首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 151 毫秒
1.
中国降水观测误差分析及其修正   总被引:17,自引:0,他引:17  
在1980s 乌鲁木齐河流域进行的降水误差观测试验结果基础上, 依据我国726 个气象站1951~2004 年逐日观测资料, 对降水的动力损失、微量降水以及湿润损失进行系统的修正, 以期获得更准确的长系列降水资料, 为区域乃至全球水热循环过程和水文学研究提供基础资料。修正结果表明, 在大部分地区由风速作用引起的动力损失是主要的误差来源, 但在降水较少的地区湿润和微量降水观测损失也起着重要作用, 全国726 个台站年降水修正量在8~740 mm 之间, 平均约125 mm, 相应的修正幅度在5%~72%, 平均约18%。从时间看, 冬季修正系数大于夏季, 但冬季修正量小于夏季; 从空间分布看, 西北地区年修正量一般小于50 mm, 东南地区大于100 mm, 总修正系数由西北向东南地区减少, 其中西北地区大于30%, 而西南地区小于20%, 这一修正系数高于全球的11%左右的平均修正量。  相似文献   

2.
新疆天山山区近40年春季气候变化特征与平原区的比较   总被引:29,自引:17,他引:12  
利用新疆1959~1998年的春季温度降水资料,分析了天山山区近40年来春季气候变化的基本特征,并与南疆、北疆进行了比较。所得的主要结果如下:(1)天山山区在春季温度的冷暖变化阶段上1981年前与北疆的相似,1981年后与南疆相似。(2)天山山区在春季降水量干湿变化阶段上与北疆的相似性强于南疆。(3)春季温度空间分布的同步变化性以北疆为最好,南疆最差。天山山区居中,而春季温度空间分布的反向变化性,以南疆为最大,北疆最小.天山山区居中。春季降水空间分布的同步变化性北疆较好,天山山区和南疆较差。而春季降水空问分布的反向变化性。以天山山区为最大。北疆最小,南疆居中。(4)三大区域的春季温度均表现为20世纪60与90年代偏高,70和80年代偏低。天山山区与北疆从60年代到90年代,春季降水均表现出了持续的增加的趋势。南疆春季降水除60年代外,不断增多。90年代是新疆三大区域春季降水最多的年代。(5)北疆和南疆近40年的春季最低温度存在着显著的增温趋势。增温率北疆大于南疆。  相似文献   

3.
结合新疆的65个气象观测站日降水数据,采用连续验证统计方法、分类验证统计方法对RFE2.0遥感降水数据在新疆的适用性进行了评估。结果表明:(1)通过连续验证统计分析,新疆地区平均偏差MBE (Mean Bias Error)总体对日降水量高估,均值为0.4 mm,在0.5 mm内的站点超过70%。RFE2.0遥感降水数据与地面观测站的日降水量之间相关系数R的平均值为0.4,表现为较低的相关性。从偏离真实值情况来说,东疆模拟值和观测值最接近。(2)分类验证统计方法对降水事件FBI (Frequency Bias Index)有所高估。按片区来说,降水事件高估的小值区主要在北疆,高估程度低于全疆平均水平。北疆的正确率POD (Probability of Detection)大于南疆、东疆,同时北疆发生空报率FAR (False Alarm Rate)的可能性也小于南疆、东疆。(3)通过实例验证了RFE2.0在北疆、南疆、东疆的可靠性。以上规律可为RFE2.0在新疆的应用提供科学依据。  相似文献   

4.
天山山区近40年秋季气候变化特征与南、北疆比较   总被引:24,自引:9,他引:15  
利用新疆1959~1998年的秋季温度降水资料,分析天山山区近40年来秋季气候变化的基本特征,所得结果如下: (1) 天山山区秋季温度在冷暖变化阶段上与北疆的相似性强于南疆,但其秋季降水在干湿变化阶段上与南、北疆不同。 (2) 秋季温度空间分布的同步变化性以北疆为最好,南疆最差,天山山区居中。秋季降水空间分布的同步变化性以南疆最好,天山山区最差,北疆居中。 (3) 20世纪60~90年代,天山山区表现为波动升温,而南疆和北疆表现为持续增温,均以90年代温度最高,80年代是三大区域秋季降水最多的年代。60,70及90年代,三大区域的秋季降水均低于30年均值。  相似文献   

5.
近50年来新疆天山山区水循环要素的变化特征与趋势   总被引:2,自引:0,他引:2  
天山山区由于其特殊的地理位置与高海拔,成为新疆地表径流的主要产流区域。近几十年来,全球平均气温的持续上升对该区域气温、降水、径流等水循环要素产生重要的影响。根据天山南北坡有关水文气象台站的观测资料,系统地分析了该区域1960年代以来各水循环要素的变化特征与趋势。结果表明,受全球变暖的影响,1980年以来整个天山地区气温和降水均呈明显的上升趋势,其中10 a气温的升幅更为显著;对于降水而言,天山南坡降水增幅大于北坡,而南坡的西段是近10 a降水增幅最大的区域。受气温上升与降水增加的影响,天山地区出山径流总体上呈增加的趋势,其中,近10 a天山南坡中西段河流出山径流量增幅最为显著,平均增幅在30%以上。  相似文献   

6.
树木年轮记录的天山北坡中部过去338 a降水变化   总被引:5,自引:1,他引:4  
 利用位于天山北坡中部9个气象站的降水资料与采自该地区的21个树木年轮年表序列进行分析。结果表明,9个气象站上年8月到当年7月的平均降水量与树木年轮标准化年表具有很好的相关性,最高单相关达到0.612(P<0.0001)。分析发现,生长季前期及春材形成期的降水变化对天山山区树木年轮径向生长量起着决定性作用。用四工河东白杨沟、呼图壁河赛热克巴依萨依、呼图壁河希热克久热特、四工河西白杨沟、奎屯河兰能果尔南5个标准化年表较好地重建了天山北坡中部近338 a来上年8月到当年7月的降水量,重建方程的方差解释量达到60.0%,经过统计检验和历史资料验证,表明重建序列是可靠的。对过去338 a天山北坡中部降水变化的特征分析表明,近338 a间,天山北坡中部降水大体经历了8个偏干和8个偏湿阶段,偏湿年份与偏干年份基本持平。最长的偏干阶段是1705—1750年,最干旱的阶段为1960—1989年,最干旱年份是1796年、1944年和1974年,降水偏少程度均大于27%;最长的偏湿阶段是1917—1959年,1690—1904年间为降水最为丰沛的时期。天山北坡中部338 a降水具有两年左右的变化准周期,在1751年发生了明显的由少到多的突变,在1958年前后发生了明显的由多到少的突变。  相似文献   

7.
近48 a新疆干湿气候时空变化特征   总被引:15,自引:2,他引:13  
 根据新疆101个气象台站1961—2008年的逐月气候资料,采用线性回归、Morlet小波、自然正交分解(EOF)、累计距平、t-检验和Kriging空间插值等方法,对近48 a反映新疆干湿气候的年降水量、潜在蒸散量和地表干燥度等要素的时空变化特征进行了分析,结果表明:①新疆年降水量在空间分布上表现为山区多于平原和盆(谷)地,北疆多于南疆,西部多于东部的格局;近48 a,新疆各地年降水量均为增多趋势,增多倾向率的空间分布为:天山山区>北疆>南疆,全疆平均年降水量以9.123 mm/10a的倾向率增多;新疆年降水量空间异常分布主要表现为“全疆一致型”和“南北疆反向变化”两种模态;全疆平均年降水量主要存在3~4 a、6~8 a、11 a和16 a的振荡周期,并于1987年发生了突变性的增多。②新疆年潜在蒸散量总体表现为南疆大于北疆、东部大于西部、盆(谷)地大于山区的分布格局;近48 a,新疆各地年潜在蒸散量总体为减少趋势,其中南疆为递减倾向率高值区,北疆大部和天山山区为递减倾向率低值区,全疆平均年潜在蒸散量以-23.8 mm/10a的倾向率减少;新疆年潜在蒸散量空间异常分布也主要表现为“全疆一致型”和“南北疆反向变化”两种模态;潜在蒸散量主要存在准22 a的振荡周期,并于1984年发生了突变性的减小。③受降水量和潜在蒸散量时空变化的共同影响,新疆年干燥度指数总体表现为南疆大于北疆、东部大于西部、盆(谷)地大于山区的分布格局;近48 a,新疆各地年干燥度指数均表现为不同程度的减小趋势,其中,吐鲁番、哈密盆地以及塔里木盆地东部地区是干燥度指数减小最明显的区域,全疆平均年干燥度指数以-3.164/10a的倾向率减少;新疆年干燥度指数空间异常分布主要表现为“全疆一致型”;干燥度指数主要存在准5 a、8 a和18 a的振荡周期,并于1987年发生了突变性的减小。  相似文献   

8.
TRMM降水数据在中天山区域的精度评估分析   总被引:5,自引:0,他引:5       下载免费PDF全文
季漩  罗毅 《干旱区地理》2013,36(2):253-262
 遥感降水产品能反映降水的时空分布变化,对于资料稀缺的西北干旱区生态水文研究有重大意义。TRMM卫星降水资料在热带湿润地区有大量应用,但要将其用于我国西北干旱半干旱气候地区,还需对该数据产品在质量进行评估。选择干旱区内陆的新疆天山中部为研究区,并以周边15个台站的实测数据为依据对TRMM3B42降水数据质量进行评价。结果表明:(1)TRMM3B42数据对日降水事件的估计准确率较低,但是总体上暖季好于冷季,相对于较大的降水,对发生量小的降水估计更为准确;在暖季高估量小降水,低估量大降水,冷季则相反;(2)月降水情况来看,天山南坡两站与北坡的规律不符;对北坡山区降水估计的精度好于平原区,并且精度与海拔呈抛物线分布,降水越大的区域精度越高;偏差量的年内分布在各海拔区域之内一致性较好,但区域之间规律各有特点;(3)从年降水量来看,TRMM降水整体低于站点观测值,并且差量随着高程具有抛物线分布的特征。总之,该降水产品的质量总体上不高,但是其偏差在时间和空间上具有一定的规律性,该数据在干旱区的应用需要进一步校准处理。  相似文献   

9.
新疆极端降水的气候变化   总被引:92,自引:1,他引:91  
杨莲梅 《地理学报》2003,58(4):577-583
采用1961~2000年55个气象台站的逐日降水观测资料,分析近40年来新疆极端降水的气候变化、发展趋势和空间分布差异。用Mann-Kendall法对年极端降水量进行突变检验。研究表明:(1) 只有天山北麓经济带和天山南麓国家级棉花基地阿克苏地区极端降水量和频次有显著增多,尤以80年代以后明显,年极端降水量于1980年发生了气候突变,这种气候变化是由夏半年极端降雨量和频次增多导致的。(2) 新疆极端降水强度无显著变化,极端降水频次的显著增多导致极端降水量的显著增多。(3) 极端降水对年总降水量的贡献天山山区占年降水量的41.9%,北疆北部与和田区域极端降水的贡献为17.2%和21.9%,其它区域在25%~31.3%。年极端降水量距平与年降水量距平有好的相关关系 (除阿克苏地区和焉耆盆地外),说明极端降水量的变化导致年降水量的变化。  相似文献   

10.
秦岭中部山地降水的垂直变化研究   总被引:1,自引:0,他引:1  
明确秦岭高海拔山区降水的变化规律,是深入理解秦岭作为中国南北地理过渡带特征、认识秦岭水资源在南水北调中线工程中重要作用的前提。但秦岭高海拔地区长期缺乏有效的降水观测数据,导致对其降水变化缺乏了解。利用2018年6月1日—2019年5月31日秦岭太白山海拔3760 m实测降水数据,发现在秦岭海拔3760 m处年降水量可达1300 mm,远高于汉江盆地和关中平原600~800 mm的年降水量。在此基础上,检验了克里金(Kriging)、反距离加权(IDW)和薄盘样条(ANUSPLIN)插值方法,以及GPM修正数据(GPM-cal)和ERA5再分析资料对秦岭中部山地年和季节降水空间模态的再现效果,各方案均能揭示秦岭高山区是降水高值中心,且降水随海拔的升高而增大,但利用克里金、反距离加权插值方案不能得到准确的高海拔降水值,与此相比,GPM-cal数据、薄盘样条插值与ERA5资料能较准确刻画秦岭中部山地年降水量随地形的变化。水汽通量分析显示,秦岭凭借高大地形对600 hPa高度以下的南来湿润气流具有明显的阻挡、强迫和拦截作用,使其南坡成为区域降水高值中心。结合高山区降水观测、薄盘样条插值、多源格点资料和数据修正方法,是认识秦岭山地降水形成和变化的有效途径。  相似文献   

11.
新疆春夏季大气降尘分析   总被引:9,自引:7,他引:2  
梁云  刘新春  何清  霍文  李军 《中国沙漠》2008,28(5):992-994
  在新疆沙尘暴主要发生区布设了22个大气降尘观测点,对2007年春夏季大气降尘总量进行监测。分析表明:南疆大气降尘总量远高于北疆,塔里木盆地的高值中心位于盆地偏南部;将大气降尘与气象要素进行相关分析,表明大气降尘与降水量呈负相关关系,大气降尘与沙尘天气发生日数存在正相关关系。  相似文献   

12.
新疆沙尘暴天气的气候特征   总被引:29,自引:8,他引:21  
王旭  马禹  陈洪武 《中国沙漠》2003,23(5):539-544
根据地面观测资料,整理出1961-1999年39 a新疆90个气象观测站的沙尘暴天气现象资料并进行统计分析,给出新疆沙尘暴的时空分布特征,并以分钟为单位得到沙尘暴的日变化和持续时间。结果表明:①新疆沙尘暴的地理分布特点是北疆少南疆多、山区少盆地多,高发区在南北两大沙漠中,沙漠南缘、山脉北麓出现的沙尘暴多于其他周边地区。②沙尘暴的高发年代多在60年代和70年代,90年代沙尘暴的出现日数明显减少。③沙尘暴主要出现在4~8月,10月到次年3月少有沙尘暴发生。多发时段在16~21时,持续时间北疆一般不超过60 min,南疆一般不超过90 min,塔里木盆地南部沙尘暴的持续时间最长。  相似文献   

13.
基于新疆1961—2016年89个观测站冬季平均气温经验正交分解的空间模态,讨论了与各空间模态及其相联系的北半球中高纬度环流特征,结果表明:新疆冬季平均气温的年际异常空间模态分为全区一致类、南北反相类、东西反相类,根据这三类空间模态的正负位相不同分别分为一致偏冷型、一致偏暖型、北冷南暖型、北暖南冷型、东冷西暖型和东暖西冷型等6个空间分布型。新疆冬季平均气温各空间分布型的环流影响因子既表现了极地和中纬度环流相互作用,也有纬圈方向的波列传播的影响。当北半球中纬度西风偏弱,中高纬度环流经向度加大,乌拉尔山地区的高压脊发展和东亚大槽偏深,50°N以南为负高度距平,新疆冬季平均气温一致偏低;反之则一致偏高。北冷南暖型在40°N以北的区域与一致偏冷型的环流特征基本类似,但在中亚至新疆40°N偏南的区域位势高度偏高;北暖南冷型出现时,乌拉尔山负高度距平和东亚大槽偏弱,新疆上空为浅脊控制,新疆南部受脊后的浅槽影响。东冷西暖型和东暖西冷型区别在于中纬度的500 hPa正高度距平中心的位置和700 hPa气流方向。北极涛动(AO)、区域西风指数、乌拉尔山关键区因子、欧亚纬向环流指数、西藏高原-1指数、西藏高原-2指数、斯堪的纳维亚遥相关型指数(SCA)、亚洲区极涡面积指数等8个气候指数都对新疆冬季平均气温产生了重要的影响。  相似文献   

14.
1961-2015年新疆降水及干旱特征分析   总被引:4,自引:3,他引:1  
基于1961-2015 年新疆地区51 个气象站过去55 a 逐日降水资料,借助标准化降水指数、降水距平百分率表征干旱,利用线性趋势,K-means 聚类,Mann-Kendall 非参数检验,Morlet 小波分析等方法,分析过去55 a 降水及干旱变化特征。研究表明:(1)过去55 a 新疆降水量、雨日整体呈上升趋势,相关系数为0.83,降水量增加主要表现为雨日增长;降水空间分布和聚类得出,降水呈现显著“北多南少”格局,3 个降水分区的降水量表现为III 区 > II 区 > I 区。(2)干旱指数SPI、降水距平Pa极显著相关,干旱频次、影响范围、严重性总体呈现下降趋势;干旱变化率空间分布整体存在一致性,由南向北干旱缓解趋势增大,但局域上又有异质性,北疆个别站点干旱加剧;(3)干旱变化具有周期性,主周期为8 a,次主周期为4 a、16 a。  相似文献   

15.
气候变暖对新疆降水和径流影响分析   总被引:13,自引:11,他引:13  
柳葳  许有鹏  黄云 《干旱区地理》2005,28(5):597-602
全球气候变暖对新疆气候产生了较大的影响,在升温的背景下从20世纪80年代以来本区的降水量、冰川储量、地表径流、地下水资源发生了较大的变化:全区降水总量增加,冰川物质平衡以负平衡为主,局部地区地表径流量明显增加。对比分析不同地区降水量的变化情况,发现新疆不同地区的降水量变化情况存在明显差异,且尚难判断全区降水量是否有稳定增加的趋势。通过对已有资料的分析计算,对比冰川加速消融和降水量增加对本区地表径流增大的贡献,表明引起局部地区地表径流显著增加的主要原因是冰川加速消融。气候变暖打乱了本地的水平衡,使本地洪水和干旱灾害有加剧趋势。  相似文献   

16.
利用1980—2017年天山山区35个气象站点的逐日降水资料,分离出3种主要降水形态后,运用线性倾向估计、Mann-Kendall(M-K)突变检验、滑动t突变检验、Morlet小波分析等方法研究了天山山区降水日数及降雨日数、降雪日数和雨夹雪日数的时空分布及变化规律。研究表明:(1)在空间上,天山山区降水日数和降雨日数表现为“北多南少,西多东少”的分布格局,降雪日数“北多南少”明显;降水日数呈现“西快东慢,北快南慢”的增长趋势,西段增长幅度明显,降雨日数普遍增多,大部分地区降雪日数减少,雨夹雪日数也有减少趋势。(2)近38 a来,天山山区降水日数表现为缓慢增长趋势,降雨日数显著增加,降雪日数减少,雨夹雪日数变化并不明显。(3)天山山区降水日数突变年在1986年前后。(4)降水日数、降雨日数、降雪日数及雨夹雪日数均存在明显的10 a左右的振荡周期,此外,降水日数、降雨日数和雨夹雪日数18~22 a周期波动也比较明显。  相似文献   

17.
LiYun Dai  Tao Che 《寒旱区科学》2011,3(4):0325-0331
Ground snow observation data from 1999 to 2008 were used to analyze the temporal and spatial distribution of snow density in China. The monthly maximum density shifted from north to south during the period from October to the following January, and then moved back from south to north during the period from January to April. The maximum snow density occurred at the border between Hunan and Jiangxi provinces in January, where snow cover duration was short and varied remarkably. Snow density in Northeast China and the Xinjiang Uygur Autonomous Region were also high and showed less variation when the snow cover duration was long. Ground observation data from nine weather stations were selected to study changes of snow density in Northeast and Northwest China. A phase of stable snow density occurred from the middle ten days of November to the following February; non-stationary density phases were observed from October to the first ten days of November and from March to April. To further investigate the effects of climatic factors on snow density, correlations between snow density and precipitation, air temperature, snow depth and wind velocity for Northeast and Northwest China were analyzed. Correlation analysis showed that snow depth was the primary influence on snow density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号