang Belt is a Mesozoic tectonic zone and has always been regarded as the boundary between the Yangtze and Cathaysia blocks. It occupies a key tectonic location and attracts considerable attention due to its dynamic formation mechanism. However, its Cenozoic dynamic process is poorly constrained. The Cenozoic activation of the Shi-Hang Belt, as well as its cooling and exhumation, aids in dating the onset time of the formation of the mountain ranges and reveals the deformation process of the South China Block. To uncover the history of its Cenozoic cooling and denudation, apatite fission-track (AFT) thermochronology was applied to batholiths and strata spread across the Shi-Hang Belt in the Hunan Province. Twenty-three samples are dated with ages ranging from 23.6 ± 1.5 to 45.8 ± 3.0 Ma. Except for two older ages (42.1 ± 2.6 and 45.8 ± 3.0 Ma), the other ages range from 23 to 36 Ma with less variation on both sides of the Chenzhou–Linwu fault. The thermochronological modelling of 15 measured samples demonstrates that rocks rapidly passed through the AFT partial annealing zone to the near surface at different onset times from 36 to 23 Ma. The regional AFT cooling pattern is unrelated to the internal structures of the Shi-Hang Belt characterized by a Mesozoic fold-thrust feature. We attribute the Cenozoic exhumation of the Shi-Hang Belt to the dynamic topography of the South China Block, which is related to mantle downwellings and upwellings due to several episodes of quick subduction of the Pacific Plate underneath Eurasia during the Late Cretaceous–early Cenozoic and the Oligocene–early Miocene. The far-field effect of the India–Tibet collision may have contributed to the exhumation of the Shi-Hang Belt.  相似文献   

8.
The origin of the Anti‐Atlas relief is one of the currently debated issues of Moroccan geology. To constrain the post‐Variscan evolution of the Central Anti‐Atlas, we collected nine samples from the Precambrian basement of the Bou Azzer‐El Graara inlier for zircon and apatite fission‐track thermochronology. Zircon ages cluster between 340 ± 20 and 306 ± 20 Ma, whereas apatite ages range from 171 ± 7 Ma to 133 ± 5 Ma. Zircon ages reflect the thermal effect of the Variscan orogeny (tectonic thickening of the ca. 7 km‐thick Paleozoic series), likely enhanced by fluid advection. Apatite ages record a complex Mesozoic–Cenozoic exhumation history. Track length modelling yields evidence that, (i) the Precambrian basement was still buried at ca. 5 km depth by Permian times, (ii) the Central Anti‐Atlas was subjected to (erosional) exhumation during the Triassic‐Early Cretaceous, then buried beneath ca. 1.5 km‐thick Cretaceous‐Paleogene deposits, (iii) final exhumation took place during the Neogene, contemporaneously with that of the High Atlas.  相似文献   

9.
There is a cross-cutting relationship between the E-W trending structures and the NE-trending structures in the northern Longmen-Micang Mountains region,which reflects possible regional tectonic transi...  相似文献   

10.
《Tectonophysics》1999,301(1-2):145-158
The Mersin ophiolite is located on the southern flank of the E–W-trending central Tauride belt in Turkey. It is one of the Late Cretaceous Neotethyan oceanic lithospheric remnants. The Mersin ophiolite formed in a suprasubduction zone tectonic setting in southern Turkey at the beginning of the Late Cretaceous. The Mersin ophiolite is one of the best examples in Turkey in order to study reconstruction of ophiolite emplacement along the Alpine–Himalayan orogenic belt. 40Ar/39Ar incremental-heating measurements were performed on seven obduction-related subophiolitic metamorphic rocks. Hornblende separates yielded isochron ages ranging from 96.0±0.7 Ma to 91.6±0.3 Ma (all errors ±1σ). Five of the seven hornblende age determinations are indistinguishable at the 95% confidence level and have a weighted mean age of 92.6±0.2 (2σ) Ma. We interpret these ages as the date of cooling below 500°C. Intraoceanic thrusting occurred (∼4 Ma) soon after formation of oceanic crust. The sole was crosscut by microgabbro–diabase dikes less than 3 m.y. later. The final obduction onto the Tauride platform occurred during the Late Cretaceous–Early Paleocene. Our new high-precision ages constrain intraoceanic thrusting for a single ophiolite (Mersin) in the Tauride belt.  相似文献   

11.
Borehole and surface samples from the Archean Tanzania Craton were analysed for apatite fission track(AFT) and(U-Th)/He data with the aim of deciphering cooling histories of the basement rocks. Fission track dates from borehole and outcrop samples are Carboniferous-Permian(345± 33.3 Ma to271±31.7 Ma) whereas(U-Th)/He dates are Carboniferous-Triassic(336±45.8 Ma to 213±29 Ma) for outcrop grains and are consistently younger than corresponding AFT dates. Single grain(U-Th)/He dates from the borehole are likely to be flawed by excessive helium implantation due to their very low effective uranium contents, radiation damage and grain sizes. All AFT and(U-Th)/He dates are significantly younger than the stratigraphic ages of their host rocks, implying that the samples have experienced Phanerozoic elevated paleo-temperatures. Considerations of the data indicate removal of up to 9 km overburden since the Palaeozoic.Thermal modelling reveals a protracted rapid cooling event commencing during the early Carboniferous(ca. 350 Ma) at rates of 46 m/Ma ending in the Triassic(ca. 220 Ma). The model also suggests minor cooling during the Cretaceous of the samples to surface temperatures. The suggested later cooling event remains to be tested. The major cooling phase during the Carboniferous is interpreted to be associated with compressional tectonics during the Variscan Orogeny sensu far field induced stresses. Coeval sedimentation in the Karoo basins in the region suggests that most of the cooling of cratonic rocks during the Carboniferous was associated with denudation.  相似文献   

12.
During the early stages of North Atlantic rifting, in the Late Triassic and Early Liassic, intracontinental basins with the eruption of tholeiitic lavas developed along the Atlantic margin of Morocco and in the Atlas domain. K-Ar dating of different grain-size fractions of Cambrian schists from the Hercynian basement and of sediments from the Triassic cover yield apparent ages which decrease with grain size, from 330-300 Ma for the coarse fractions to about 220-200 Ma for the clay-size fractions. These apparent ages indicate either K-Ar resetting of Hercynian minerals, or the development of new minerals during one or more Upper Triassic to Lower Liassic thermal or hydrothermal events. Theoretical calculations indicate that a temperature of 185-210 ° C maintained for 15 ± 10 m.y. can account for the isotopic rehomogenization of the fine-grained Hercynian micas of the High Atlas. The probable cause was a rise of the upper mantle in a thin continental crust during the first stages of Atlantic rifting.  相似文献   

13.
The Rwenzori Mountains (Mtns) in west Uganda are the highest rift mountains on Earth and rise to more than 5,000 m. We apply low-temperature thermochronology (apatite fission-track (AFT) and apatite (U–Th–Sm)/He (AHe) analysis) for tracking the cooling history of the Rwenzori Mtns. Samples from the central and northern Rwenzoris reveal AFT ages between 195.0 (±8.4) Ma and 85.3 (±5.3) Ma, and AHe ages between 210.0 (±6.0) Ma to 24.9 (±0.5) Ma. Modelled time–temperature paths reflect a protracted cooling history with accelerated cooling in Permo-Triassic and Jurassic times, followed by a long period of constant and slow cooling, than succeeded by a renewed accelerated cooling in the Neogene. During the last 10 Ma, differentiated erosion and surface uplift affected the Rwenzori Mtns, with more pronounced uplift along the western flank. The final rock uplift of the Rwenzori Mtns that partly led to the formation of the recent topography must have been fast and in the near past (Pliocene to Pleistocene). Erosion could not compensate for the latest rock uplift, resulting in Oligocene to Miocene AHe ages.  相似文献   

14.
The Kuruktag uplift is located directly northeast of the Tarim craton in northwestern China. Neoarchaean-to-Neoproterozoic metamorphic rocks and intrusive rocks crop out widely in the uplift; thus, it is especially suited for a more complete understanding of the thermal evolution of the Tarim craton. Apatite fission-track (AFT) methods were used to study the exhumation history and cooling of these Precambrian crystalline rocks. Nine apatite-bearing samples were collected from both sides of the Xingdi fault transecting the Kuruktag uplift. Pooled ages range from 146.0 ± 13.4 to 67.6 ± 6.7 Ma, with mean track lengths between 11.79 ± 0.14 and 12.48 ± 0.10 μm. These samples can be divided into three groups based on age and structural position. Group A consists of five samples with AFT apparent ages of about 100–110 Ma and is generally associated with undeformed areas. Group B comprises three specimens with AFT apparent ages lower than 80 Ma and is mostly associated with hanging wall environments close to faults. Group C is a single apatite sample with the oldest relative apparent age, 146.0 ± 13.4 Ma. The modelled thermal history indicates four periods of exhumation in the Kuruktag uplift: late-Early Jurassic (180 Ma); Late Jurassic–Early Cretaceous (144–118 Ma); early-Late Cretaceous (94–82 Ma); and late Cenozoic (about 10 Ma). These cooling events, identified by AFT data, are assumed to reflect far-field effects from multi-stage collisions and accretions of terranes along the south Asian continental margin.  相似文献   

15.
Apatite fission-track (AFT) dating applied to uplifted Variscan basement blocks of the Bavarian Forest is employed to unravel the low-temperature history of this segment of the Bohemian Massif. Twenty samples were dated and confined track lengths of four samples were measured. Most samples define Cretaceous APT ages between 110 and 82 Ma (Albian to Campanian) and three samples give older ~148–140 Ma (Jurassic–Cretaceous boundary) ages. No discernible regional age variations exist between the areas north-east and south-west of the Pfahl shear zone, but >500 m post-Jurassic and post-Cretaceous vertical offsets along this and other faults can be inferred from elevation profile analyses. The AFT ages clearly postdate the Variscan exhumation history of the Bavarian Forest. Thermal modeling reveals that the ages are best explained by a slight reheating of the basement rocks to temperatures within the apatite partial annealing zone during the middle and late Jurassic and/or by late Cretaceous marine transgression causing burial heating, which affected marginal low-lying areas of the Bohemian Massif and the Bavarian Forest. Late Jurassic period was followed by enhanced cooling through the 120–60 °C temperature interval during the subsequent exhumation phase for which denudation rates of ~100 m myr?1 were calculated. On a regional scale, Jurassic–Cretaceous AFT ages are ubiquitous in marginal structural blocks of the Bohemian Massif and seem to reflect the exhumation of these zones more distinctly compared to central parts.  相似文献   

16.
Southern Africa's topography is distinctive. An inland plateau of low relief and high average elevation is separated from a coastal plane of high relief and low average elevation by a steeply dipping escarpment. The origin and evolution of this topography is poorly understood because, unlike high plateaus elsewhere, its development cannot be easily linked to present day compressional plate boundary processes. Understanding the development of this regional landscape since the break-up of Gondwana is a first order step towards resolving regional epeirogenesis. We present data that quantifies the timing and extent of exhumation across the southern Cape escarpment and coastal plane, using apatite fission track analysis (AFTA) of 25 outcrop samples and 31 samples from three deep boreholes (KW1/67, SA1/66, CR1/68). Outcrop fission track (AFT) ages are Cretaceous and are significantly younger than the stratigraphic ages of their host rocks, indicating that the samples have experienced elevated paleotemperatures. Mean track lengths vary from 11.86 to 14.23 μm. The lack of Cenozoic apatite ages suggests that major cooling was over by the end Cretaceous. The results for three boreholes, situated seaward (south) of the escarpment, indicate an episode of increased denudation in the mid-late Cretaceous (100–80 Ma). An earlier episode of increased denudation (140–120 Ma) is identified from a borehole north of the escarpment. Thermal modelling indicates a history involving 2.5–3.5 km of denudation in the mid-late Cretaceous (100–80 Ma) at a rate of 175 to 125 m/Ma. The AFT data suggest that less than 1 km of overburden has been eroded regionally since the late Cretaceous (< 80 Ma) at a rate of 10 to 15 m/Ma, but do not discount the possibility of minor (in relative amplitude) episodes of uplift and river incision through the Cenozoic. The reasons for rapid denudation in these early and mid-Cretaceous episodes are less clear, but may be related to epeirogenic uplift associated with an increase in mantle buoyancy as reflected in two punctuated episodes of alkaline intrusions (e.g. kimberlites) across southern Africa and contemporaneous formation of two large mafic igneous provinces (~ 130 and 90 Ma) flanking its continental margins. Because Cenozoic denudation rates are relatively minimal, epeirogenic uplift of southern Africa and its distinct topography cannot be primarily related to Cenozoic mantle processes, consistent with the lack of any significant igneous activity across this region during that time.  相似文献   

17.
Single-zircon Pb evaporation dating was undertaken on granitoids and metavolcanic rocks of different lithostratigraphic units of the São Luís craton and the bordering Gurupi belt in northern Brazil, allowing the determination of the crystallization ages of these rocks and a partial reassessment of the regional lithostratigraphy. In the Sao Luis craton, zircons from granitoids of the Tromai Suite (dominantly tonalitic) yielded 207Pb/206Pb ages between 2149 ± 5 Ma and 2165 ± 2 Ma, and a metapyroclastic rock of the metavolcanosedimentary Aurizona Group was dated at 2240 ± 5 Ma. In the Gurupi belt, the Itamoari Tonalite (the deformed correspondent of the Tromai Suite) gave an age of 2148 ± 4 Ma, similar to the younger ages of the Tromai Suite. Two felsic metavolcanics of the metavolcanosedimentary Gurupi Group showed crystallization ages between 2148 ± 1 Ma and 2160 ± 3 Ma, which are similar to those of the granitoids of the cratonic domain. The Th/U ratios of the whole set of analyzed samples, calculated from the 208Pb/206Pb ratio, ranged from 0.23 to 0.51, which is typical of magmatic zircons. The determined ages are in good agreement with those of the correlative Eburnean granitoids and Birimian sequences of the West African craton.

A Rb-Sr internal isochron was calculated for a collisional-type granitoid (Maria Suprema Granite) in the Gurupi belt, yielding an age of 1710 ± 32 Ma, interpreted as a partial resetting of the isotopic system. Considered as a minimum age, this dating places the granitoid in the Paleoproterozoic.

The age of the rocks and of the establishment of the Gurupi belt have been controversial, owing to the widespread Neoproterozoic (Brasiliano/Pan-African) Rb-Sr and K-Ar signature of its rocks. Our data, combined with other recent geological and geochronological information, suggest that rocks of the present Gurupi belt have likely participated in collisional/accretionary processes occurring in the final stages of the Transamazonian orogenic cycle in the Paleoproterozoic (2.0-2.1 Ga). This was part of the major process of assembly of the Atlantica supercontinent. The belt was tectonically reactivated in the Neoproterozoic, with widespread reworking of older rocks and only localized rock generation, leading to its present configuration.  相似文献   

18.
南黄海中部隆起自印支期以来经历显著的构造隆升及剥蚀过程.基于大陆架科学钻探CSDP-2井的钻井岩心,应用磷灰石裂变径迹技术研究了南黄海中部隆起晚白垩世以来的剥蚀过程及响应特征.所获得的8个磷灰石样品的裂变径迹年龄显示出两个年龄组,除单个样品为38±3 Ma外,其余样品都集中在(52±4)~(65±5)Ma范围内,基本反映了同一期构造热事件年龄,并且均远小于样品所处的二叠纪年龄,表明样品完全退火并记录了晚白垩世以来的热历史.样品热史模拟结果表明,基于泥岩镜质体反射率计算的最高古地温处于样品退火带温区范围内,各样品从晚白垩世早期(约100 Ma)以来经历持续的降温过程,在约80~75 Ma开始进入部分退火带.南黄海中部隆起第一期快速冷却降温过程出现在晚白垩世末期,并持续至古新世早期,随后进入古近纪表现为持续相对缓慢的降温过程,降温幅度约30 ℃,渐新世末期到中新世早期存在另一期快速冷却过程.热史模拟结果较好地指示了南黄海中部隆起晚白垩世以来的地层剥蚀响应特征.   相似文献   

19.
The Tarim Basin is a representative example of the basins developed in the northwest China that are characterized by multiple stages of heating and cooling.In order to better understand its complex thermal history,apatite fission track (AFT) thermochronology was applied to borehole samples from the Tazhong Uplift Zone (TUZ).Twelve sedimentary samples of Silurian to Triassic depositional ages were analyzed from depths coinciding with the apatite partial annealing zone (~60-120 ℃).The AFT ages,ranging from 132 ± 7 Ma (from a Triassic sample) to 25 ± 2 Ma (from a Carboniferous sample),are clearly younger than their depositional ages and demonstrate a total resetting of the AFT thermometer after deposition.The AFT ages vary among different tectonic belts and decrease from the No.Ten Faulted Zone (133-105 Ma) in the northwest,the Central Horst Zone in the middle (108-37 Ma),to the East Buried Hill Zone in the south (51 25 Ma).Given the low magnitude of post-Triassic burial heating evidenced by low vitrinite reflectance values (Ro < 0.7%),the total resetting of the AFT system is speculated to result from the hot fluid flow along the faults.Thermal effects along the faults are well documented by younger AFT ages and unimodal single grain age distributions in the vicinity of the faults.Permian-early Triassic basaltic volcanism may be responsible for the early Triassic total annealing of those samples lacking connectivity with the fault.The above arguments are supported by thermal modeling results.  相似文献   

20.
为精确限定红土堡基性火山岩的形成时代,结合阴极发光分析,分别对北祁连东段红土堡枕状玄武岩和辉绿岩墙进行了LA - ICP - MS 单颗粒锆石微区U - Pb 同位素测年。红土堡枕状玄武岩获得(443.4 ±1.7 )Ma 和(1 782 ±34 )Ma 两组年龄值;同时,获得红土堡基性火山岩中辉绿岩墙的年龄为(385.7 ±7.9 )Ma,并含有(1 697 ±6 ) ~(2 692 ±4 )Ma 的捕晶锆石年龄信息。认为红土堡基性火山岩的形成时代为晚奥陶世,与其北的陈家河中酸性火山岩的形成时代大体一致,推断红土堡基性火山岩的原始岩浆不同程度遭受了陇山岩群的混染。这一新资料,对进一步研究北祁连造山带东段大地构造格局、构造演化以及北秦岭—北祁连衔接关系具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号