首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Laboratory and numerical experiments and boundary layer analysis of the entrainment of buoyant asthenosphere by subducting oceanic lithosphere implies that slab entrainment is likely to be relatively inefficient at removing a buoyant and lower viscosity asthenosphere layer. Asthenosphere would instead be mostly removed by accretion into and eventual subduction of the overlying oceanic lithosphere. The lower (hot) side of a subducting slab entrains by the formation of a ∼10–30 km‐thick downdragged layer, whose thickness depends upon the subduction rate and the density contrast and viscosity of the asthenosphere, while the upper (cold) side of the slab may entrain as much by thermal ‘freezing’ onto the slab as by mechanical downdragging. This analysis also implies that proper treatment of slab entrainment in future numerical mantle flow experiments will require the resolution of ∼10–30 km‐thick entrainment boundary layers.  相似文献   

2.
We present small-scale laboratory models of oceanic subduction in which plates motion is imposed by lateral boundary conditions. The oceanic plate moves trenchward at constant speed and subducts below a fixed overriding plate. In this configuration, the long-term process of subduction is not steady-state. Slab interaction with the upper mantle-lower mantle boundary results in periods of slab flattening during which the dip of the slab diminishes, followed by periods of slab steepening. The overriding plate tectonic regime is influenced by the dynamics of subduction, slab anchoring favouring trench perpendicular shortening. When the slab is anchored, slab flattening further favours shortening, while slab steepening favours extension or smaller shortening rates. Non-steady-state long-term subduction may explain part of the variability of slab geometries evidenced by statistical analyses of present-day subduction zones. Experiments suggest that, despite boundary conditions applied on the converging plates do not change, tectonics pulses within the overriding plate may be caused by this non-steady-state behaviour.  相似文献   

3.
Detachment of the deeper part of subducted lithosphere causes changes in a subduction zone system which may be observed on the Earth's surface. Constraints on the expected magnitudes of these surface effects can aid in the interpretation of geological observations near convergent plate margins where detachment is expected. In this study, we quantify surface deformation caused by detachment of subducted lithosphere. We determine the range of displacement magnitudes which can be associated with slab detachment using numerical models. The lithospheric plates in our models have an effective elastic thickness, which provides an upper bound for rapid processes, like slab detachment, to the surface deformation of lithosphere with a more realistic rheology. The surface topography which develops during subduction is compared with the topography shortly after detachment is imposed. Subduction with a non-migrating trench system followed by detachment leads to a maximum surface uplift of 2–6 km, while this may be higher for the case of roll-back preceding detachment. In the latter situation, the back-arc basin may experience a phase of compression after detachment. Within the context of our elastic model, the surface uplift resulting from slab detachment is sensitive to the depth of detachment, a change in friction on the subduction fault during detachment and viscous stresses generated by sinking of the detached part of the slab. Overall, surface uplift of these magnitudes is not diagnostic of slab detachment since variations during ongoing subduction may result in similar vertical surface displacements.  相似文献   

4.
Tectonomagmatic similarities between the modern Chilean flat-slab region and pre-Neogene magmatic episodes suggest that they represent analogues to flat subduction. Evolutionary patterns in each magmatic suite include (i) increasing La/Yb ratios and Sr-and Nd-isotopic enrichment through time, (ii) eastward-migration of magmatism after periods of transpressional/transtensional intra-arc deformation, and (iii) subsequent termination and virtual absence of main-arc activity for 5–10 Myr. These patterns may reflect slab shallowing followed by flat subduction and thickening of the overlying crust. If repeated, they require interchanging episodes of slab steepening. Increasing convergence rates force slab kinking and eventual failure of the oversteepened slab, followed by rebound of the slab tip (owing to lack of further slab pull), flat subduction and termination of subduction-related magmatism. Rapid subduction leads to shallow overriding of the detached slab fragment. Eclogitization of the gradually steepening slab tip at depth and subsequent slab pull permits asthenospheric corner flow and subduction-related magmatism.  相似文献   

5.
Here, we examine spatiotemporal variations of Jurassic–Cretaceous magmatism along a c. 1000‐km transect across eastern Asia, including SW Japan, the Korean, Jiaodong and Liaodong peninsulas, and eastern Jilin Province. Integration of tectonic regime data with age data from igneous rocks in eastern Asia (from the Tan‐Lu Fault to SW Japan) suggests a shallowing of the subduction angle and subsequent flat‐slab subduction during the Jurassic, and slab rollback during the Early Cretaceous. The combination of a subducting plateau and root‐enhanced suction provides the best explanation for the flat‐slab subduction. In the final stage (Albian) of slab rollback, the geotectonic setting changed from subduction–accretion to a continental arc in the area close to the ancient trench (i.e. the Inner Zone of SW Japan).  相似文献   

6.
We have made great efforts to collect and combine a large number of high-quality data from local earthquakes and teleseismic events recorded by the dense seismic networks in both South Korea and West Japan. This is the first time that a large number of Korean and Japanese seismic data sets are analyzed jointly. As a result, a high-resolution 3-D P-wave velocity model down to 700-km depth is determined, which clearly shows that the Philippine Sea (PHS) plate has subducted aseismically down to ∼460 km depth under the Japan Sea, Tsushima Strait and East China Sea. The aseismic PHS slab is visible in two areas: one is under the Japan Sea off western Honshu, and the other is under East China Sea off western Kyushu. However, the aseismic PHS slab is not visible between the two areas, where a slab window has formed. The slab window is located beneath the center of the present study region where many teleseismic rays crisscross. Detailed synthetic tests were conducted, which indicate that both the aseismic PHS slab and the slab window are robust features. Using the teleseismic data recorded by the Japanese stations alone, the aseismic PHS slab and the slab window were also revealed (Zhao et al., 2012), though the ray paths in the Japanese data set crisscross less well offshore. The slab window may be caused by the subducted Kyushu-Palau Ridge and Kinan Seamount Chain where the PHS slab may be segmented. Hot mantle upwelling is revealed in the big mantle wedge above the Pacific slab under the present study region, which may have facilitated the formation of the PHS slab window. These novel findings may shed new light on the subduction history of the PHS plate and the dynamic evolution of the Japan subduction zone.  相似文献   

7.
W.P. Schellart   《Tectonophysics》2007,445(3-4):363-372
A geodynamic model exists, the westward lithospheric drift model, in which the variety of overriding plate deformation, trench migration and slab dip angles is explained by the polarity of subduction zones. The model predicts overriding plate extension, a fixed trench and a steep slab dip for westward-dipping subduction zones (e.g. Mariana) and predicts overriding plate shortening, oceanward trench retreat and a gentle slab dip for east to northeastward-dipping subduction zones (e.g. Chile). This paper investigates these predictions quantitatively with a global subduction zone analysis. The results show overriding plate extension for all dip directions (azimuth α = − 180° to 180°) and overriding plate shortening for dip directions with α = − 90° to 110°. The wide scatter in data negate any obvious trend and only local mean values in overriding plate deformation rate indicate that overriding plate extension is somewhat more prevalent for west-dipping slabs. West-dipping subduction zones are never fixed, irrespective of the choice of reference frame, while east to northeast-dipping subduction zones are both retreating and advancing in five out of seven global reference frames. In addition, westward-dipping subduction zones have a range in trench-migration velocities that is twice the magnitude of that for east to northeastward-dipping slabs. Finally, there is no recognizable correlation between slab dip direction and slab dip angle. East to northeast-dipping slabs (α = 30° to 120°) have shallow (0–125 km) slab dip angles in the range 10–60° and deep (125–670 km) slab dip angles in the range 40–82°, while west-dipping slabs (α = − 60° to − 120°) have shallow slab dip angles in the range 19–50° and deep slab dip angles in the range 25–86°. Local mean deep slab dip angles are nearly identical for east and west-dipping slabs, while local mean shallow slab dip angles are lower by only 4.7–8.1° for east to northeast-dipping slabs. It is thus concluded that overall, there is no observational basis to support the three predictions made by the westward drift model, and for some sub-predictions the observational basis is very weak at most. Alternative models, which incorporate and underline the importance of slab buoyancy-driven trench migration, slab width and overriding plate motion, are better candidates to explain the complexity of subduction zones, including the variety in trench-migration velocities, overriding plate deformation and slab dip angles.  相似文献   

8.
The Pyrenees at the Iberia–Europe collision zone contain sediments showing Albian–Cenomanian high-temperature metamorphism, and coeval alkaline magmatic rocks. Stemming from different views on Jurassic–Cretaceous Iberian microplate kinematics, two schools of thought exist on the trigger of this thermal pulse: one invoking hyperextension of the Iberian and Eurasian margins, the other suggesting slab break-off. Competing scenarios for Mesozoic Iberian motion compatible with Pyrenean geology, comprise (1) transtensional eastward motion of Iberia versus Eurasia, or (2) strike-slip motion followed by orthogonal extension, both favoring hyperextension-related heating, and (3) scissor-style opening of the Bay of Biscay coupled with subduction in the Pyrenean realm, favoring the slab break-off hypothesis. We test these kinematic scenarios for Iberia against a newly compiled paleomagnetic dataset and conclude that the scissor-type scenario is the only one consistent with a well-defined ~ 35° counterclockwise rotation of Iberia during the Early Aptian. We proceed to show that when taking absolute plate motions into account, Aptian oceanic subduction in the Pyrenees followed by Late Aptian–Early Albian slab break-off should leave a slab remnant in the present-day mid-mantle below NW Africa. Mantle tomography shows the Reggane anomaly that matches the predicted position and dimension of such a slab remnant between 1900 and 1500 km depth below southern Algeria. Mantle tomography is therefore consistent with the scissor-type opening of the Bay of Biscay coupled with subduction in the Pyrenean realm. Slab break-off may thus explain high-temperature metamorphism and alkaline magmatism during the Albian–Cenomanian in the Pyrenees, whereas hyperextension that exhumed Pyrenean mantle bodies occurred much earlier, in the Jurassic.  相似文献   

9.
《Gondwana Research》2010,17(3-4):401-413
We present new pieces of evidence from seismology and mineral physics for the existence of low-velocity zones in the deep part of the upper mantle wedge and the mantle transition zone that are caused by fluids from the deep subduction and deep dehydration of the Pacific and Philippine Sea slabs under western Pacific and East Asia. The Pacific slab is subducting beneath the Japan Islands and Japan Sea with intermediate-depth and deep earthquakes down to 600 km depth under the East Asia margin, and the slab becomes stagnant in the mantle transition zone under East China. The western edge of the stagnant Pacific slab is roughly coincident with the NE–SW Daxing'Anling-Taihangshan gravity lineament located west of Beijing, approximately 2000 km away from the Japan Trench. The upper mantle above the stagnant slab under East Asia forms a big mantle wedge (BMW). Corner flow in the BMW and deep slab dehydration may have caused asthenospheric upwelling, lithospheric thinning, continental rift systems, and intraplate volcanism in Northeast Asia. The Philippine Sea slab has subducted down to the mantle transition zone depth under Western Japan and Ryukyu back-arc, though the seismicity within the slab occurs only down to 200–300 km depths. Combining with the corner flow in the mantle wedge, deep dehydration of the subducting Pacific slab has affected the morphology of the subducting Philippine Sea slab and its seismicity under Southwest Japan. Slow anomalies are also found in the mantle under the subducting Pacific slab, which may represent small mantle plumes, or hot upwelling associated with the deep slab subduction. Slab dehydration may also take place after a continental plate subducts into the mantle.  相似文献   

10.
Periadriatic Alpine magmatism has long been attributed to slab breakoff after Adria–Europe continental collision, but this interpretation is challenged by geophysical data suggesting the existence of a continuous slab. Here, we shed light on this issue based on a comprehensive dataset of zircon U–Pb ages and Hf isotopic compositions from the main western Periadriatic intrusives (from Traversella to Adamello). Our zircon U–Pb data provide the first evidence of Eocene magmatism in the Western Alps (42–41 Ma in Traversella), and demonstrate that magmatism started synchronously in different segments of the Alpine belt, when subduction was still active. Zircon U–Pb ages define younging trends perpendicular to the strike of the European slab, suggesting a progressive Eocene–Oligocene slab steepening. We propose that slab steepening enhanced the corner flow. This process was more effective near the torn edge of the European slab, and triggered Periadriatic magmatism in the absence of slab breakoff.  相似文献   

11.
Dapeng Zhao  Eiji Ohtani   《Gondwana Research》2009,16(3-4):401-413
We present new pieces of evidence from seismology and mineral physics for the existence of low-velocity zones in the deep part of the upper mantle wedge and the mantle transition zone that are caused by fluids from the deep subduction and deep dehydration of the Pacific and Philippine Sea slabs under western Pacific and East Asia. The Pacific slab is subducting beneath the Japan Islands and Japan Sea with intermediate-depth and deep earthquakes down to 600 km depth under the East Asia margin, and the slab becomes stagnant in the mantle transition zone under East China. The western edge of the stagnant Pacific slab is roughly coincident with the NE–SW Daxing'Anling-Taihangshan gravity lineament located west of Beijing, approximately 2000 km away from the Japan Trench. The upper mantle above the stagnant slab under East Asia forms a big mantle wedge (BMW). Corner flow in the BMW and deep slab dehydration may have caused asthenospheric upwelling, lithospheric thinning, continental rift systems, and intraplate volcanism in Northeast Asia. The Philippine Sea slab has subducted down to the mantle transition zone depth under Western Japan and Ryukyu back-arc, though the seismicity within the slab occurs only down to 200–300 km depths. Combining with the corner flow in the mantle wedge, deep dehydration of the subducting Pacific slab has affected the morphology of the subducting Philippine Sea slab and its seismicity under Southwest Japan. Slow anomalies are also found in the mantle under the subducting Pacific slab, which may represent small mantle plumes, or hot upwelling associated with the deep slab subduction. Slab dehydration may also take place after a continental plate subducts into the mantle.  相似文献   

12.
Seafloor irregularities influence rupture behavior along the subducting slab and in the overriding plate, thus affecting earthquake cycles. Whether seafloor irregularities increase the likelihood of large earthquakes in a subduction zone remains contested, partially due to focus put either on fault development or on rupture pattern. Here, we simulate a subducting slab with a seafloor irregularity and the resulting deformation pattern of the overriding plate using the discrete element method. Our simulations illustrate the rupture along three major fault systems: megathrust, splay and backthrust faults. Our results show different rupture dimensions of earthquake events varying from tens to ca. 140 km. Our results suggest that the recurrence interval of megathrust events with rupture length of ca. 100 km is ca. 140 years, which is overall comparable to the paleoseismic records at the Mentawai area of the Sumatran zone. We further propose the coseismic slip amounts decrease and interseismic slip amounts increase from the surface downwards gradually.  相似文献   

13.
We conduct shear wave splitting measurements on waveform data from the Hi-net and the broadband F-net seismic stations in Kanto and SW Japan generated by shallow and intermediate-depth earthquakes occurring in the subducting Philippine Sea and Pacific slabs. We obtain 1115 shear wave splitting parameter pairs. The results are divided into those from the shallow (depth < 50 km) and the deep (depth > 50 km) events. The deep events beneath Kanto are further divided into PHS1 and PHS2 (upper and lower planes of the double seismic zone in the Philippine Sea slab, respectively), PAC1 and PAC2 (western and eastern Pacific slab, respectively) events. The results from the shallow events represent the crustal anisotropy, and their fast directions are more or less aligned in the σHmax directions, implying that the anisotropy is produced by the alignment of the vertical cracks in the crust induced by the compressive stresses. In Kanto, Kii Peninsula and Kyushu regions, the results from the deep events suggest a contribution from the mantle wedge anisotropy. Events from all groups beneath Kanto show NW, NE and EW fast directions. This complex pattern seems to be produced by the corner flows induced by both the WNW PAC plate subduction and the oblique NNW PHS slab subduction with the associated olivine lattice-preferred orientations (LPOs), and the anisotropy frozen in the PHS slab. The deep events beneath Kii Peninsula show NE and NW fast directions and may be produced by the corner flow produced by the NNW PHS slab subduction with the associated olivine LPOs. The NE directions might also be produced by the segregated melts in the thin layers parallel to the PHS slab subduction. The deep events beneath N Kyushu show NNW fast directions, which may result from the southeastward flow in the upper mantle inferred from the stresses in the upper plate. Results from the deep events beneath middle-south Kyushu show dominantly E–W fast directions, in both the fore- and back-arcs. They may be produced by the corner flow of the westward PHS slab subduction with the olivine LPOs. Because the source regions with multiple fast directions are not resolved in this study, further detailed analyses of shear wave splitting are necessary for a better understanding of the stress state, the induced mantle flow, and the melt-segregation processes.  相似文献   

14.
Recent seismic tomography has revealed various morphologies in the subducted lithosphere. In particular, significant flattening and stagnation of slabs around the 660-km boundary are seen in some areas beneath the northwestern Pacific subduction zones. We examined the cause of slab stagnation in terms of the Clapeyron slope of the phase transformation from ringwoodite to perovskite + magnesiowüstite, trench retreat velocity, dip angles, and high viscosity of the lower mantle based on two-dimensional (2-D) numerical simulations of thermal convection. In particular, we examined the conditions necessary for slab stagnation assuming a very small absolute value of the Clapeyron slope, which were proposed based on recent high-pressure, high-temperature (high PT) experiments. Our calculations show that slabs tend to stagnate above the 660-km boundary with an increasing absolute value of the Clapeyron slope, viscosity jump at the boundary, and trench retreat velocity and a decreasing initial dip angle. Stagnant slabs could be obtained numerically for a realistic range of parameters obtained from high PT experiments and other geophysical observations combining buoyancy, high lower-mantle viscosity, and trench retreat. We found that a low dip angle of a descending slab at the bottom of the upper mantle plays an important role in slab stagnation. Two main regimes underlie slab stagnation: buoyancy-dominated and viscosity-dominated regimes. In the viscosity-dominated regime, it is possible for slabs to stagnate above the 660-km boundary, even when the value of the Clapeyron slope is 0 MPa/K.  相似文献   

15.
Subduction is a fundamental mechanism of material exchange between the planetary interior and the surface. Despite its significance, our current understanding of fluctuating subducting plate area and slab volume flux has been limited to a range of proxy estimates. Here we present a new detailed quantification of subduction zone parameters from the Late Triassic to present day (230–0 Ma). We use a community plate motion model with evolving plate topologies to extract trench-normal convergence rates through time to compute subducting plate areas, and we use seafloor paleo-age grids to estimate the thickness of subducting lithosphere to derive the slab flux through time. Our results imply that slab flux doubled to values greater than 500 km3/yr from 180 Ma in the Jurassic to 130 Ma in the mid-Cretaceous, subsequently halving again towards the Cretaceous-Paleogene boundary, largely driven by subduction zones rimming the Pacific ocean basin. The 130 Ma spike can be attributed to a two-fold increase in mid-ocean ridge lengths following the break-up of Pangea, and a coincident increase in convergence rates, with average speeds exceeding 10 cm/yr. With one third of the total 230 - 0 Ma subducted volume entering the mantle during this short ∼50 Myr period, we suggest this slab superflux drove a surge in slab penetration into the lower mantle and an associated increase in the vigour of mantle return flow. This mid-Cretaceous event may have triggered, or at least contributed to, the formation of the Darwin Rise mantle superswell, dynamic uplift of the South African Plateau and the plume pulse that produced the Ontong-Java-Hikurangi-Manihiki and Kerguelen plateaus, among others.The models presented here contribute to an improved understanding of the time-evolving flux of material consumed by subduction, and suggest that slab superflux may be a general feature of continental dispersal following supercontinent breakup. These insights may be useful for better understanding how supercontinent cycles are related to transient episodes of Large Igneous Province and superswell formation, and the associated deep cycling of minerals and volatiles, as well as leading to a better understanding of tectonic drivers of long-term climate and icehouse-to-greenhouse transitions.  相似文献   

16.
A tomographic travel-time inversion has been applied to trace the subducted slab of the South China Sea (SCS) beneath the Manila Trench. The dataset, taken from the International Seismological Centre (1960–2008), is composed of 13,087 P-wave arrival times from 1401 regional earthquakes and 8834 from 1350 teleseismic events. The results image the different morphology of the subducted SCS slab as a high-velocity zone. The subducting angle of the slab varies along the trench: at 16° N and 16.5° N, the slab dips at a low angle (24° ~ 32°) for 20–250 km depth and at a moderate angle (50°) for ~250–400 km depth. At 17° N, the slab dips at a low angle (32°) to near 400 km depth, and at 17.5° N and 18° N the slabs are near vertical from 70 ~ 700 km depth, while at 20° N the high-velocity anomalies exhibit features from horizontal abruptly to near vertical, extending to 500 km depth. The dramatic steepening of the slab between 17° N and 17.5° N may indicate a slab tear, which is coincident with the axis of a fossil ridge within the SCS slab at around 17° N. In addition, low-velocity zones in the three profiles above 300 km depth may represent the formation of the slab window, induced by ridge subduction and slab tear, initiating upward mantle flow and resulting in the partial melting of the edge of the slab. The slab tear could explain the volcanic gap and geochemical difference between the extinct Miocene and Quaternary volcanoes in the Luzon Arc, the much higher heat flow around the fossil ridge, and the distribution of most of the adakites and the related porphyry Cu-Au deposits in the Luzon area. Based on the geometry and morphology of the subducted slab and certain assumptions, we calculate the initial time of ridge subduction, which implies that ridge subduction and slab tear possibly started at ~8 Ma.  相似文献   

17.
Distinguishing the initiation of actual collision from flat-slab subduction of oceanic buoyant highs along convergent margins is elusive because both can lead to inboard deformation and disrupt magmatic arcs. Volcanoes with nascent tear magmatic signatures provide a means to document both the occurrence and timing of actual oceanic buoyant high collision. There is a ~40-year debate on when the true collision of the Yakutat plateau began in Alaska. Three newly identified ca. 1 Ma volcanoes with a north-to-south trench perpendicular orientation, nascent tear geochemical signatures, overlaying an imaged Yakutat slab tear, provide constraints on the timing of Yakutat collision and slab tearing. The ca. 1 Ma slab tear is coincident with Yakutat slab segmentation, northern continental Aleutian Arc rejuvenation, cessation of Wrangell Arc magmatism, increased collisional zone exhumation and eastern Yakutat trench abandonment. The documentation of nascent slab tear volcanoes may help resolve similar debates in other convergent margin settings.  相似文献   

18.
Ultrahigh-temperature (UHT) and high pressure (HP) metamorphic rocks generated at different times in Earth history form paired suites within the same tectonic belts in several regions. We evaluate the thermal regimes and fluid circulation patters in different plate tectonic settings and propose a new model involving ridge subduction where the slab window places hot asthenosphere against the base of the overlying plate and provides an ideal setting for the supply of heat and CO2-rich fluids at relatively shallow domains, which can explain the formation and preservation of UHT metamorphic rocks in the roots of the arc and forearc. The plate geometry below the slab window would inhibit the normal cooling induced by the slab, and a temporary deprivation of slab-derived sediments and hydrous fluids. Our analysis provides a unified model for paired UHT and HP metamorphic orogens and presents a key to the associated thermal and fluid regimes.  相似文献   

19.
Oligocene–Miocene models for northern New Zealand, involving south‐westward subduction to explain Early Miocene Northland volcanism, do not fit within the regional Southwest Pacific tectonic framework. A new model is proposed, which comprises a north‐east‐dipping South Loyalty basin slab that retreated south‐westward in the Eocene–earliest Miocene and was continuous with the north‐east‐dipping subduction zone of New Caledonia. In the latest Oligocene, the trench reached the Northland passive margin, which was pulled it into the mantle by the slab, resulting in obduction of the Northland allochthon. During and after obduction, the slab detached from the unsubductable continental lithosphere, inducing widespread calc‐alkaline volcanism in Northland. The new model further explains contemporaneous arc volcanism along the Northland Plateau Seamount Chain and sinking of the Northland basement, followed by uplift and extension in Northland.  相似文献   

20.
It is important to know the shape of a subducting slab in order to understand the mechanisms of inter-plate earthquakes and the process of subduction. Seismicity data and converted phases have been used to detect plate boundaries. The configuration of the Philippine Sea slab has been obtained at the western part of southwestern Japan. At the eastern part of southwestern Japan, however, the configuration of the Philippine Sea slab has not yet been confirmed. A spatially high-density seismic network makes it possible to detect the boundaries of the Philippine Sea slab. We used a spatially high-density temporal seismic array in the area. The configuration of the Philippine Sea plate is obtained at the eastern part of southwestern Japan using the temporal seismic array and permanent seismic network data and comparing the seismic structure obtained from the results of refraction surveys. The configuration of the Philippine Sea plate obtained by this study does not bend sharply compared to previous models obtained from receiver function analyses. We delineated the upper boundary of the slab to a depth of about 45 km. The weak image of the boundary, which corresponds to the upper mantle reflector beneath the source area of the 2000 Western Tottori earthquake, was detected using the spatially dense array.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号