首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
1.2m地平式望远镜视场旋转研究与消旋   总被引:3,自引:0,他引:3  
简要地讨论了1.2m地平式望远镜的运动特征,定量地给出物方视场旋转的公式,并对像方视场旋转的量和方向给予确定.通过对三种消旋方式的比较得出物理消旋更适合1.2m地平式望远镜视场消旋的结论.  相似文献   

2.
利用光线追迹法和矩阵光学的方法分析了1.2m天文望远镜折轴平面反射镜系统在望远镜的方位轴、高度轴转动时所引起的像方视场的旋转,分别用两种方法给出了一致的目标图像旋转与望远镜高度角、方位角之间变化的函数关系式,并将地平式装置引起的物方视场旋转在球面坐标系下的旋转量转换到平面直角坐标系中,最终得到整个望远镜系统的视场旋转量,为实时改正这些旋转量提供了理论依据.  相似文献   

3.
1.2米地平式望远镜视场的旋转   总被引:2,自引:1,他引:1  
本文定量地给出地平式装置所引起物方视场旋转的公式,并对1.2米地平式望远镜的平面反射镜系统随方位和高度的运动所引起的象方视场旋转角度的量和方向给予确定。  相似文献   

4.
郭锐  熊耀恒 《天文学报》2004,45(4):413-421
针对云南天文台1.2米望远镜在激光测月中回波光子数太少的问题,将大气湍流效应考虑到激光测月中,研究了互相关和绝对差分两种跟踪算法的原理,并编写了算法程序,利用太阳数据验证了程序的正确性,给出了根据所采集的月面感兴趣区域的图像数据,用不同方法在不同条件下处理所得的大气波前整体倾斜信号,比较了算法的优劣。  相似文献   

5.
激光导引星波前倾斜测量问题是限制自适应光学技术在天文领域广泛应用的关键问题之一。测量并改正激光上行到达角起伏是解决这一问题的有效方法。提出一种基于统计平均算法而不依赖自然导引星和辅助望远镜的测量方法,可以有效地测量出激光上行到达角起伏。利用具有子孔径阵列的哈特曼波前传感器对激光信标进行探测,选择部分子孔径进行倾斜量的统计平均以获得激光上行到达角起伏。仿真了统计平均算法的误差随子孔径数量的变化关系。结果表明,最小算法误差相对于望远镜全口径倾斜误差的下降比例与大气相干长度无关,而与望远镜口径有关。望远镜口径越大,算法误差相对于全口径倾斜误差下降越多。当望远镜口径为10 m时,最小算法误差下降为望远镜全口径倾斜误差的33%。  相似文献   

6.
LAMOST是一个大视场兼大口径的中星仪式望远镜,其光学系统是反射Schmidt系统。为克服Schmidt系统长镜筒(二倍焦距)的整体运动所引起的各种困难,采用了特殊的装置,即球面主镜固定不动,由非球面改正板的转动完成对被观测目标的瞄准和跟踪。使大视场和大口径的兼备成为可能。因而AMOST在观测过程中的成像情况与一般的望远镜不同,其焦面、改正板的位置和面形,都随观测天区和时间而变化,另外还有视场旋转和大气折射的影响。本文提出了用光轴稍微倾斜放置的球面代替最佳焦面的方法,并详细叙述了对LAMOST实际观测过程中,光学系统成像情况动态模拟分析的方法和结果。进一步证明了这种特殊的光学系统的可行性。  相似文献   

7.
一个巨型望远镜方案   总被引:4,自引:0,他引:4  
提出一个有特色的巨型望远镜(FGT)方案.其主镜口径为30米,主焦比为1.2,由1095块圆环形子镜构成.采用地平式装置.光学系统包括Nasmyth系统、折轴(Coude)系统和一个大视场系统.提出一个由4个镜面组成的新的Nasmyth系统,在约10′的视场范围内像斑小于爱里斑,达到衍射极限.比传统的Nasmyth系统的衍射极限视场大得多.可在这样的大视场内同时作好几个小区域的衍射极限的观测.当由Nasmyth系统转换到折轴系统和大视场系统时,采用主动光学技术改变子镜的面形、倾斜和平移,产生一个新的主镜面形,使折轴系统和大视场系统都能得到很好的像质.大视场系统的视场直径25′,场曲轻微,并有可能校正大气色散.给出了子镜面形和位置的公差,并讨论了望远镜的装置和结构,方案中的特色和创新对未来大望远镜的研制有普遍意义.  相似文献   

8.
斑点图的重心与波前倾斜   总被引:1,自引:0,他引:1  
论述了斑点图重心与瞬时波前倾斜的关系,证明了斑点图重心位置与瞬时波前倾斜的一致性,这种一致性无论光瞳孔径是否大于大气相干长度均是成立的.这一结论并未严格受限于近场近似条件,结论的一个重要推论是:用重心对准的位移叠加法对斑点图进行统计后所得到的传递函数就是大气望远镜综合系统的平均短曝光传递函数,该推论对于自适应光学和高分辨率图像重建技术均具有非常重要的意义.  相似文献   

9.
月球激光测距是国内外所瞩目的宏伟目标 ,代表着单光子探测技术的高峰。本论文的目的是探索提高激光测月回波光子数的新方法 ,进而增加激光测月成功的几率。其思路是源于一个新的想法 :在激光测月过程中引入大气波前倾斜量实时补偿的技术。首先介绍激光测月的现状和其难度所在 :回波光子数太少 ,基本上属于亚光子探测范畴。在现有技术条件下 ,本文对影响激光测月回波光子数的因素逐一进行分析讨论 ,提出应该把激光束截面能量分布和大气湍流效应包括进去。为此分析讨论了大气湍流和大气中光场的基本统计性质、激光束在大气中传输时所受大气湍流的影响以及大气湍流对激光测距的影响 ,得出大气湍流特别对激光测月有着明显影响的结论。在此基础上对传统的激光测距方程进行了修正 ,使其应用到激光测月时更符合真实的情况 ,从而指导补偿的进行。涉及到在激光测月中对受大气湍流而畸变的激光束进行补偿 ,本文抓住重点 ,通过分析看出对大气倾斜量的实时补偿是提高激光测月回波光子数的重要因素。结合激光测月以及云南天文台现有测距系统的实际情况 ,本文独创性地提出利用激光测月目标近旁一定大小区域的扩展面源探测与计算大气倾斜量 ,然后对激光测月中的激光束进行大气倾斜量实时补偿的新技术方法。在分析比较  相似文献   

10.
近地天体望远镜由SI600S (4k×4k) CCD升级为STA1600LN (10k×10k) CCD后,观测视场由4 deg~2增至9 deg~2,可用视场直径由望远镜原设计视场的3.14°增至4.28°,超出原设计36%,同时作为CCD密封窗的场镜增厚8.75 mm;两个因素导致10k CCD成像的轴外像差增大,视场外围的像质变差.依据望远镜原始设计光学参数,借助光学设计软件ZEMAX进行像质改善尝试,最终选择在10k CCD场镜前插入一个由两片球面透镜组成的场改正镜,使10k CCD的轴外像差得到校正.同时还提出了一个进一步拓展近地天体望远镜观测能力的设计方案,将望远镜的可用视场从目前的14.38 deg~2扩展至28.27 deg~2.  相似文献   

11.
Using 1658 normal points of the McDonald lunar ranging data in the period 1971.6–1979.0, I calculated the Earth's rotation curve, and found an offset of −330 × 10−10 for UT1 – UTC. The difference between the UT1 values given by the lunar data and BIH is 3.6 ms. This difference and the standard error of single determinations increase with increasing interval length used in the data reduction. This is shown to be due to the neglect of the secular term in UT1-UTC. It appears that an interval length of 2 days is suitable when calculating the Earth's rotation.  相似文献   

12.
Attention is drawn to the absence in literature of the precise definitions of selenographic and celestial selenocentric coordinate systems. In certain cases inaccuracies in the formulation of the first Cassini law occur. This is due to the fact that the principal directions dealt with in the theory of lunar rotation are being constantly confused. A clear-cut definition of the principal coordinate systems concerned with the lunar rotation is given. It is indicated that there is no necessity in a special astronomical time service on the Moon. Since the future expeditions to the Moon will be able to keep terrestrial time, the problem of the hour angle is simply solved by the Formula (11).  相似文献   

13.
New Trends in the Development of the Lunar Physical Libration Theory   总被引:4,自引:0,他引:4  
A review of the modern state of the lunar libration theory is presented. A significant progress in the lunar investigation is achieved due to the simultaneous processing of results of the satellite Doppler tracing and of the lunar laser ranging. The data evidencing existence of a small iron core in the Moon are discussed. In this connection, the further development of the theory of rotation of the Moon presents the study of internal structure and dynamics of a lunar body. A model of a two-layer Moon can have a very advanced application to explain some observed phenomena and to be as a first approach in the modelling of internal processes determining the lunar rotation.  相似文献   

14.
The lunar surface reveals a sharp opposition effect, which is to be explained by the shadowing and coherent backscattering mechanisms. Generalizing the radiative transfer theory via Monte Carlo methods, we are carrying out studies of backscattering in regolith-like scattering media. We have also started systematic laboratory measurements of structural simulators of lunar regolith. The SMART-1 AMIE and D-CIXS/XSM experiments provide us a unique opportunity for a simultaneous multiwavelength study of the lunar regolith close to opposition, since the SMART-1 spacecraft will pass over several different types of lunar surface at zero phase angles. Results of our theoretical and laboratory investigations can be used as a basis to interpret the SMART-1 AMIE and D-CIXS/XSM experiments. In particular, it seems to be possible to estimate regional variations of regolith particle volume fraction and their size. A short review of observational, experimental and theoretical works is also presented here.  相似文献   

15.
The D-CIXS X-ray spectrometer on ESA's SMART-1 mission will provide the first global coverage of the lunar surface in X-rays, providing absolute measurements of elemental abundances. The instrument will be able to detect elemental Fe, Mg, Al and Si under normal solar conditions and several other elements during solar flare events. These data will allow for advances in several areas of lunar science, including an improved estimate of the bulk composition of the Moon, detailed observations of the lateral and vertical nature of the crust, chemical observations of the maria, investigations into the lunar regolith, and mapping of potential lunar resources. In combination with information to be obtained by the other instruments on SMART-1 and the data already provided by the Clementine and Lunar Prospector missions, this information will allow for a more detailed look at some of the fundamental questions that remain regarding the origin and evolution of the Moon.  相似文献   

16.
Analysis of the gravity gradiometer developed by R. L. Forward and C. C. Bell at the Hughes Research Laboratories suggest than an accuracy, in the range 0.1 to 0.5 EU can be expected in a lunar orbiter application. This accuracy will allow gradient anomalies associated with mascons to be mapped with 1% accuracy and should reveal a great deal of new information about the lunar gravity field.The proposed experiment calls for putting such a gradiometer into a closely circular polar orbit at an average height of about 30 km above the lunar surface. This orbit allows the entire lunar surface to be covered in fourteen days, the gradiometer to be checked twice per revolution and results in successive passes above the lunar surface being spaced at about the resolution limit of about 30 km set both by the satellite altitude and instrumental integration time. Doppler tracking will be employed and the spacecraft will carry an electromagnetic altimeter. Gradient and altitude data from the far side of the Moon can be stored for replay when communication is re-established.  相似文献   

17.
A preliminary model of the internal magnetic field of the Moon is developed using a novel, correlative technique on the low-altitude Lunar Prospector magnetic field observations. Subsequent to the removal of a simple model of the external field, an internal dipole model is developed for each pole-to-pole half-orbit. This internal dipole model exploits Lunar Prospector's orbit geometry and incorporates radial and theta vector component data from immediately adjacent passes into the model. These adjacent passes are closely separated in space and time and are thus characteristic of a particular lunar regime (wake, solar wind, magnetotail, magnetosheath) or regimes. Each dipole model thus represents the correlative parts of three adjacent passes, and provides an analytic means of continuing the data to a constant surface of 30 km above the mean lunar radius. The altitude-normalized radial field from the wake and tail regimes is used to build a model in which 99.2% of the 360 by 360 bins covering the lunar surface are filled. This global model of the radial magnetic field is used to construct a degree 178 spherical harmonic model of the field via the Driscoll and Healy sampling theorem. Terms below about degree 150 are robust, and polar regions are considered to be the least reliable. The model resolves additional detail in the low magnetic field regions of the Imbrium and Orientale basins, and also in the four anomaly clusters antipodal to the large lunar basins. The model will be of use in understanding the sources of the internal field, and as a first step in modeling the interaction of the internal field with the solar wind.  相似文献   

18.
Lunar dust: The Hazard and Astronaut Exposure Risks   总被引:1,自引:0,他引:1  
This paper reviews the characterisation of lunar dust or regolith, the toxicity of the dust and associated health effects, the techniques for assessing the health risks from dust exposure and describes the measures used or being developed to mitigate exposure. Lunar dust is formed from micrometeorite impacts onto the Moon’s surface. The hypervelocity impacts result in communition and the formation of sharp and clingy agglutinates. The dust particles vary in size with the smallest being less than 10 μm. If the chemical reactive particles are deposited in the lungs, they may cause respiratory disease. During lunar exploration, the astronaut’s spacesuits will become contaminated with lunar dust. The dust will be released into the atmosphere when the suits are removed. The exposure risks to health will need to be assessed by relating to a permissible exposure limit. During the Apollo missions, the astronauts were exposed to lunar dust. Acute health effects from dust inhalation exposure included sore throat, sneezing and coughing. Long-term exposure to the dust may cause a more serious respiratory disease similar to silicosis. On future missions the methods used to mitigate exposure will include providing high air recirculation rates in the airlock, the use of a “Double Shell Spacesuit” so that contaminated spacesuits are removed before entering the airlock, the use of dust shields to prevent dust accumulating on surfaces, the use of high gradient magnetic separation to remove surface dust and the use of solar flux to sinter and melt the regolith around the spacecraft.  相似文献   

19.
The potential effect of the future Russian lunar laser ranging system (LLRS) on the accuracy of lunar ephemerides is discussed. In addition to the LLRS in Altai, several other observatories suitable for the LLRS installation are considered. The variation of accuracy of lunar ephemerides in the process of commissioning of new LLRS stations is estimated by mathematical modeling. It is demonstrated that the error in the determination of certain lunar ephemeris parameters may be reduced by up to 16% after seven years of operation of the Altai LLRS with a nearly optimal observational program.  相似文献   

20.
The character of the lunar surface indicates that surface faulting has not been an important mechanism for the build-up of the lunar surface. If the radioactive content of the Moon is of the same order as that of chondritic meteorites, then the absence of major surface faults can be explained in a number of ways. A near-surface concentration of radioactivity will provide an equality of heat production and surface heat flow necessary for the maintenance of a constant lunar radius. Alternatively, the radioactivity could be deeply buried, with the radius still remaining constant over the past 2,000,000,000 years. Heat transported by mechanisms other than radiation and thermal conduction will also tend to keep the radius of the Moon at a constant value.

Even though the radius of the Moon remains constant, there is a major build-up of strain energy throughout the Moon. The rate is such that, on the average, something on the order of 1024–1025 ergs of distortional energy should be released per year throughout the Moon, provided the radioactivity is uniformly distributed. A near-surface concentration of the radioactivity might decrease this rate of energy release but certainly by no more than an order of magnitude. Under all circumstances it would appear that a Moon of chondritic composition would have strong Scismic activity.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号