首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Marine gas hydrates, one of the largest methane reservoirs on Earth, may greatly affect the deep sea sedimentary environment and biogeochemistry; however, the carbon geochemistry in gas hydrate-bearing sediments is poorly understood. In this study, we investigated the carbon variables in sediment core 973-3 from the southwestern Taiwan Basin in the South China Sea to understand the effect of environmental factors and archaeal communities on carbon geochemistry. The carbon profiles suggest the methanogenesis with the incerase of dissolved inorganic carbon(DIC) and high total organic carbon(TOC)(mean = 0.46%) originated from terrigenous organic matter(mean δ~(13)C_(TOC) value of-23.6‰) driven by the abundant methanogen ‘Methanosaeta and Methanomicrobiales'. The active anaerobic oxidation of methane is characterized by the increase of DIC and inorganic carbon(IC), and the depleted δ~(13)C_(IC), coupled with the increase of TOC and the decrease of δ~(13)C_(TOC) values owing to the methanotroph ‘Methanosarcinales/ANME' in 430–840 cm. Environmental factors and archaeal communities in core 973-3 are significantly correlated to carbon variables owing to methane production and oxidation. Our results indicate that the carbon geochemical characteristics are obviously responding to the formation and decomposition of gas hydrates. Furthermore, pH, Eh and grain size, and Methanosaeta greatly affect the carbon geochemistry in gas hydrate-associated sediments.  相似文献   

2.
Lower Messinian stromatolites of the Calcare di Base Formation at Sutera in Sicily record periods of low sea‐level, strong evaporation and elevated salinity, thought to be associated with the onset of the Messinian Salinity Crisis. Overlying aragonitic limestones were precipitated in normal to slightly evaporative conditions, occasionally influenced by an influx of meteoric water. Evidence of bacterial involvement in carbonate formation is recorded in three dolomite‐rich stromatolite beds in the lower portion of the section that contain low domes with irregular crinkly millimetre‐scale lamination and small fenestrae. The dominant microfabrics are: (i) peloidal and clotted dolomicrite with calcite‐filled fenestrae; (ii) dolomicrite with bacterium‐like filaments and pores partially filled by calcite or black amorphous matter; and (iii) micrite in which fenestrae alternate with dark thin wispy micrite. The filaments resemble Beggiatoa‐like sulphur bacteria. Under scanning electron microscopy, the filaments consist of spherical aggregates of dolomite, interpreted to result from calcification of bacterial microcolonies. The dolomite crystals are commonly arranged as rounded grains that appear to be incorporated or absorbed into developing crystal faces. Biofilm‐like remains occur in voids between the filaments. The dolomite consistently shows negative δ13C values (down to ?11·3‰) and very positive δ18O (mean value 7·9‰) that suggest formation as primary precipitate with a substantial contribution of organic CO2. Very negative δ13C values (down to ?31·6‰) of early diagenetic calcite associated with the dolomite suggest contribution of CO2 originating by anaerobic methane oxidation. The shale‐normalized rare earth element patterns of Sutera stromatolites show features similar to those in present‐day microbial mats with enrichment in light rare earth elements, and M‐type tetrad effects (enrichment around Pr coupled to a decline around Nd and a peak around Sm and Eu). Taken together, the petrography and geochemistry of the Sutera stromatolites provide diverse and compelling evidence for microbial influence on carbonate precipitation.  相似文献   

3.
Through early lithification, cyanobacterial mats produced vast amounts of CaCO3 on Precambrian carbonate platforms (before 540 Myr ago). The superposition of lithified cyanobacterial mats forms internally laminated, macroscopic structures known as stromatolites. Similar structures can be important constituents of Phanerozoic carbonate platforms (540 Myr to present). Early lithification in modern marine cyanobacterial mats is thought to be driven by a metabolically-induced increase of the CaCO3 saturation state (ΩCaCO3) in the mat. However, it is uncertain which microbial processes produce the ΩCaCO3 increase and to which extent similar ΩCaCO3 shifts were possible in Precambrian oceans whose chemistry differed from that of the modern ocean. I developed a numerical model that calculates ΩCaCO3 in cyanobacterial mats and used it to tackle these questions. The model is first applied to simulate ΩCaCO3 in modern calcifying cyanobacterial mats forming at Highborne Cay (Bahamas); it shows that while cyanobacterial photosynthesis increases ΩCaCO3 considerably, sulphate reduction has a small and opposite effect on mat ΩCaCO3 because it is coupled to H2S oxidation with O2 which produces acidity. Numerical experiments show that the magnitude of the ΩCaCO3 increase is proportional to DIC in DIC-limited waters (DIC < 3-10 mM), is proportional to pH when ambient water DIC is not limiting and always proportional to the concentration of Ca2+ in ambient waters. With oceanic Ca2+ concentrations greater than a few millimolar, an appreciable increase in ΩCaCO3 occurs in mats under a wide range of environmental conditions, including those supposed to exist in the oceans of the past 2.8 Gyr. The likely lithological expression is the formation of the microsparitic stromatolite microtexture—indicative of CaCO3 precipitation within the mats under the control of microbial activity—which is found in carbonate rocks spanning from the Precambrian to recent. The model highlights the potential for an increase in the magnitude of the ΩCaCO3 shift in cyanobacterial mats throughout Earth’s history produced by a decrease in salinity and temperature of the ocean, a decrease in atmospheric pCO2 and an increase in solar irradiance. Such a trend would explain how the formation of the microsparitic stromatolite microtexture was possible as the ΩCaCO3 of the ocean decreased from the Paleoproterozoic to the Phanerozoic.  相似文献   

4.
This paper describes and interprets the mineral and facies assemblages that occur in carbonate–evaporite shallow lacustrine deposits, considering the importance of the processes pathway (i.e. dolomitization, gypsum calcitization and silicification). The Palaeogene deposits of the Deza Formation (Almazán Basin, central‐northern Spain) are selected as a case study to determine the variety of physicochemical processes taking place in carbonate–evaporite shallow lakes and their resulting diagenetic features. Dolostones are the predominant lithology and are composed mainly of dolomite with variable amounts of secondary calcite (5 to 50%), which mainly mimic lenticular gypsum (pseudomorphs). Five morphological types of dolomite crystal were identified as follows: dolomite tubes, dolomite cylinders, rhombohedral dolomite, spheroidal and quasi‐rhombohedral dolomite, and cocoon‐shaped dolomite. The dolomite cylinders and tubes are interpreted as the dolomitized cells of a widespread microbial community. The sequence of diagenetic processes started with growth of microlenticular interstitial gypsum in a calcareous mud deposited on the playa margin mudflats, and that sometimes included microbial sediments. Immediately following growth of gypsum, dolomite replaced the original calcite (or possibly aragonite) muds, the microbial community and the gypsum. Partial or total replacement of gypsum by dolomite was related mainly to the biomineralization of endolithic microbial communities on gypsum crystals. Later calcitization took place under vadose, subaerial exposure conditions. The development of calcrete in distal alluvial settings favoured the release of silica and subsequent silicification on the playa margin mudflats. Stable isotope compositions of calcite range from ?9·02 to ?5·83‰ δ13CPDB and ?7·10 to 1·22‰ δ18OPDB; for the dolomite, these values vary from ?8·93 to ?3·96‰ δ13CPDB and ?5·53 to 2·4‰ δ18OPDB. Quartz from the cherts has δ18OSMOW values ranging from 27·1 to 31·1‰. Wide variation and relatively high δ18OSMOW values for dolomite indicate evaporitic and closed hydrological conditions; increased influx of meteoric waters reigned during the formation of secondary calcite spar.  相似文献   

5.
《Sedimentary Geology》1999,123(3-4):255-273
This study investigates the sulphur source of gypsum sulphate and dissolved groundwater sulphate in the Central Namib Desert, home to one of Africa's most extensive gypsum (CaSO4·2H2O) accumulations. It investigates previously suggested sulphate precursors such as bedrock sulphides and decompositional marine biogenic H2S and studies the importance of other potential sources in order to determine the origin of gypsum and dissolved sulphate in the region. An attempt has been made to sample all possible sulphur sources, pathways and types of gypsum accumulations in the Central Namib Desert. We have subjected those samples to sulphur isotopic analyses and have compiled existing results. In addition, ionic ratios of Cl/SO4 are used to determine the presence of non-sea-salt (NSS) sulphur in groundwater and to investigate processes affecting groundwater sulphate. In contrast to previous work, this study proposes that the sulphur cycle, and the formation of gypsum, in the Namib Desert appears to be dominated by the deposition of atmospheric sulphates of phytoplanktonic origin, part of the primary marine production of the Benguela upwelling cells. The aerosol sulphates are subjected to terrestrial storage within the gypsum deposits on the hyper-arid gravel plain and are traceable in groundwater including coastal sabkhas. The hypothesis of decompositional marine biogenic H2S or bedrock sulphide sources, as considered previously for the Namib Desert, cannot account for the widespread accumulation of gypsum in the region. The study area in the Central Namib Desert, between the Kuiseb and Omaruru rivers, features extensive gypsum accumulations in a ca. 50–70 km wide band, parallel to the shore. They consist of surficial or shallow pedogenic gypsum crusts in the desert pavement, hydromorphic playa or sabkha gypsum, as thin isolated pockets on bedrock ridges and as discrete masses of gypsum selenite along some faults. The sulphur isotopic values (δ34S ‰CDT) of these occurrences are between δ34S +13.0 and +18.8‰, with lower values in proximity to sulphuric ore bodies (δ34S +3.1 and +3.4‰). Damaran bedrock sulphides have a wide range from δ34S −4.1 to +13.8‰ but seem to be significant sources on a local scale at the most. Dissolved sulphate at playas, sabkhas, springs, boreholes and ephemeral rivers have an overall range between δ34S +9.8 and +20.8‰. However, they do not show a systematic geographical trend. The Kalahari waters have lower values, between δ34S +5.9 and +12.3‰. Authigenic gypsum from submarine sediments in the upwelling zone of the Benguela Current between Oranjemund and Walvis Bay ranges between δ34S −34.6 to −4.6‰. A single dry atmospheric deposition sample produced a value of δ34S +15.9‰. These sulphur isotopic results, complemented by meteorological, hydrological and geological information, suggest that sulphate in the Namib Desert is mainly derived from NSS sulphur, in particular oxidation products of marine dimethyl sulphide CH3SCH3 (DMS). The hyper-arid conditions prevailing along the Namibian coast since Miocene times favour the overall preservation of the sulphate minerals. However, sporadic and relatively wetter periods have promoted gypsum formation: the segregation of sulphates from the more soluble halite, and the gradual seaward redistribution of sulphate. This study suggests that the extreme productivity of the Benguela Current contributes towards the sulphur budget in the adjacent Namib Desert.  相似文献   

6.
Four massive brecciated, chimney-like, and slender pipe network carbonate samples(JA-4, JA-5, JX-8 and BG-12) were collected from southwestern Taiwan, which were suggested to have formed as a result of anaerobic oxidization of methane(AOM). Considering that the environmental conditions of the carbonates precipitation and the sources of carbon and organic matter need to be further declared, molecular fossils and compound-specific carbon isotopic investigations of the carbonates were conducted in this study. According to lipid biomarkers of 2,6,10,15,19-pentamethyleicosane(PMI) and squalane diagnostic to methanotrophic archaea, as well as the extremely low δ13C values(as low as -113.4‰) detected in samples JA-4, JA-5 and JX-8, these carbonates were revealed to be a result of AOM. Based on the varied δ13C values of characteristic archaea biomarkers in specific samples, biogenic methane was proposed to be responsible for the formation of samples JA-4 and JA-5, whereas a mixed carbon source of 13C-depleted methane and 13C-enriched residual CO_2 from methanogenesis was suggested for the carbonate of JX-8 due to the co-occurrence of a highly positive δ13 Ccarb value(+8‰) and a moderate 13C depletion of PMI. The low content of AOM-related biomarkers and the absence of indicators for ANME-2 suggested that these carbonates were formed in weak seep settings. By comparison, no typical lipid biomarkers for methanotrophic archaea was detected in carbonate BG-12. The short-chain and long-chain n-alkanes accounted for 30% and 45% of all hydrocarbons, respectively, with a CPI value of 1.2, suggesting that the n-alkanes were derived from both marine organisms and terrestrial inputs. A low thermal maturity could be revealed by the incomplete equilibrium value of the C31αβ 22S/(22S+22R) ratio(0.5), and the carbonate BG-12 was probably deposited in a suboxic condition indicated by a value of Pr/Ph ratio(2.5).  相似文献   

7.
Oxygen isotopes are an attractive target for zoning studies because of the ubiquity of oxygen‐bearing minerals and the dependence of mineral 18O/16O ratios on temperature and fluid composition. In this study, subtle intragrain oxygen isotope zoning in titanite is resolved at the 10‐μm scale by secondary ion mass spectrometry. The patterns of δ18O zoning differ depending on microstructural context of individual grains and reflect multiple processes, including diffusive oxygen exchange, partial recrystallization, grain‐size reduction, and grain growth. Using the chronological framework provided by structural relations, these processes can be related to specific events during the Grenville orogeny. Titanite was sampled from two outcrops within the Carthage‐Colton Mylonite Zone (CCMZ), a long‐lived shear zone that ultimately accommodated exhumation of the Adirondack Highlands from beneath the Adirondack Lowlands during the Ottawan phase (1090–1020 Ma) of the Grenville orogeny. Titanite is hosted in the Diana metasyenite complex, which preserves three sequentially developed fabrics: an early NW‐dipping protomylonitic fabric (S1) is crosscut by near‐vertical ultramylonitic shear zones (S2), which are locally reoriented by a NNW‐dipping mylonitic fabric (S3). Texturally early titanite (pre‐S2) shows diffusion‐dominated δ18O zoning that records cooling from peak Ottawan, granulite‐facies conditions. Numerical diffusion models in the program Fast Grain Boundary yield good fits to observed δ18O profiles for cooling rates of 50 ± 20 °C Ma?1, which are considerably faster than the 1–5 °C Ma?1 cooling rates previously inferred for the Adirondack Highlands from regional thermochronology. High cooling rates are consistent with an episode of rapid shearing and exhumation along the CCMZ during gravitational collapse of the Ottawan orogen at c. 1050 Ma. Texturally later titanite (syn‐S2) has higher overall δ18O and shows a transition from diffusion‐dominated to recrystallization‐dominated δ18O zoning, indicating infiltration of elevated‐δ18O fluids along S2 shear zones and continued shearing below the blocking temperature for oxygen (~≤500 °C for grain sizes at the study site). The texturally latest titanite (post‐S3) has growth‐dominated δ18O zoning, consistent with porphyroblastic grain growth following cessation of shearing along the Harrisville segment of the CCMZ.  相似文献   

8.
《Sedimentology》2018,65(5):1611-1630
This study focuses on recent debate over the value of stable isotope‐based environmental proxies recorded in riverine tufa stromatolites. A twelve‐year record (1999 to 2012) of river‐bed tufa stromatolites in the River Piedra (north‐east Spain) was recovered in this study, along with a partly overlapping fifteen‐year record (1994 to 2009) of accumulations in a drainage pipe: both deposits formed in water with near identical physico/chemical parameters. Measured water temperature data and near‐constant δ 18Owater composition allowed selection of an ‘equilibrium’ palaeotemperature equation that best replicated actual temperatures. This study, as in some previous studies, found that just two published formulas for water temperature calculation from equilibrium calcite δ 18O compositions were appropriate for the River Piedra, where tufa deposition rates are high, with means between 5·6 mm and 10·8 mm in six months. The δ 18Ocalcite in both the river and the pipe deposits essentially records the full actual seasonal water temperature range. Only the coldest times (water temperature <10°C), when calcite precipitation mass decreased to minimum, are likely to be unrepresented, an effect most noticeable in the pipe where depositional masses are smaller and below sample resolution. While kinetic effects on δ 18Ocalcite‐based calculated water temperature cannot be ruled out, the good fit between measured water temperature and δ 18Ocalcite‐calculated water temperature indicates that temperature is the principal control. Textural and deposition rate variability between the river and pipe settings are caused by differences in flow velocity and illumination. In the river, calcification of growing cyanobacterial mat occurred throughout the year, producing composite dense and porous laminae, whereas in the pipe, discontinuous cyanobacterial growth in winter promoted more abiogenic calcification. High‐resolution δ 18Ocalcite data from synchronous pipe and river laminae show that reversals in water temperature occur within laminae, not at lamina boundaries, a pattern consistent with progressive increase in calcite precipitation rate as cyanobacterial growth re‐established in spring.  相似文献   

9.
Laboratory experiments were conducted to simulate chalcopyrite oxidation under anaerobic and aerobic conditions in the absence or presence of the bacterium Acidithiobacillus ferrooxidans. Experiments were carried out with 3 different oxygen isotope values of water (δ18OH2O) so that approach to equilibrium or steady-state isotope fractionation for different starting conditions could be evaluated. The contribution of dissolved O2 and water-derived oxygen to dissolved sulfate formed by chalcopyrite oxidation was unambiguously resolved during the aerobic experiments. Aerobic oxidation of chalcopyrite showed 93 ± 1% incorporation of water oxygen into the resulting sulfate during the biological experiments. Anaerobic experiments showed similar percentages of water oxygen incorporation into sulfate, but were more variable. The experiments also allowed determination of sulfate–water oxygen isotope fractionation, ε18OSO4–H2O, of ~ 3.8‰ for the anaerobic experiments. Aerobic oxidation produced apparent εSO4–H2O values (6.4‰) higher than the anaerobic experiments, possibly due to additional incorporation of dissolved O2 into sulfate. δ34SSO4 values are ~ 4‰ lower than the parent sulfide mineral during anaerobic oxidation of chalcopyrite, with no significant difference between abiotic and biological processes. For the aerobic experiments, a small depletion in δ34SSO4 of ~? 1.5 ± 0.2‰ was observed for the biological experiments. Fewer solids precipitated during oxidation under aerobic conditions than under anaerobic conditions, which may account for the observed differences in sulfur isotope fractionation under these contrasting conditions.  相似文献   

10.
In a fluvial system, depending on sub‐aerial exposure, non‐pedogenic pond calcretes can be modified into pedogenic calcretes. The present study attempts to understand the effect of sub‐aerial exposure and pedogenesis on calcretes using carbon and oxygen isotopic composition. For this purpose, two profiles (profile‐A and profile‐B) from the same stratigraphic level in Rayka from the western part of India were selected. The profiles are separated by a distance of 500 m and showed differences in calcrete characteristics. In profile‐A, the calcretes showed pedogenic features (root traces and void filling spar) whereas calcretes in profile‐B showed non‐pedogenic characteristics (fine laminations). However, some of the calcretes in profile‐A exhibited remnants of fine laminations suggesting that initially the calcretes had a non‐pedogenic origin but were modified due to pedogenesis. In profile‐A, the carbon and oxygen isotope values of pedogenic calcrete (δ13CPC and δ18OPC) showed more variation compared with non‐pedogenic pond calcretes (δ13CSPC and δ18OSPC) in profile‐B. The δ13CPC and δ13CSPC values exhibited a spread of 3·0‰ and 1·3‰, respectively, and δ18OPC and δ18OSPC values showed a spread of 2·3‰ and 1·3‰, respectively. The differences in the isotopic composition between the two profiles suggest that pedogenesis controlled the isotopic inheritance in calcretes. In addition, the carbon isotopic composition of organic matter (δ13COM) and n‐alkanes (δ13Cn‐alk) that forms the basis of palaeovegetational reconstruction have also been measured to understand the effect of pedogenesis on organic matter in both of the profiles. The average δ13COM values in profile‐A and profile‐B are ?23·4‰ and ?21·1‰, respectively. The disparity in δ13COM values is a result of the difference in the sources and preservation of organic matter. However, the δ13Cn‐alk values show a similar trend in profile‐A and profile‐B, indicating that sources of n‐alkanes are the same in both of the profiles and δ13Cn‐alk values are unaffected by the pedogenic modifications.  相似文献   

11.
The alternative development of coal-bearing hydrocarbon source rocks and low-porosity and low-permeability tight sandstone reservoirs of the Triassic Xujiahe Formation in the Sichuan Basin is favorable for near-source hydrocarbon accumulation. The natural gas composition of the Xujiahe Formation in the Sichuan Basin is dominated by hydrocarbon gases, of which the methane content is80.16%-98.67%. Typically, the C_2~+ content is larger than 5% in main wet gas. The dry gas is mainly distributed in the western and northern regions of the basin. The non-hydrocarbon gases mainly contain nitrogen, carbon dioxide, hydrogen, and helium, with a total content of 2%. The carbon isotope ranges of methane and its homologues in natural gas are: δ~(13)C_1 of-43.8‰ to-29.6‰, δ~(13)C_2 of-35.4‰ to-21.5‰, δ~(13)C_3 of-27.6‰ to-19.8‰,and δ~(13)C_4 of-27.7‰ to-18.8‰. δ~(13)C_3δ~(13)C_4 occurs in some natural gas with a low evolution degree; such gas is mainly coal-related gas from humic-type source rocks of the Xujiahe Formation. As for the natural gas, δ~2 H_(CH4) values ranged from-195‰ to-161‰,δ~2 H_(C2H6) values ranged from-154‰ to-120‰, and δ~2 H_(C3H8) values ranged from-151‰ to-108‰. The dry coefficient,δ~(13)C and δ~2 H_(CH4) are all positively correlated with the maturity of source rocks. The higher the maturity of source rocks is, the larger the natural gas dry coefficient is and the larger the δ~(13)C and δ~2 H_(CH_4) values are, indicative of the characteristic of near-source accumulation. The δ~2 H_(C2H6) value of natural gas is influenced by paleosalinity to a relatively large extent; the higher the paleosalinity is, the larger the δ~2 H_(C2H6) value is. The Pr/Ph value of the condensate oil ranged from 1.60 to 3.43, illustrating light oxidization-light reduction and partial-oxidization characteristics of the depositional environment of coal-bearing source rocks of the Xujiahe Formation. The natural gas light hydrocarbon(C_5-C_7) from the Xujiahe Formation presented two characteristics: the first was the relatively high aromatic hydrocarbon content(19%-32.1%), which reveals the characteristic of natural gas with humic substances of high-maturity; the second was the low content of aromatic hydrocarbon(0.4%-9.3%),reflecting water-washing during the accumulation of the natural gas. The reported research outcomes indicate a potential mechanism for natural gas accumulation in the Xujiahe Formation, which will further guide natural gas exploration in this region.  相似文献   

12.
The extensive Changba-Lijiagou Pb-Zn deposit is located in the north of the Xihe–Chengxian ore cluster in West Qinling. The ore bodies are mainly hosted in the marble, dolomitic marble and biotite-calcite-quartz schist of the Middle Devonian Anjiacha Formation, and are structurally controlled by the fault and anticline. The ore-forming process can be divided into three main stages, based on field geological features and mineral assemblages. The mineral assemblages of hydrothermal stage I are pale-yellow coarse grain, low Fe sphalerite, pyrite with pits, barite and biotite. The mineral assemblages of hydrothermal stage II are black-brown cryptocrystalline, high Fe shalerite, pyrite without pits, marcasite or arsenopyrite replace the pyrite with pits, K-feldspar. The features of hydrothermal stage III are calcite-quartz-sulfide vein cutting the laminated, banded ore body. Forty-two sulfur isotope analyses, twenty-five lead isotope analyses and nineteen carbon and oxygen isotope analyses were determined on sphalerite, pyrite, galena and calcite. The δ34 S values of stage I(20.3 to 29.0‰) are consistent with the δ34 S of sulfate(barite) in the stratum. Combined with geological feature, inclusion characteristics and EPMA data, we propose that TSR has played a key role in the formation of the sulfides in stage I. The δ34 S values of stage II sphalerite and pyrite(15.1 to 23.0‰) are between sulfides in the host rock, magmatic sulfur and the sulfate(barite) in the stratum. This result suggests that multiple S reservoirs were the sources for S2-in stage II. The δ34 S values of stage III(13.1 to 22‰) combined with the structure of the geological and mineral features suggest a magmatic hydrothermal origin of the mineralization. The lead isotope compositions of the sulfides have 206 Pb/204 Pb ranging from 17.9480 to 17.9782, 207 Pb/204 Pb ranging from 15.611 to 15.622, and 208 Pb/204 Pb ranging from 38.1368 to 38.1691 in the three ore-forming stages. The narrow and symmetric distributions of the lead isotope values reflect homogenization of granite and mantle sources before the Pb-Zn mineralization. The δ13 CPDB and δ18 OSMOW values of stage I range from-0.1 to 2.4‰ and from 18.8 to 21.7‰. The values and inclusion data indicate that the source of fluids in stage I was the dissolution of marine carbonate. The δ13 CPDB and δ18 OSMOW values of stage II range from-4 to 1‰ and from 12.3 to 20.3‰, suggesting multiple C-O reservoirs in the Changba deposit and the addition of mantle-source fluid to the system. The values in stage III are-3.1‰ and 19.7‰, respectively. We infer that the process of mineralization involved evaporitic salt and sedimentary organic-bearing units interacting through thermochemical sulfate reduction through the isotopic, mineralogy and inclusion evidences. Subsequently, the geology feature, mineral assemblages, EPMA data and isotopic values support the conclusion that the ore-forming hydrothermal fluids were mixed with magmatic hydrothermal fluids and forming the massive dark sphalerite, then yielding the calcite-quartz-sulfide vein ore type at the last stage. The genesis of this ore deposit was epigenetic rather than the previously-proposed sedimentary-exhalative(SEDEX) type.  相似文献   

13.
We determined the stable carbon and hydrogen isotope fractionation factors for methane oxidation under oxic conditions using strains with known degradation pathways. The aerobic oxidation of methane can be initiated by two different forms of enzymes known as methane monooxygenases (MMO). The expression of these enzymes is type-specific and dependent upon the adjusted copper concentration in the medium (or environment). In this study, the expression of either the soluble MMO or the particulate MMO was supported by adjusting the copper concentrations in the growth medium. Taxonomically different aerobic methanotrophic strains, mainly belonging to the alpha- and gamma- classes of Proteobacteria, produced methane isotope enrichment factors (εbulk) ranging from −14.8 to −27.9‰ for carbon, and from −110.0 to −231.5‰ for hydrogen. The ratio of hydrogen versus carbon discrimination (Λ = (αH−1 − 1)/(αC−1 − 1) ≈ Δ(δ2H)/Δ(δ13C)) were similar for all tested cultures, and are also identical to values calculated from previously published enrichment factors for aerobic and anaerobic methane degradation. In contrast, Λ-values for the abiotic oxidation of methane with OH radicals (this process is considered as the main removal process for methane from the atmosphere) were significantly higher than the values derived from biotic oxidation. Due to the low variability of microbial methane isotope fractionation patterns, we propose that combined carbon and hydrogen isotope fractionation analyses can be used to monitor and assess the occurrence of microbial methane oxidation in marine or terrestrial environments. However, it is not possible to distinguish distinct aerobic or anaerobic methane-oxidation pathways by this approach.  相似文献   

14.
Authigenic carbonates in the caldera of an Arctic (72°N) submarine mud volcano with active CH4bearing fluid discharge are formed at the bottom surface during anaerobic microbial methane oxidation. The microbial community consists of specific methane-producing bacteria, which act as methanetrophic ones in conditions of excess methane, and sulfate reducers developing on hydrogen, which is an intermediate product of microbial CH4 oxidation. Isotopically light carbon (δ13Cav =−28.9%0) of carbon dioxide produced during CH4 oxidation is the main carbonate carbon source. Heavy oxygen isotope ratio (δ18Oav = 5%0) in carbonates is inherited from seawater sulfate. A rapid sulfate reduction (up to 12 mg S dm−3 day−1) results in total exhausting of sulfate ion in the upper sediment layer (10 cm). Because of this, carbonates can only be formed in surface sediments near the water-bottom interface. Authigenic carbonates occurring within sediments occur do notin situ. Salinity, as well as CO 3 2− /Ca and Mg/Ca ratios, correspond to the field of nonmagnesian calcium carbonate precipitation. Calcite is the dominant carbonate mineral in the methane seep caldera, where it occurs in the paragenetic association with barite. The radiocarbon age of carbonates is about 10000 yr.  相似文献   

15.
Microbial anaerobic oxidation of methane in sediments is a kinetic process associated with a carbon isotope effect which enriches the remaining methane in 13C. Three, models: % residual methane, higher hydrocarbon enrichment, and CO2-CH4 coexisting pairs are used to independently calculate fractionation factors (αc) in the range of 1.002–1.014, which overlap the range determined by culture studies, αc is smaller than that associated with methanogenesis by CO2 reduction or by acetate-type fermentation, and comparison of the coexisting CO2-CH4 pairs can distinguish between the formation and consumption processes. Methane oxidation in sediments continues to a threshold concentration of ca. 0.2 mM; the residual methane is either unavailable or unattractive to consumption. Minor amounts of methane may also be produced simultaneously in the methane consumption zone, influencing the apparent fractionation factor in this zone.  相似文献   

16.
Waters from high‐altitude alpine lakes are mainly recharged by meteoric water. Because of seasonal variations in precipitation and temperature and relatively short hydraulic residence times, most high‐altitude lakes have lake water isotopic compositions (δ18Olake) that fluctuate due to seasonality in water balance processes. Input from snowmelt, in particular, has a significant role in determining lake water δ18O. Here we compare two high‐resolution δ18Odiatom records from lake sediments in the Swedish Scandes with instrumental data from the last century obtained from nearby meteorological stations. The time period AD 1900–1990 is characterised by an increase in winter precipitation and high winter/summer precipitation ratios and this is recorded in δ18Odiatom as decreasing trends. Lowest δ18Odiatom values and highest amount of winter precipitation are found around AD 1990 when the winter North Atlantic Oscillation index was above +2. We conclude that for the last 150 a the main factor affecting the δ18Odiatom signal in these sub‐Arctic high‐altitude lakes with short residence times has been changes in amount of winter precipitation and that δ18Odiatom derived from high‐altitude lakes in the Swedish Scandes can be used as a winter precipitation proxy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The surface sediments of two mud mounds (“Mound 11” and “Mound 12”) offshore southwest Costa Rica contain abundant authigenic carbonate concretions dominated by high-Mg calcite (14–20 mol-% MgCO3). Pore fluid geochemical profiles (sulfate, sulfide, methane, alkalinity, Ca and Mg) indicate recent carbonate precipitation within the zone of anaerobic oxidation of methane (AOM) at variable depths. The current location of the authigenic carbonate concretions is, however, not related to the present location of the AOM zone, suggesting mineral precipitation under past geochemical conditions as well as changes in the flow rates of upward migrating fluids. Stable oxygen and carbon isotope analysis of authigenic carbonate concretions yielded δ18Ocarbonate values ranging between 34.0 and 37.7 ‰ Vienna standard mean ocean water (VSMOW) and δ13Ccarbonate values from ?52.2 to ?14.2 ‰ Vienna Pee Dee belemnite (VPDB). Assuming that no temperature changes occurred during mineral formation, the authigenic carbonate concretions have been formed at in situ temperature of 4–5 °C. The δ18Ocarbonate values suggest mineral formation from seawater-derived pore fluid (δ18Oporefluid = 0 ‰ VSMOW) for Mound 12 carbonate concretions but also the presence of an emanating diagenetic fluid (δ18Oporefluid ≈5 ‰) in Mound 11. A positive correlation between δ13Ccarbonate and δ18Ocarbonate is observed, indicating the admixing of two different sources of dissolved carbon and oxygen in the sediments of the two mounds. The carbon of these sources are (1) marine bicarbonate (δ13Cporefluid ≈0 ‰) and (2) bicarbonate which formed during the AOM (δ13Cporefluid ≈?70 ‰). Furthermore, the δ18Oporefluid composition, with values up to +4.7 ‰ Vienna standard mean ocean water (VSMOW), is interpreted to be affected by the presence of emanating, freshened and boron-enriched fluids. Earlier, it has been shown that the origin of 18O-enriched fluids are deep diagenetic processes as it was indicated by the presence of methane with thermogenic signature (δ13CCH4 = ?38 ‰). A combination of present geochemical data with geophysical observations indicates that Mounds 11 and 12 represent a single fluid system interconnected by deep-seated fault(s).  相似文献   

18.
The role of methane clathrate hydrates in the global methane budget is poorly understood because little is known about how much methane from decomposing hydrates actually reaches the atmosphere. In an attempt to quantify the role of water column methanotrophy (microbial methane oxidation) as a control on methane release, we measured water column methane profiles (concentration and δ13C) and oxidation rates at eight stations in an area of active methane venting in the Eel River Basin, off the coast of northern California. The oxidation rate measurements were made with tracer additions of 3H-CH4.Small numbers of instantaneous rate measurements are difficult to interpret in a dynamic, advecting coastal environment, but combined with the concentration and stable isotope measurements, they do offer insights into the importance of methanotrophy as a control on methane release. Fractional oxidation rates ranged from 0.2 to 0.4% of ambient methane per day in the deep water (depths >370 m), where methane concentration was high (20–300 nM), to near-undetectable rates in the upper portion of the water column (depths <370 m), where methane concentration was low (3–10 nM). Methane turnover time averaged 1.5 yr in the deep water but was on the order of decades in the upper portion of the water column. The depth-integrated water column methane oxidation rates for the deep water averaged 5.2 mmol CH4 m−2 yr−1, whereas the upper portion of the water column averaged only 0.14 mmol CH4 m−2 yr−1; the depth-integrated oxidation rate for deep water in the 25-km2 area encompassing the venting field averaged 2 × 106 g CH4 yr−1. Stable isotope values (δ13C-CH4) for individual samples ranged from −34 to −52‰ (vs. PDB, Peedee belemnite standard) in the region. These values are isotopically enriched relative to hydrates in the region (δ13C-CH4 about −57 to −69‰), further supporting our observations of extensive methane oxidation in this environment.  相似文献   

19.
The carbonate-hosted Pb–Zn deposits in the Sanjiang metallogenic belt on the Tibetan Plateau are typical of MVT Pb–Zn deposits that form in thrust-fold belts. The Jiamoshan Pb–Zn deposit is located in the Changdu area in the middle part of the Sanjiang belt, and it represents a new style of MVT deposit that was controlled by karst structures in a thrust–fold system. Such a karst-controlled MVT Pb–Zn deposit in thrust settings has not previously been described in detail, and we therefore mapped the geology of the deposit and undertook a detailed study of its genesis. The karst structures that host the Jiamoshan deposit were formed in Triassic limestones along secondary reverse faults, and the orebodies have irregular tubular shapes. The main sulfide minerals are galena, sphalerite, and pyrite that occur in massive and lamellar form. The ore-forming fluids belonged to a Mg2+–Na+–K+–SO2-4–Cl-–F-–NO-3–H2 O system at low temperatures(120–130°C) but with high salinities(19–22% NaCl eq.). We have recognized basinal brine as the source of the ore-forming fluids on the basis of their H–O isotopic compositions(-145‰ to-93‰ for δDV-SMOW and-2.22‰ to 13.00‰ for δ18 Ofluid), the ratios of Cl/Br(14–1196) and Na/Br(16–586) in the hydrothermal fluids, and the C–O isotopic compositions of calcite(-5.0‰ to 3.7‰ for δ13 CV-PDB and 15.1‰ to 22.3‰ for δ18 OV-SMOW). These fluids may have been derived from evaporated seawater trapped in marine strata at depth or from Paleogene–Neogene basins on the surface. The δ34 S values are low in the galena(-3.2‰ to 0.6‰) but high in the barite(27.1‰), indicating that the reduced sulfur came from gypsum in the regional Cenozoic basins and from sulfates in trapped paleo-seawater by bacterial sulfate reduction. The Pb isotopic compositions of the galena samples(18.3270–18.3482 for 206 Pb/204 Pb, 15.6345–15.6390 for 207 Pb/204 Pb, and 38.5503–38.5582 for 208 Pb/204 Pb) are similar to those of the regional Triassic volcanic-arc rocks that formed during the closure of the Paleo-Tethys, indicating these arc rocks were the source of the metals in the deposit. Taking into account our new observations and data, as well as regional Pb–Zn metallogenic processes, we present here a new model for MVT deposits controlled by karst structures in thrust–fold systems.  相似文献   

20.
ABSTRACT A comprehensive approach using palaeontology, petrography, stable isotope geochemistry and biomarker analyses was applied to the study of seven small methane‐seep carbonate deposits. These deposits are in the Oligocene part of the Lincoln Creek Formation, exposed along the Canyon and Satsop Rivers in western Washington. Each deposit preserves invertebrate fossils, many representing typical seep biota. Authigenic carbonates with δ13C values as low as ?51‰ PDB reveal that the carbon is predominately methane derived. Carbonates contain the irregular isoprenoid hydrocarbons 2,6,11,15‐tetramethylhexadecane (crocetane) and 2,6,10,15,19‐pentamethylicosane (PMI), lipid biomarkers diagnostic for archaea. These lipids are strongly depleted in 13C (δ13C values as low as ?120‰ PDB), indicating that archaea were involved in the anaerobic oxidation of methane. Small filaments preserved in the carbonate may represent methanotrophic archaea. Archaeal methanogenesis induced the formation of a late diagenetic phase, brownish calcite, consisting of dumbbell‐shaped crystal aggregates that exhibit δ13C values as high as +7‰ PDB. Clotted microfabrics of primary origin point to microbial mediation of carbonate precipitation. Downward‐directed carbonate aggregation in the seeps produced inverted stromatactoid cavities. Large filaments, interpreted as green algae based on their size, shape, arrangement and biomarkers, imply that deposition occurred, in places, in water no deeper than 210 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号