首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 752 毫秒
1.
The Kuznetsk Basin is located in the northern part of the Altai–Sayan Folded Area (ASFA), southwestern Siberia. Its Late Permian–Middle Triassic section includes basaltic stratum-like bodies, sills, formed at 250–248 Ma. The basalts are medium-high-Ti tholeiites enriched in La. Compositionally they are close to the Early Triassic basalts of the Syverma Formation in the Siberian Flood basalt large igneous province, basalts of the Urengoi Rift in the West Siberian Basin and to the Triassic basalts of the North-Mongolian rift system. The basalts probably formed in relation to mantle plume activity: they are enriched in light rare-earth elements (LREE; Lan = 90–115, La/Smn = 2.4–2.6) but relatively depleted in Nb (Nb/LaPM = 0.34–0.48). Low to medium differentiation of heavy rare-earth elements (HREE; Gd/Ybn = 1.4–1.7) suggests a spinel facies mantle source for basaltic melts. Our obtained data on the composition and age of the Kuznetsk basalts support the previous idea about their genetic and structural links with the Permian–Triassic continental flood basalts of the Siberian Platform (Siberian Traps) possibly related to the activity of the Siberian superplume which peaked at 252–248 Ma. The abruptly changing thickness of the Kuznetsk Late Permian–Middle Triassic units suggests their formation within an extensional regime similar to the exposed rifts of Southern Urals and northern Mongolia and buried rifts of the West Siberian Basin.  相似文献   

2.
苏扣林  丁兴  郭宇  石晓龙 《中国地质》2021,48(1):161-172
广州市增城地质公园发育有大量的燕山期安山岩和流纹岩,由于缺少详细的岩石地球化学研究,这些火山岩的成因和所代表的大地构造意义一直未明确。文章对上述火山岩进行了较为系统的全岩地球化学以及同位素地球化学分析。研究结果显示,安山岩具有安第斯型火山岩特点,显示Nb、Ta、Sr和Ti的亏损,Isr值介于0.70332~0.7144,平均值0.7092,岩石稀土总量较低(ΣREE=158.9×10^-6~215.0×10^-6),平均值186.8×10^-6,轻重稀土元素分异较弱((La/Yb)N5.06~9.87),平均值7.01,Eu负异常不明显(δEu=0.80~1.38),平均值δEu=0.94。流纹岩具有高钾特点,有明显的Ba、Sr、P、Eu、Ti负异常和Pb、Yb正异常,其Isr值介于0.71393~0.73650,平均值0.72615,岩石稀土总量较低(ΣREE=93.4×10^-6~481.5×10^-6),平均值285.7×10^-6,轻重稀土元素分异弱((La/Yb)N=0.65~9.51),平均值4.35,Eu负异常很明显(δEu=0.01~0.03),平均值δEu=0.02,全岩Rb-Sr同位素年龄为(112±12)Ma。综合的地球化学研究表明,增城地质公园安山质-流纹质火山岩均属壳幔混合成因,其中安山岩以幔源为主,而流纹岩则以壳源为主,分别形成于早侏罗世和早白垩世太平洋板块俯冲碰撞挤压的构造背景下。这对华南地区中生代构造演化的深入认识具有重要的地质意义。  相似文献   

3.
The Neoarchean Yishui Terrane (YST) is situated in the east of Western Shandong Province (WSP), south-eastern margin of the North China Craton (NCC). The metavolcanic rocks of the YST are fine-grained hornblende plagioclase gneisses (Group #1) and fine-grained amphibolites (Group #2) in the Yangzhuangzhen area and fine- to medium-grained amphibolites (Group #3) in the Leigushan area. The high-K granitoids associated with Groups #1 and 2 are dominated by fine- to medium-grained monzogranitic gneisses. Zircon LA-ICP-MS U-Pb dating reveals that the magmatic precursors of Groups #1 and #2 were formed at 2641 Ma and the magmatic precursors of concomitant monzogranitic gneisses were emplaced from 2615 to 2575 Ma, whereas Group #3 represents a later 2500 Ma volcanic eruption, and all these metamorphic volcanic rocks and monzogranitic gneisses were subjected to subsequent 2470–2460 Ma metamorphism.The metamorphic volcanic rock samples in Group #1 exhibit the chemical compositions of calc-alkaline andesites, showing fractionated chondrite-normalized REE patterns ((La/Yb)N = 10.48–19.30) and negative Nb, Ta and Ti anomalies ((Nb/La)PM = 0.13–0.22), which are akin to those of typical high-Mg andesites (HMAs) in the subduction-related settings. The magmatic precursors of the Group #1 samples were derived from partial melting of a fluid- or melt-metasomatized depleted mantle wedge at deep levels in the upper mantle. Samples in Group #2 show calc-alkaline chemical compositions with less fractionated chondrite-normalized REE patterns ((La/Yb)N = 2.24–3.34) and negative Nb, Ta and Ti anomalies ((Nb/La)PM = 0.47–0.76), which are consistent with those of the volcanic rocks in the Aleutian island arc. The magmatic precursors of Group #2 were generated by partial melting of a fluid-metasomatized depleted mantle wedge at shallow levels in the upper mantle. The monzogranitic gneisses exhibit high SiO2 and K2O contents with high-K calc-alkaline affinities and peraluminous characteristics. Based on their distinct HREE contents and chondrite-normalized REE patterns, these granitoid samples are subdivided into low-Yb monzogranitic gneisses (LYMGs) and high-Yb monzogranitic gneisses (HYMGs). The LYMG magma was derived from partial melting of a mixed source of juvenile two-mica pelites and minor basic-intermediate igneous rocks at lower crustal levels with pyroxene + amphibole + garnet as the main residual phases, and the HYMG magma was derived from partial melting of multi-sourced juvenile two-mica pelites at middle to lower crustal levels with pyroxene + amphibole and subordinate plagioclase and garnet as the main residual phases. In addition, Group #3 resembles tholeiitic back-arc basalts in the Okinawa Trough and displays flat chondrite-normalized REE patterns ((La/Yb)N = 1.22–2.08) and slightly negative Nb and Ta anomalies ((Nb/La)PM = 0.35–0.59). This group was most likely derived from partial melting of a depleted mantle source that had been modified by the addition of subducted slab-derived fluids at shallow levels in the upper mantle. These metavolcanic rocks and concomitant high-K granitoids record important Neoarchean crust-mantle interactions involving the first modification and partial melting of the lithospheric mantle induced by oceanic crust subduction; then, upwelling and underplating of mantle-derived magmas triggered partial melting of the middle to lower crust and mixing between crust- and mantle-derived magmas. These processes imply that Neoarchean crust-mantle interaction played a crucial role in the evolution of the southeastern margin of the NCC.Available whole-rock Sm-Nd and zircon Lu-Hf isotopic data from metamorphic volcanic rocks and plutonic granitoids from this study and previous studies reveal that YST experienced three crucial juvenile crustal growth events from ~2.78–2.69 Ga, ~2.64–2.56 Ga and ~2.54–2.50 Ga.  相似文献   

4.
Neogene volcanic rocks in the Belog Co area, Qiangtang, northern Tibet, are represented by a typical intermediate-basic and intermediate alkaline rock association, with latite-trachyte as the main rock type. The results of chemical analysis are: SiO2=52%–62%, Al2O3>15%, Na2O/K2O>1 and MgO<3.30%. In addition, the volcanic rocks are LREE-enriched with LREE/HREE=10–13, (La/Yb)N=15–19, and show a weak negative Eu anomaly with δEu=0.71–0.89. The close relationship between Mg# and SiO2 and the co-variation of the magmatophile elements and ultra-magmatophile elements such as La/Sm-La and Cr-Tb indicate that this association of volcanic rocks is the product of comagmatic fractional crystallization. The rock association type and lower Sm/Yb values (Sm/Yb=3.23–3.97) imply that this association of volcanic rocks should have originated from partial melting of spinel lherzolite in the lithospheric mantle. On the other hand, the weak negative Eu anomaly and relative depletion in Nb, Ta and Ti reflect the features of terrigenous magma. So the Neogene Belog Co alkaline volcanic rocks should be the result of partial melting of the special crust-mantle transition zone on the Qinghai-Tibet Plateau.  相似文献   

5.
The Sanchahe quartz monzonite intrusion is situated in the middle segment of the North Qinling tectonic belt, Central China mainland, and consists chiefly of sanukitoid–like and granodioritic-monzogranitic rocks. The sanukitoid–like rocks are characterized by quartz monzonites, which display higher Mg#(55.0–59.0), and enrichments in Na2 O+K2 O(7.28–8.94 %), Ni(21-2312 ppm), Cr(56-4167 ppm), Sr(553-923 ppm), Ba(912-1355 ppm) and LREE((La/Yb)N =9.47–15.3), from negative to slightly positive Eu anomalies(δEu=+0.61 to +1.10), but also depletion in Nb, Ta and Ti. The granodioritic-monzogranitic rocks diaplay various Mg#of 6.00-53.0, high Na2 O+K2 O(7.20– 8.30%), Sr(455–1081 ppm) and(La/Yb)N(27.6–47.8), with positive Eu anomalies(δEu=1.03–1.57) and depleted Nb, Ta and Ti. Laser ablation inductively coupled plasma mass spectrometry(LA-ICPMS) zircon U-Pb isotopic dating reveals that the sanukitoid-like rocks were emplaced at two episodes of magmatism at 457±3 Ma and 431±2 Ma, respectively. The monzogranites were emplaced at 445±7Ma. Sanukitoid–like rocks have their εHf(t) values ranging from +0.3 to +15.1 with Hf–depleted mantle model ages of 445 to 1056 Ma, and the monzogranite shows its εHf(t) values ranging from 21.6 to +10.8 with Hf–depleted mantle model ages of 635 to 3183 Ma. Petrological, geochemical and zircon Lu –Hf isotopic features indicate that the magmatic precursor of sanukitoid–like rocks was derived from partial melting of the depleted mantle wedge materials that were metasomatized by fluids and melts related to subduction of oceanic slab, subsequently the sanukitoid magma ascended to crust level. This emplaced mantle magma caused partial melting of crustally metamorphosed sedimentary rocks, and mixing with the crustal magma, and suffered fractional crystallization, which lead to formations of quartz monzonites. However, the magmatic precursor of the granodioritic-monzogranitic rocks were derived from partial melting of subducted oceanic slab basalts. Integrated previous investigation for the adackitic rocks in the south of the intrusion, the Sanchahe intrusion signed that the North Qinling tectonic zone was developed in an early Paleozoic transitionally tectonic background from an island arc to back–arc.  相似文献   

6.
New geochemical and isotopic data for post-collisional Early Eocene and Late Miocene adakitic rocks from the eastern part of the Sakarya Zone, Turkey, indicate that slab and lower crustal melting, respectively, played key roles in the petrogenesis of these rocks. The Early Eocene Yoncal?k dacite (54.4 Ma) exhibits high Sr/Y and La/Yb ratios, low Y and HREE concentrations, moderate Mg# (44–65), and relatively high εNd and low ISr values, similar to adakites formed by slab melting associated with subduction. Geochemical composition of the Yoncal?k dacite cannot be explained by simple crystal fractionation and/or crustal contamination of andesitic parent magma, but is consistent with the participation of different proportions of melts derived from subducted basalt and sediments. Sr/Y correlates horizontally with Rb/Y, and Pb/Nd correlates vertically with Nd isotopic composition, indicating that Sr and Pb budgets are strongly controlled by melt addition from the subducting slab, whereas positive correlations between Th/Nd and Pb/Nd, and Rb/Y and Nb/Y point to some contribution of sediment melt. In addition to low concentrations of heavy rare earth elements (~2–3 times chondrite), a systematic decrease in their concentrations and Nb/Ta ratios with increasing SiO2 contents suggests that slab partial melting occurred in the garnet stability field and that these elements were mobilized by fluid flux. These geochemical and isotopic signatures are best explained by slab breakoff and fusion shortly after the initiation of collision. Although the Late Micone Tavda?? rhyolite (8.75 Ma) has some geochemical features identical to adakites, such as high Sr/Y and La/Yb ratios, low Y and HREE concentrations, other requirements, such as sodic andesite and/or dacite with relatively high MgO and Mg# (>50), relatively high Ni and Cr, low K2O/Na2O (<0.4), high Sr (>400 ppm), for slab-derived adakites are not provided. It is sodic in composition and shows no traces of fractionation from dacitic parent magma. Low Nd and high Sr isotope ratios suggest derivation by partial fusion of calc-alkaline, juvenile crust with high Sr/Y and La/Yb ratios.  相似文献   

7.
In the northwestern part of the Sharyzhalgai uplift of the Siberian craton (Bulun block), the earliest sialic crust (grey-gneiss complex) is composed of plagiogneisses, their migmatized varieties, and subordinate plagiogranitoids. The petrochemical, trace-element, and Sm-Nd isotope compositions of rocks were studied, and U-Pb dating of zircons (SHRIMP II) was performed. Plagiogneisses and plagiogranitoids of trondhjemite and, more seldom, tonalite compositions are predominant; their compositions are typical of rocks of Archean tonalite-trondhjemitegranodiorite (TTG) complexes (Al2O3 ≥ 15%, Mg# = 28–38, (La/Yb)n = 23–66, Sr/Y = 27–135, Eu/Eu? = 0.7–1.1). Plagiogneisses of meta-andesite-rhyodacite association are subordinate (SiO2 = 59–69%, (La/Yb)n = 7–32, Sr/Y = 11–24, Eu/Eu? = 0.5–0.7). Cathodoluminescent study of zircons revealed “magmatic cores” and metamorphic rims; most of the rims differ from the cores in U and Th contents and low or greatly varying Th/U ratios. In migmatized plagiogneisses of trondhjemite composition, two zircon generations of different morphologies have been recognized. The protoliths of the grey-gneiss complex rocks formed in the Paleoarchean as a result of two discrete magmatic events, at ~3.3 and 3.25 Ga, and their metamorphism and migmatization took place at ~3.2 Ga. The isotopic and geochemical features of rocks evidence that the primary melts were produced mainly through the melting of metabasic sources at different depths of the thickened crust. Plagiogneisses of trondhjemite composition apparently resulted from magma generation involving ancient sialic material.  相似文献   

8.
Changshagou adakite, an outcrop in the middle segment of the South Altyn Tagh ultra-high pressure metamorphism (UHPM) terrane, contains medium-K cal-alkaline and weakly peraluminous compositions (SiO2 = 66.79% to 68.65%, Al2O3 = 17.48% to 18.31%, K20 + Na20 = 6.32% to 6.88%, K2O/Na2O = 0.25 to 0.33, A/CNK = 1.01 to 1.06). This outcrop is also enriched with large ion lithophile elements but with depleted high-field strength elements (HFSE) showing clearly negative Nb, Ta, and Ti anomalies. REE distribution patterns show a positive anomaly of Eu (6Eu = 1.15 to 1.31) and weakly enriched with LREE compared with HREE (LREE/HREE = 1.02 to 4.20). Experimental results and several characteristics, including relatively low Nb/Ta ratios (6.03 to 8.45) and high Sr, Sr/Y, (La/Yb)N and low Y and Yb, which indicate the presence of residual garnet and the absence of plagioclase in the source region, show that adakite may form at a pressure ranging from 1.2 GPa to 1.5 GPa and at a temperature of approximately 900~C. Low Cr, Ni, and Mg# values, trace element patterns, and SiO2- Mg# and SiO2-MgO diagrams indicate that rocks are formed by the partial melting of a thickened lower continental crust. LA-ICP-MS in situ U-Pb dating yields two group ages: 503.1±1.7 Ma (core) and 453.1±3.0 Ma (rim). The Th/U ratios of the core and the rim are 0.11 to 0.40 and 0.03 to 0.07, respectively. Considering the zircon CL image characteristics, Th/U ratios, and previous studies on regional UHPM rocks, adakite formed at 503.1 ± 1.7 Ma and underwent a tectothermal event as a result of the break-off of the Altyn deep subducted continental crust at 453.1 ± 3.0 Ma.  相似文献   

9.
A new large igneous province (LIP), the 1501 ± 3 Ma Kuonamka LIP, extends across 700 km of northern Siberia and is linked with coeval dikes and sills in the formerly attached Sao Francisco craton (SFC)-Congo craton to yield a short-duration event 2000 km across. The age of the Kuonamka LIP can be summarized as 1501 ± 3 Ma (95% confidence), based on 7 U-Pb ID-TIMS ages (6 new herein) from dolerite dikes and sills across the Anabar shield and within western Riphean cover rocks for a distance of 270 km. An additional sill yielded a SIMS (CAMECA) age of 1483 ± 17 Ma and sill in the Olenek uplift several hundred kilometers farther east, a previous SIMS (SHRIMP) age of ca. 1473 Ma was obtained on a sill; both SIMS ages are within the age uncertainty of the ID-TIMS ages. Geochemical data indicate a tholeiitic basalt composition with low MgO (4–7 wt%) within-plate character based on trace element classification diagrams and source between E-MORB and OIB with only minor contamination from crust or metasomatized lithospheric mantle. Two subgroups are distinguished: Group 1 has gently sloping LREE ((La/Sm)PM = 1.9) and HREE ((Gd/Yb)PM = 1.8) patterns, slightly negative Sr and moderate TiO2 (2.2 wt%), and Group 2 has steeper LREE ((La/Sm)PM = 2.3) and HREE ((Gd/Yb)PM = 2.3), strong negative Sr anomaly, is higher in TiO2 (2.7 wt%), and is transitional from tholeiitic to weakly alkaline in composition. The slight differences in REE slopes are consistent with Group 2 on average melting at deeper levels. Proposed reconstructions of the Kuonamka LIP with 1500 Ma magmatism of the SFC-Congo craton are supported by a geochemical comparison. Specifically, the chemistry of the Chapada Diamantina and Curaga dikes of the SFC can be linked to that of Groups 1 and 2, respectively, of the Kuonamka LIP and are consistent with a common mantle source between EMORB and OIB and subsequent differentiation history. However, the coeval Humpata sills and dikes of the Angola block of the Congo craton represent a different magma batch.  相似文献   

10.
In the Kolar greenstone belt of the Dharwar craton, felsic metavolcanics are encountered prominently in its eastern region around Surapalli and Marikoppa. These felsic volcanic rocks are essentially homogeneous and their bulk mineralogy is almost the same. They consist of phenocrysts of quartz and feldspar, set in a fine-grained quartzo-feldspathic groundmass. They are calc-alkaline rhyolite in composition, and are characterized by high SiO2 (av. 75.74 wt.%), moderate Al2O3 (av. 11.84 wt.%), Na2O (av. 3.55 wt.%), K2O (av. 3.26 wt%) contents and low Mg# (av. 6.07), Cr (av. 8 ppm), Ni (av. 8 ppm), Sr (av. 331 ppm.), Y (av. 7 ppm), Yb (av. 0.87 ppm) and Nb/Ta (av. 6.40) values, suggesting Tonalite-Trondhjemite-Granodiorite (TTG) affinity for these felsic volcanics. They are strongly fractionated [(La/Yb)N? = 14.41–48.70] with strong LREE enrichment [(La/Sm)N = 2.50-3.59] and strong HREE depletion [(Gd/Yb)N = 1.34–2.77] with positive Eu anomaly. The regional geological set-up, petrographic and geochemical characteristics suggest that these felsic volcanics probably were derived by partial melting of a subducting basalt slab at shallow depth without much involvement of mantle wedge in an island arc geodynamic setting.  相似文献   

11.
滇东南建水地区位于师宗-弥勒构造带的南段,区内出露一套玄武岩–安山岩–英安岩–流纹岩组合。研究这套火山岩的形成时间和形成环境对认识滇东南构造格局有着重要意义。本文首次对建水火山岩进行LA-ICP-MS锆石U-Pb测年,获得两个样品的年龄分别为261.9±2.2 Ma(MSWD=0.80)、264.8±1.7 Ma(MSWD=1.12),属中二叠世晚期,代表建水火山岩的形成时间。建水玄武岩与安山岩具有低TiO_2含量(0.50%~0.88%)、高Mg~#(52.0~64.5)、弱富集LREE((La/Yb)_N=1.42~3.44)、富集LILE(Rb,Th,U,Pb)、轻微亏损HFSE(Nb,Ta,Ti)的特点,具典型岛弧玄武岩的特征;英安岩和流纹岩高ΣREE含量(139.5×10~(–6)~313.6×10~(–6))、富集LREE((La/Yb)N=4.16~9.78)和LILE(Rb,Ba,Th,U)、亏损HFSE(Nb,Ta)、强亏损Sr、Ti、Y等元素的特点与典型的岛弧流纹岩相似,但高钾(K_2O含量平均7.73%)、钙碱性(δ=0.93~2.94)、强过铝质(A/CNK=1.13~2.10)的特点使之区别于一般岛弧酸性火山岩,而具有一些上地壳部分熔融形成的S型花岗岩的特点。综合建水火山岩岩石组合、地球化学和区域地质背景,认为建水火山岩形成于活动大陆边缘的弧后盆地伸展环境,是地幔部分熔融形成的玄武质岩浆结晶分异与上地壳混染作用的共同结果,与滇桂交界处岛弧火山岩、两广交界处岛弧玄武岩等同为哀牢山洋向北俯冲的产物。  相似文献   

12.
沉积岩物源分析对揭示盆地物质组成、储集岩性质及古环境恢复等研究具有重要指示意义。文中对藏北羌塘盆地角木日地区中二叠统龙格组的钙质泥岩样品进行了微量元素地球化学测试分析,系统地研究了微量元素含量、特征比值及稀土元素配分方式。结果表明研究区龙格组钙质泥岩样品具有中等轻稀土元素分异((La/Sm)N=2.50~5.41),重稀土元素比较平坦((Gd/Yb)N=1.32~2.47),具有微弱的Eu负异常;Sr/Ba,V/Cr,Ni/Co,Ceanom及δEu等相关参数综合显示,研究区中二叠纪时期整体表现为海相氧化环境;样品Rb/Sr比值及La/Th-Hf,La/Sc-Co/Th,Th/Sc-Zr/Sc关系图解综合说明龙格组钙质泥岩物源区风化作用较弱,源岩主要为安山岩;通过对沉积岩La/Sc-Ti/Zr,La-Th-Sc和Th-Sc-Zr/10等构造环境判别图解分析,综合表明区钙质泥岩物源区的构造背景主要为大洋岛弧型。  相似文献   

13.
This study concentrates on the petrological and geochemical investigation of mafic rocks embedded within the voluminous Triassic June Complex of the central Sanandaj–Sirjan zone (Iran), which are crucial to reconstruct the geodynamics of the Neotethyan passive margin. The Triassic mafic rocks are alkaline to sub-alkaline basalts, containing 43.36–49.09 wt% SiO2, 5.19–20.61 wt% MgO and 0.66–4.59 wt% total alkalis. Based on MgO concentrations, the mafic rocks fall into two groups: cumulates (Mg# = 51.61–58.94) and isotropic basaltic liquids (Mg# = 24.54–42.66). In all samples, the chondrite-normalized REE patterns show enrichment of light REEs with variable (La/Yb)N ratios ranging from 2.48 to 9.00, which confirm their amalgamated OIB-like and E-MORB-like signatures. Enrichment in large-ion lithophile elements and depletion in high field strength elements (HFSE) relative to the primitive mantle further support this interpretation. No samples point to crustal contamination, all having undergone fractionation of olivine + clinopyroxene + plagioclase. Nevertheless, elemental data suggest that the substantial variations in (La/Sm)PM and Zr/Nb ratios can be explained by variable degrees of partial melting rather than fractional crystallization from a common parental magma. The high (Nb/Yb)PM ratio in the alkaline mafic rocks points to the mixing of magmas from enriched and depleted mantle sources. Abundant OIB alkaline basalts and rare E-MORB appear to be linked to the drifting stage on the northern passive margin of the Neotethys Ocean.  相似文献   

14.
Volcanic rocks in the study area, including dacite, trachyandesite and mugearite, belong to the intermediate-acid, high-K calc-alkaline series, and possess the characteristics of adakite. The geochemistry of the rocks shows that the rocks are characterized by SiO2>59%, enrichment in A12O3(15.09-15.64%) and Na2O (>3.6%), high Sr (649-885 μg/g) and Sc, low Y contents (<17 μg/g), depletion in HREE (Yb<1.22 μg/g), (La/Yb)N>25, Sr/Y>40, MgO<3% (Mg<0.35), weak Eu anomaly (Eu/Eu=0.84-0.94), and lack of the high field strength elements (HFSE) (Nb, Ta, Ti, etc.). The Nd and Sr isotope data (87Sr/86Sr=0.7062-0.7079, 143Nd/144Nd=0.51166-0.51253, εNd= -18.61-0.02), show that the magma resulted from partial melting (10%-40%) of newly underplated basaltic lower crust under high pressure (1-4 GPa), and the petrogenesis is obviously affected by the crust's assimilation and fractional crystallization (AFC). This research will give an insight into the uplift mechanism of the Tibetan plateau.  相似文献   

15.
通过对造山带内洋岛玄武岩的时代及地球化学性质研究,不仅可以进行古海山/大洋高原的识别,而且还可以进行古洋盆演化及古构造格局恢复。笔者等最新在西准噶尔玛依勒山北侧识别出一套枕状玄武岩,其与火山碎屑岩、硅质岩共生。枕状玄武岩斜长石微晶普遍发育中空骸晶结构,是在水下熔岩急剧萃冷条件下迅速结晶的产物。通过LA-ICP-MS锆石U-Pb测年,获得枕状玄武岩206Pb/238U加权平均年龄为437.2±2.2Ma,该年龄的获得填补了志留纪碱性玄武岩的空白。岩石地球化学分析结果显示,玛依勒枕状玄武岩为碱性玄武岩系列,岩石具有中等Si O2(44.89%~47.81%),高Ti O2(3.28%~4.12%)及P2O5(0.50%~0.70%),低Mg O(3.49%~6.79%),轻、重稀土元素分异较为明显((La/Yb)N=5.5~7.3),无明显Eu异常(Eu/Eu*=0.96~1.06),相对富集Rb、Th、U,亏损Ba、K、Sr,没有明显Nb、Ta负异常,这些地球化学特征与洋岛玄武岩(OIB)极其相似。微量元素含量及反映源区性质的比值表明,枕状玄武岩来源于富集地幔源区,主要组成为尖晶石和石榴石二辉橄榄岩,并发生了5%±的部分熔融,其形成于大洋板内与地幔柱有关的海山/大洋岛屿环境。结合前人研究,认为西准噶尔乃至古亚洲洋在中古生代洋内俯冲的同时,大洋板内可能存在地幔柱活动。  相似文献   

16.
李伍平 《地球科学》2013,38(6):1153-1168
辽西中侏罗世海房沟组火山岩是燕山造山带中生代火山岩的重要组成部分.海房沟组火山岩主要由粗安岩组成, 其次为英安岩和安山岩, 属于准铝质岩石和高钾钙碱性火山岩系列岩石.地球化学资料表明, 辽西中侏罗世海房沟组火山岩具有低镁埃达克质火山岩的特征, 如SiO2≥51.98%, Al2O3≥15.0%, MgO<4.18%(Mg#<0.48), Sr≥436×10-6, Yb≤2.25×10-6, Y≤23.14×10-6, Cr≤81.09×10-6, Ni≤34.66×10-6, Y/Yb≤14.25, Sr/Y≥39和Nb/Ta≈20;轻稀土元素富集, Ba、U、Sr和Pb等相对富集, 而重稀土元素和高场强元素(如Nb、Ta、Ti)相对亏损, 轻重稀土元素强烈分馏((La/Yb)N≥10.37), 具有弱的负铕异常或正异常(0.79~1.05).另外, Nd、Sr同位素具有较低的(143Nd/144Nd)初始值(0.511 603~0.511 733, εNd(t)=-15.84~-13.30)、适中的87Sr/86Sr初始值(0.704 9~0.705 6, εSr(t)=8.64~18.11)和较高的亏损地幔模式年龄(TDM=1.81~1.99 Ga), 显示出富集地幔端员(EMI, Enriched Mantle End-member)特点.上述特征表明, 海房沟组埃达克质岩浆起源于较厚下地壳榴辉岩部分融熔, 其成因与玄武质岩浆的底侵作用有关.结合中生代火山岩的地球化学及其成因, 认为早-中侏罗世是燕山造山带从古亚洲洋构造体系向古太平洋构造体系的转折时期, 而中侏罗世海房沟组火山岩的形成(174 Ma)标志着燕山造山带进入了古太平洋构造体系的演化阶段.这对进一步理解燕山运动的深部过程及其岩石圈减薄提供重要信息.   相似文献   

17.
恰达地区的二叠系哈尔加乌组火山岩分布于唐巴勒蛇绿岩带东侧、准噶尔盆地西南缘,主要岩性为灰绿色-紫红色(气孔)(杏仁)玄武岩-玄武安山岩-安山岩。LA-ICP-MS锆石U-Pb年龄为(296.6±8.1) Ma,MSWD=7.7(93%置信度),时代属早二叠世。地球化学研究表明:该火山岩属亚碱性系列,全碱含量较高(w(Na2O+K2O)=3.95%~6.39%)且相对富钠。轻稀土(LREE)相对富集((La/Yb)N=3.49~14.66)且分馏较好((La/Sm)N值均大于1.00(1.68~3.51)),重稀土分馏较差((Gd/Yb)N=1.38~2.56)。仅部分样品有微弱的负铕异常(δEu=0.88~1.15)。微量元素具有大离子亲石元素(LILE)相对富集,高场强元素(HFSE)Nb、Ta相对亏损,Zr、Hf轻微富集的特征。综合火山岩的地球化学特征,结合相关构造判别图解及火山岩所处的区域地质背景,认为哈尔加乌组火山岩的形成背景以板内大陆环境为主,兼有部分弧火山岩的特征,形成于俯冲碰撞造山期后的区域伸展背景下,火山岩的岛弧特征是对碰撞前混染弧组分的继承。  相似文献   

18.
我国东部苏鲁皖地区新生代碱性玄武岩中,除了含有大量地幔橄榄岩类捕虏体以外,尚含有一定数量的石榴石、普通辉石和歪长石巨晶。这些巨晶是在地幔不同深度上从玄武岩中晶出的。巨晶组合的分离结晶作用对熔体稀土元素含量有很大影响。赋存巨晶的碱性玄武岩所具有的LREE富集、HREE亏损的稀土元素分配型式是由地幔橄榄岩类部分熔融程度、石榴石巨晶和普通辉石巨晶的早期高压熔离和玄武岩的结晶分异作用等综合因素造成的。  相似文献   

19.
湘东南汝城地区发育一套由基性玄武岩和中酸性安山质-英安质岩石组成的火山岩建造,属于低钾拉斑系列,该火山岩系中两个玄武岩的K-Ar年龄分别为124.5±2.5Ma和127.6±1.9Ma,属晚侏罗—早白垩世产物。在主、微量元素上两者成分存在明显差异。其中安山质-英安质岩石具有高MgO特征,属高MgO岩石,LILE富集、Nb-Ta、Sr-P亏损强烈,(La/Yb)N=6.7~7.9,Eu*/Eu=0.74~0.85,具岛弧型微量元素配分型式,87Sr/86Sr(t)=0.71079~0.71118,εNd(t)=-7.64~-8.16,与adakites高Mg岩石有着明显的差别,可能是富集岩石圈地幔熔融后直接分异的产物;玄武岩LILE富集,Nb-Ta富集,(La/Yb)cn=4.0~4.3,Eu*/Eu=1.00~1.16,具OIB型微量元素配分型式,87Sr/86Sr(t)=0.70812~0.70832,εNd(t)=0.48~1.03,其源区具二元混合趋势,其源区可能是富集型岩石圈地幔端员与亏损的软流圈地幔端员的混合产物。汝城地区晚中生代玄武岩和高Mg安山质-英安质岩石源区属性的限定及其相互的空间依存关系表明该区晚中生代时有着较薄的岩石圈厚度,处于岩石圈伸展减薄的大地构造背景。  相似文献   

20.
西准噶尔地区出露多条蛇绿混杂岩带,对其进行精确的锆石U-Pb年代学及岩石地球化学研究可以为揭示西准噶尔地区古大洋形成与演化过程、恢复古构造格局及追溯岩浆源区物质来源提供线索.本文对玛依勒蛇绿混杂岩中的辉长岩及玄武岩进行了LA-ICP-MS锆石U-Pb年代学及全岩地球化学研究,获得辉长岩中锆石的加权平均206Pb/238U年龄为572.2±9.2Ma,属于早震旦纪,该年龄是准噶尔乃至北疆地区报道的最古老的蛇绿混杂岩年龄.玛依勒蛇绿混杂岩中的枕状玄武岩为碱性玄武岩,岩石具有高Ti(TiO2=1.65% ~3.13%)、高Fe(FeOT=8.93% ~ 18.11%)、高Mg(MgO=3.95% ~ 5.27%)及高P(P2O5 =0.17%~0.51%),Th/Ta比值相对较高(=1.1~1.9),LREE和HREE分异较为明显((La/Yb)N =2.5 ~7.4)等特征,这些特征与洋岛玄武岩类似,可能形成于大洋板内的洋岛或海山环境.其中的辉长岩地球化学特征不同于玄武岩,可能形成与俯冲有关的环境.玛依勒蛇绿混杂岩中玄武岩与EMI型洋岛玄武岩具有相似的地球化学特征,表明其岩浆源区可能为EMI型富集地幔.岩石成因与软流圈地幔关系密切,软流圈的上涌导致尖晶石相二辉橄榄岩地幔源区大比例部分熔融,是岩石圈-软流圈地幔相互作用的产物.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号