首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Numerous geophysical investigations in the western part of onshore Denmark constitute the basis for a delineation of buried Quaternary valleys. The geophysical methods comprise primarily Transient ElectroMagnetic (TEM) and reflection seismic surveys, and the geophysical data have been combined with lithological data from boreholes. Buried valleys appear both as single valleys and in dense networks. The internal structure of the valleys is typically complex due to repeated erosional and depositional events. Buried valleys are common geological structures in the region and they influence the distribution of Tertiary and Quaternary sediments greatly. A large number of buried valleys in the region contain important aquifers, whose natural protection varies depending on thickness and character of overlying clay layers. Many of these aquifers are deep-seated and well protected, but because of the prevailing heterogeneity of the valley infill and the erosional incisions created by different valley generations, preferential flow paths for downward transport of contaminated water from shallow aquifers may occur.  相似文献   

2.
3.
The transient electromagnetic (TEM) method has been used extensively for hydrogeophysical exploration in Denmark for the past decade. Innovative instrumentation combined with multi-dimensional modelling and interpretational insights based on experience gained through numerous case studies have proven to be a successful strategy. In the case study reported here, the combination revealed an unknown and unexpected buried valley complex. Drill hole data were in good agreement with estimates of both the bearings and depths of valleys defined by the TEM surveys. The Pulled Array Transient Electromagnetic (PATEM) system was built to provide high data density for increased lateral resolution. A High moment Transient Electromagnetic (HiTEM) system was developed for delineation of aquifers to depths up to 300 m. Because both of these systems provide high data density, data quality can be assessed as part of the interpretational strategy. When acquiring TEM measurements in areas as densely populated as the Danish countryside, precautions must be taken to minimize coupling between the TEM system and man-made conductors. Modelling the slope of the flanks of buried valleys has challenged the adequacy of the one-dimensional (1-D) assumption for inversion of TEM data. The study shows that for a valley structure in a low-resistive layer, the 1-D assumption is sufficient to track the presence of rather steep slopes. For a valley structure in a high-resistive layer, however, the insensitivity of the TEM method to resistors makes it difficult to determine a slope with a 1-D inversion, and only the overall structure is defined.  相似文献   

4.
High-resolution seismic data (onshore and offshore), geophysical borehole data as well as detailed lithofacies from airlift boreholes were acquired in northern Netherlands on and around the island of Ameland. Marine and land seismic data combined with information from land boreholes have been explored with the objective of providing a sedimentary model. Qualitative seismic facies analysis of the valley fill commonly shows a thin unit with high amplitude reflectors at the base. Thick units of variable seismic facies (transparent to high amplitude) occur higher up in the sequence. Onlap is common at mid–upper levels within the sandy valley fill (with clay in mm layering), and a transparent seismic facies, corresponding to firm clays, is common at the top. Almost all lithological unit boundaries recognised within core parameters correspond with seismic unconformities within error margins. Subunits contain multiple cyclical trends in gamma ray and grain size. Cyclical trends show lower order fluctuations in gamma radiation on a scale of less than 1 m. Gamma-ray pattern variability between units, e.g. in general coarsening-up or fining-up units, suggests migration of subaqueous outwash fans or ice margin fluctuations. Seismic results could support a headward excavation and backfilling process suggested by Praeg [Morphology, stratigraphy and genesis of buried Elsterian tunnel valleys in the southern North Sea basin [PhD thesis]: University of Edinburgh, 207 pp.; Journal of Applied Geophysics, (this volume)] as being responsible for the formation of buried valleys. On a lithological scale, a more complicated, detailed and cyclical pattern arises. Catastrophic processes are considered unlikely as being responsible for the infill sequence because of the observed small-scale facies variability and because of the presence of diamicton layers. Diamicton layers at the base of basal unconformities as well as higher in sequence could suggest subglacial deformation by grounded ice before and during the valley-fill process.  相似文献   

5.
Buried Pleistocene subglacial valleys are extensively used as groundwater reservoirs by waterworks in northern Germany, although little is known about the locations and size of these valleys and the internal structure of the sediment fill. This lack of knowledge about important groundwater reservoirs is a challenge for geophysics.This paper summarizes the geophysical investigation of two buried Pleistocene subglacial valleys in northern Germany—the Ellerbeker Rinne and the Bremerhaven–Cuxhavener Rinne—including seismic, gravity, and airborne electromagnetic (AEM) surveys. Seismic sections show the detailed structure of the paleovalleys. The reliability of interpretation is enhanced by vertical seismic profiles in wells. The maximum depths of the Ellerbeker Rinne and the Bremerhaven–Cuxhavener Rinne were found to be 360 and about 400 m, respectively. Gravity survey revealed Bouguer anomalies above the sediment fill of both buried valleys. The Ellerbeker Rinne produces a negative residual anomaly of −0.5 mGal, whereas the sediments of the Bremerhaven–Cuxhavener Rinne produce a positive anomaly. The latter one is superimposed by negative gravity anomalies due to near-surface structures. The Bremerhaven–Cuxhavener Rinne can be mapped by airborne electromagnetics at locations without saltwater intrusion, which would affect the measurements. The electrical conductivity of the clay layer at the top of the valley fill differs significantly from that of the surrounding sand. The combined use of these three geophysical methods, which measure different physical parameters, leads to a better understanding of the subsurface geology and the hydrogeology of the Pleistocene subglacial valleys.  相似文献   

6.
Aquifers found in glacial buried valleys are a major source of good-quality ground water in northeastern Kansas. The extent and character of many of these deposits are not precisely known, so a detailed study of the buried valleys was undertaken. Test drilling, Landsat imagery, shallow-earth temperature measurements, seismic refraction, surface electrical resistivity, and gravity data were used to evaluate two sites in Nemaha and Jefferson Counties. Tonal patterns on springtime Landsat imagery and winter/summer anomalies in shallow-earth temperatures were quick and inexpensive methods for locating some glacial buried aquifers and suggested areas for more intensive field studies. Reversed seismic refraction and resistivity surveys were generally reliable indicators of the presence or absence of glacial buried valleys, with most depth determinations being within 25% of test-drilling results. The effectiveness of expensive test-hole drilling was greatly increased by integrating remote sensing, shallow-earth temperature, seismic, and resistivity techniques in the two buried valley test areas. A gravity profile allowed precise definition of the extent of one of the channels after the other techniques had been used for general information.  相似文献   

7.
Abstract

The Great Basin section of the Basin and Range Physiographic Province of Nevada and adjoining states is a semiarid to arid region that is completely cut off from the sea. Valleys of the Great Basin are partly or completely surrounded by mountains in contrast to the Basin and Range Province of southern Arizona where isolated mountains are completely surrounded by valleys. Valleys completely surrounded by mountains are described as topographically closed whereas valleys that have surface connections with nearby valleys are considered to be topographically open. However, the topographic characteristics of individual valleys are not necessarily indicators of the hydrologic characteristics. The valley fill may be saturated with water to the ground surface or it may be entirely drained, depending upon the position of the controlling outlet. The playa on the valley floor may be dry or wet depending upon the depth to water in the valley. A classification of valleys of the Great Basin is presented, based on the extent to which a valley is isolated and the depth of the water table. The playa—whether it is wet or dry—is used to determine the classification of an individual valley.  相似文献   

8.
Schmincke andSwanson (1967) explained laminar flowage structures as indicators for flow direction of pyroclastic flows that show a radial flow pattern away from the source. Several other authors have reported similar examples, but the influence of pre-flow topographic relief has not been analyzed. Flow lineations were measured for the Ata pyroclastic flow deposit, southwestern Japan. This deposit has covered an undulating basement topography. Preferred orientation of crystals and lithic fragments were measured on thin sections cut parallel to sedimentary layering. The following three factors which control the flow lineation have been recognized. 1) Flow lineations oriented radially away from the source, as described by previous authors, were obtained only for samples collected from the surface of the pyroclastic flow plateau where the basement valleys were nearly filled by earlier flow units. 2) Lineations near the floor of narrow valleys were parallel to the strike of the valley. 3) Flow lineations near the wall of valleys tend to be parallel to the dip of the valley walls. These data suggest that the initial radial movement of pyroclastic flows from the source gradually changes direction to parallel the strike of deep valleys due to confining effect of valley wall. Flows which are trapped within a valley, tends to move towards the bottom of the valley just prior to the final settlement. After the basement topographic relief has been filled up with earlier flow units, the later flows maintain their original radial movement until final settlement.  相似文献   

9.
Western Namibia is a significant global source of atmospheric mineral dust. We investigate the relationship between dust and source sediments, assessing the sustainability of dust flux. Remote sensing studies have highlighted specific ephemeral fluvial systems as important contributors to dust flux, including highlighting sections of valleys that are the origins of dust plumes in the period 2005–2008. Little is known however about the specific within‐valley dust sediment sources, particularly whether dust is derived from modern ephemeral channel floors or older valley fill sediments, many of which have been reported in the region. As part of a region‐wide analysis of aeolian dust flux, we investigate the sediment properties of atmospheric dust samples and valley sediments from the Huab valley, one of the principal regional dust sources. Trapped dust samples contain up to 88% very fine sand and silt when collected samples are disaggregated prior to analysis. Valley fill surface samples comprise 80% very fine sand and silt, and the surface of the modern ephemeral channel 30%. Valley fill sediments were sampled at depths up to 3.6 m below the present surface and reveal Holocene depositional ages from 0.6 ± 0.03 ka back to 9.79 ± 0.73 ka. These sediments contain 30% to 6% very fine sand and silt, with levels decreasing with depth and age. Aeolian bedforms in the valley system (nebkhas on the fill surface and climbing dunes on valley margins) indicate that aeolian processes under the influence of strong seasonal easterly winds likely result in dust being winnowed out of the valley fill surfaces, with sandy bedforms being constructed from the coarser component of the fill sediments. The volume of valley fill sediment suggests dust sourced from Holocene sediments is likely to continue into the future regardless of flow conditions in the modern channel system. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
以层状地层中的2个三维导电薄板为例,考虑了山谷地形存在时,瞬变电磁法(TEM)分辨地下多个三维异常体的能力。模型计算的结果表明,当有山谷地形存在时,总的异常场由薄板的异常和地形的异常叠加在一起,表明异常场在空间上具有可加性质。在地形平坦时,TEM方法对相同尺寸的近源异常体的分辨能力要优于远源,而且离源越远的异常体异常越小,最后直到无法分辨。但是当存在山谷地形并且把源放在其中时,它们的总异常场叠加后会“放大”远源异常体的异常场,在一定意义上说,这对于分辨远处的异常体更加有利。当异常体在接收器下方埋深不是太大时,不论山谷地形在源处还是接收器处,TEM法对这些异常体的探测能力都是比较好的。2个异常体相距太近时,其异常会叠加在一起,给TEM的分辨增加一些困难。总体表明,在有山谷地形存在时,TEM方法对多个异常体仍具有较好的探测能力  相似文献   

11.
The effectiveness of a standard polynomial trend removal technique and two-dimensional wavenumber filtering in isolating gravity anomalies due to buried preglacial drainage systems was evaluated for an area in northwestern Pennsylvania. It was found that gravity surveying is a useful reconnaissance technique in this area. Both analytical methods isolated anomalies due to valleys of major hydrological interest, provided similar useful information on the valley trends, and gave reasonably accurate width estimates. Accurate depth estimates could not be inferred, although large anomalies generally coincided with thicker drift accumulations. With the station spacing used (about 0.75 miles), valleys sought must have drift accumulations in excess of 75 feet and widths of at least one mile if they are to be adequately resolved. The two-dimensional filtering method seems to offer the most complete information, while still being practical, and it avoids many of the problems of the polynomial method.  相似文献   

12.
The middle reaches of the Tsangpo River consist of alternating sections of wide valleys and gorges. The wide valley sections have braided and anastomosing channels, gentle hydraulic gradients, thick alluvial deposits and low terraces. In contrast, the gorge sections exhibit single, straight and deeply entrenched meandering channels with steep hydraulic gradients, bare rock river beds and higher terraces. Several hypotheses have been used to explain these unusual fluvial landforms, but geological, landform and sedimentary analyses along with dating information, suggest that the key could be the active faults across the river valley. All gorge sections are located on the upthrown side of active faults, which mainly occurred in or after the Pliocene, whilst the wide valley sections appear on the downthrown side. The faulting blocked the river and caused the formation of palaeolakes, with thick deposits laid down behind the faults. Therefore, depositional wide valleys were formed and old terraces were buried. On these downthrown sides of the faults, braided and anastomosing channels have developed. On the upthrown sides, strong incision of the river occurred because of the changes of the local base levels and river gradients. As a result, deep gorges and deeply entrenched meandering channels formed in various lithologies. The terraces on the gorge slope indicate different stages of river incision and the related knick points appeared close to the local active faults. Rock resistance is only a minor influence on the alternation of valley forms and river gradients in this area. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
Low‐energy streams in peatlands often have a high sinuosity. However, it is unknown how this sinuous planform formed, since lateral migration of the channel is hindered by relatively erosion‐resistant banks. We present a conceptual model of Holocene morphodynamic evolution of a stream in a peat‐filled valley, based on a palaeohydrological reconstruction. Coring, ground‐penetrating radar (GPR) data, and 14C and OSL dating were used for the reconstruction. We found that the stream planform is partly inherited from the Late‐Glacial topography, reflecting stream morphology prior to peat growth in the valley. Most importantly, we show that aggrading streams in a peat‐filled valley combine vertical aggradation with lateral displacement caused by attraction to the sandy valley sides, which are more erodible than the co‐evally aggrading valley‐fill. Owing to this oblique aggradation in combination with floodplain widening, the stream becomes stretched out as channel reaches may alternately aggrade along opposed valley sides, resulting in increased sinuosity over time. Hence, highly sinuous planforms can form in peat‐filled valleys without the traditional morphodynamics of alluvial bed lateral migration. Improved understanding of the evolution of streams provides inspiration for stream restoration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Surface coal mining has altered land cover, near‐surface geologic structure, and hydrologic processes of large areas in central Appalachia, USA. These alterations are associated with changes in water quality such as elevated total‐dissolved solids, which is usually measured via its surrogate, specific conductance (SC). The SC of valley fill effluent streams is a function of fill construction methods, materials, and age; yet hydrologic studies that relate these variables to water quality are sparse due to the difficulty of conducting traditional hydrologic studies in mined landscapes. We used electrical resistivity imaging (ERI) to visualize the subsurface geologic structure and hydrologic flow paths within a valley fill. ERI is a noninvasive geophysical technique that maps spatiotemporal changes in resistivity of the subsurface. We paired ERI with artificial rainfall experiments to track infiltrated water as it moved through the valley fill. Results indicate that ERI can be used to identify subsurface geologic structure and track advancing wetting fronts or preferential flow paths. Our results suggest that the upper portion of the fill contains significant fines, whereas the deeper profile is primarily large rocks and void spaces. Water tended to pond on the surface of compacted areas until it reached preferential flow paths, where it appeared to infiltrate quickly down to >15 m depth in 75 min. ERI applications can improve understanding of how fill construction techniques influence subsurface water movement, and in turn may aid in the development of valley fill construction methods to reduce water quality effects.  相似文献   

15.
A study of combined effects of valley-weathering and valley-shaperatio on the ground motion characteristics and associated differential ground motion (DGM) is documented in this paper. In order to properly quantify the weathering effects, a forth-order-accurate staggered-grid viscoelastic time-domain finite-difference program has been used for the simulation of SH-wave responses. Simulated results revealed that the defocusing caused by valley is frequency-independent in contrast to the ridge-focusing. A decrease of average spectral amplification (ASA) with an increase of shape-ratio of the non-weathered triangular and elliptical valleys was obtained. Overall, the amplification and de-amplification pattern was larger in case of triangular valleys as compared to the elliptical valleys. It can be concluded that the dwelling within or near the topcorners of weathered valleys may suffer more damage as compared to their surroundings. A weathered triangular valley with large shape-ratio may cause unexpected damage very near its top-corners since both the ASA and DGM are largest.  相似文献   

16.
The so called “valley effect” relates to the typical seismic response of basin shaped bedrock filled by quaternary sediments. It is an aspect of the renown “local seismic effect” that shall be taken into account when dealing with microzoning studies. Several experimental surveys and numerical simulations performed worldwide over the last 40 years, confirmed that valley responses under seismic excitations show common features in various geological contexts as far as the sedimentary valleys (e.g. alluvial and lacustrine plains), the intermountain valleys (e.g. alpine valleys) and graben shaped basins. Such features mainly depend on the basin geometry, referred to as the shape ratio SR, and the sediment and basin impedance contrast IC. Although researchers agree on the prominent role of local seismic effects for interpreting erratic damages caused by seismic shaking in urbanized areas, no fully shared strategies have been identified for taking into account valley effect within microzoning studies. In this paper, a numerical simulations on three models of trapezoidal shaped basins have been performed. These valley models relate to sediments and basins detected within the Tuscany Region territory during the VEL project. Results, in terms of the amplification index $\text{ F }_{\mathrm{A}}$ F A have been provided. Three “valley effect charts” for various SR and IC values have been propose for taking into account the local seismic effects due to the basin amplifications within microzoning maps.  相似文献   

17.
Experimental tests have shown that unreinforced masonry (URM) infill walls are affected by simultaneous loading in their in-plane and out-of-plane directions, but there have been few attempts to represent this interaction in nonlinear time history analysis of reinforced concrete (RC) buildings with URM infill walls. In this paper, a recently proposed macro-model that accounts for this interaction is applied to the seismic analysis of RC framed structures with URM infill walls representative of Mediterranean building stock and practices. Two RC framed structures that are representative of low and mid-rise residential buildings are analysed with a suite of a bidirectional ground motions, scaled to three different intensities. During the analyses, the in-plane/out-of-plane interaction is monitored, showing that cracking of the infills occurs predominantly by in-plane actions, while failure occurs due to a combination of in-plane and out-of-plane displacements, with the out-of-plane component usually playing the dominant role. Along the frame height, the bottom storeys are generally the most damaged, especially where thin infill walls are used. These results are consistent with observations of damage to URM infill walls in similar buildings during recent earthquakes.  相似文献   

18.
Radio signals from very low frequency (VLF) transmitters distributed world-wide have been used for several decades to study the lateral variations of the electrical conductivity in the upper few hundred metres of the earth's crust. Traditionally, in airborne applications, the total magnetic fields from one or two transmitters are measured to form the basis for construction of maps that primarily show those conductive structures that are parallel or subparallel to the direction to the transmitters. The tensor VLF technique described in this paper makes use of all signals available in a predefined frequency band to construct transfer functions relating the vertical magnetic field and the two horizontal magnetic field components. These transfer functions are uniquely determined for a particular measuring site and contain information about the lateral conductivity variations in all directions. First experiences with real field data, acquired during a test survey in Sweden, show that maps of the so-called peaker, the spatial divergence of the transfer functions, give an image of the conducting structures. Most of the structures can be correlated to small valleys filled with conducting sediments or valleys underlain by conductive fracture zones in the crystalline rocks.  相似文献   

19.
The seismic motion in sediment-filled valleys due to incident SH-waves has been studied exhaustively. However, the response of such geologic structures to incident SV- and P-waves has not been studied as thoroughly. The response of a 2-D model of the valley of Caracas, Venezuela—a NS cross-section through the Palos Grandes district—to incident plane SV- and P-waves is investigated using the discrete wave number boundary element method. It is observed that the differences in the predictions of the 1-D and 2-D models are more pronounced for SV-waves than for SH-waves, especially when SV-waves are incident at (or near) the critical angle ic. The valley responds very strongly to the horizontally propagating P-wave (SP-wave) which is induced when SV-waves, incident at the critical angle, interact with the free surface of the half-space. However, the SP-wave, being a wave diffracted at a boundary, is likely to be sensitive to impedance contrasts, to the presence of other interfaces in the medium, and to the topography surrounding the valley. These aspects of the problem need further investigation.  相似文献   

20.
A numerical method is used for calculating the two-dimensional scattering of incident SH waves to try to explain some of the amplification patterns observed from recent data of the Mexico City's accelerometric array. The method is briefly presented and its efficiency is tested against analytical and other numerical solutions for canyons and alluvial valleys.

Spectral ratios computed for transition and lake-bed zones of the Mexico City valley with respect to the average motion at hill-zone sites are also presented. The one-dimensional model is used to explain the amplifications observed at a site where the valley is relatively shallow, while the two-dimensional approach is employed at another site at the centre of the valley where irregular amplification patterns have been observed. Results in the time domain are also shown.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号