首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From the synopical CTD sections in the WOCE PR11 repeated cruises, the South Pacific Subtropical Mode Water (SPSTMW) has been identified in the region of the Tasman Front Extension (TFE) around 29?S to the east of Australia. In the depth range of 150-250 m, the SPSTMW appears as a thermostad with vertical temperature gradient lower than 1.6℃(100 m)-1 and a tem- perature range of 16.5-19.5℃ and as a pycnostad with PV lower than 2×10-10 m-1 s-1 and a potential density range of 25.4-26.0 kg m-3. Like the subtropical mode waters in the North Atlantic and North Pacific, the formation of the SPSTMW is associated with the convective mixing during the austral wintertime as manifested from the time series of the Argo floats. And cold water entrains into the mixed layer with the deepening mixed layer from September to the middle of October. During the wintertime formation process, mesoscale eddies prevailing in the TFE region play an important role in the SPSTMW formation, and have a great effect on the SPSTMW distribution in the next year. The deeper (shallower) mixed layer in wintertime, consistent with the depressed (uplifted) permanent thermocline, is formed by the anticyclonic (cyclonic) eddies, and the substantial mode water thicker than 50 m is mainly found in the region of the anticyclonic eddies where the permanent thermocline is deeper than 450 m.  相似文献   

2.
This study investigates the contribution of mesoscale eddies to the subduction and transport of North Pacific Eastern Subtropical Mode Water(ESTMW)using the high-frequency output of an eddy-resolved ocean model spanning the period 1994–2010.Results show that the subduction induced by mesoscale eddies accounts for about 31%of the total subduction of ESTMW formation.The volume of ESTMW trapped by anticyclonic eddies is slightly larger than that trapped by cyclonic eddies.The ESTMW trapped by all eddies in May reaches up to about 2.8×1013m3,which is approximately 16%of the total ESTMW volume.The eddy-trapped ESTMW moves primarily westward,with its meridional integration at 18°–30°N reaching about 0.17Sv,which is approximately 18%of the total zonal ESTMW transport in this direction,at 140°W.This study highlights the important role of eddies in carrying ESTMW westward over the northeastern Pacific Ocean.  相似文献   

3.
Spatial and seasonal variabilities of submesoscale currents in the northeastern South China Sea are investigated by employing a numerical simulation with a horizontal resolution of 1 km. The results suggest that submesoscale currents are widespread in the surface mixed layer mainly due to the mixed layer instabilities and frontogenesis. In horizontal, submesoscale currents are generally more active in the north than those in the south, since that active eddies, especially cyclonic eddies, mainly occur in the northern area. Specifically, submesoscale currents are highly intensified in the east of Dongsha Island and south of Taiwan Island. In temporal sense, submesoscale currents are more active in winter than those in summer,since the mixed layer is thicker and more unstable in the winter. The parameterization developed by FoxKemper et al. is examined in terms of vertical velocity, and the results suggest that it could reproduce the vertical velocity if mixed layer instability dominates there. This study improves our understanding of the submesoscale dynamics in the South China Sea.  相似文献   

4.
Interannual variations of Pacific North Equatorial Current (NEC) transport during eastern-Pacific El Niños (EP-El Niños) and central-Pacific El Niños (CP-El Niños) are investigated by composite analysis with European Centre for Medium-Range Weather Forecast Ocean Analysis/Reanalysis System 3. During EP-El Niño, NEC transport shows significant positive anomalies from the developing to decay phases, with the largest anomalies around the mature phase. During CP-El Niño, however, the NEC transport only shows positive anomalies before the mature phase, with much weaker anomalies than those during EP-El Niño. The NEC transport variations are strongly associated with variations of the tropical gyre and wind forcing in the tropical North Pacific. During EP-El Niño, strong westerly wind anomalies and positive wind stress curl anomalies in the tropical North Pacific induce local upward Ekman pumping and westward-propagating upwelling Rossby waves in the ocean, lowering the sea surface height and generating a cyclonic gyre anomaly in the western tropical Pacific. During CP-El Niño, however, strength of the wind and associated Ekman pumping velocity are very weak. Negative sea surface height and cyclonic flow anomalies are slightly north of those during EP El Niño.  相似文献   

5.
The seasonal generation and evolution of eddies in the region of the North Pacific Subtropical Countercurrent remain poorly understood due to the scarcity of available data. We used TOPEX/POSEIDON altimetry data from 1992 to 2007 to study the eddy field in this zone. We found that velocity shear between this region and the neighboring North Equatorial Current contributes greatly to the eddy generation. Furthermore, the eddy kinetic energy level (EKE) shows an annual cycle, maximum in April/May and minimum in December/January. Analyses of the temporal and spatial distributions of the eddy field revealed clearly that the velocity shear closely related to baroclinic instability processes. The eddy field seems to be more zonal than meridional, and the energy containing length scale shows a surprising lag of 2–3 months in comparison with the 1-D and 2-D EKE level. A similar phenomenon is observed in individual eddies in this zone. The results show that in this eddy field band, the velocity shear may drive the EKE level change so that the eddy field takes another 2–3 months to grow and interact to reach a relatively stable state. This explains the seasonal evolution of identifiable eddies.  相似文献   

6.
The relationship of the interannual variability of the transport and bifurcation latitude of the North Equatorial Current (NEC) to the El Ni o-Southern Oscillation (ENSO) is investigated. This is done through composite analysis of sea surface height (SSH) observed by satellite altimeter during October 1992-July 2009, and correspondingly derived sea surface geostrophic currents. During El Nio/La Ni a years, the SSH in the tropical North Pacific Ocean falls/rises, with maximum changes in the region 0-15°N, 130°E-160°E. The decrease/increase in SSH induces a cyclonic/anticyclonic anomaly in the western tropical gyre. The cyclonic/anticyclonic anomaly in the gyre results in an increase/decrease of NEC transport, and a northward/southward shift of the NEC bifurcation latitude near the Philippine coast. The variations are mainly in response to anomalous wind forcing in the west-central tropical North Pacific Ocean, related to ENSO events.  相似文献   

7.
8.
Using a 19-year altimetric dataset, the mean properties and spatiotemporal variations of eddies in the Kuroshio recirculation region are examined. A total of 2 001 cyclonic tracks and 1 847 anticyclonic tracks were identifi ed using a geometry-based eddy detection method. The mean radius was 57 km for cyclonic eddies and was 61 km for anticyclonic eddies, respectively, and the mean lifetime was about 10 weeks for both type eddies. There were asymmetric spatial distributions for eddy generation and eddy termination, which were domain-dependent. Mean eddy generation rates were 2.0 per week for cyclonic eddies and were 1.9 per week for anticyclonic eddies. Both type eddies tended to deform during their lifetime and had different propagation characteristics, which mainly propagated westward and southwestward with velocities 4.0–9.9 cm/s, in the Kuroshio recirculation region. Further discussion illustrates that the eddy westward speed maybe infl uenced by the combined effect of vertical shear of horizontal currents and nonlinearity of eddy. To better understand the evolution of eddy tracks, a total of 134 long-lived tracks(lifetime ≥20 weeks) were examined. Comparison between short-span eddies(lifetime ≥4 weeks and 20 weeks) and long-lived eddies is also conducted and the result shows that the short-span and long-lived eddies have similar time evolution. Finally, eddy seasonal variations and interannual changes are discussed. Correlation analysis shows that eddy activity is sensitive to the wind stress curl and meridional gradient of sea surface temperature on interannual timescales. Besides, the strength and orientation of background fl ows also have impacts on the eddy genesis.  相似文献   

9.
IwnODUCTIONTheECSandthePacificOceanareseparaedbytheRyUkyUIs1andshavingthreermnPasSagesforwaerexchangbebeenthesetWowateboies.TheKewshioenterstheECS~ghthestraiteastofTaiwanIslandandflowsbacktothePacificOceantboghTugalaStrait.TheOkinawIsland-MiyakoIslandstralt(KeanTrench,withdepth>1opm)allowalopqUanityofwaerexchangebetweentheECSandthePacifico-cean(YUanandPan,l994).InvestigationdatashowsthatthehydIDgraPhicfeatUresoftheoceanregionarOUntheRyukyUIslandsareverycomPlicated.Somcold…  相似文献   

10.
We investigated the interaction between mesoscale eddies and the Kuroshio Current east of Taiwan,China,using a fine-resolution regional general circulation model.Mesoscale eddies are injected into a region east of Taiwan,China,according to the quasi-geostrophic theory of stratified fluids.Modeled eddies propagated westward at the velocity of the first baroclinic mode Rossby wave.When eddies collide with the Kuroshio Current east of Taiwan,China,the spatial structure and volume transport of the Kuroshio Current shows a significant variation.The upper 600 m of the anticyclonic eddy cannot cross the Kuroshio Current to reach the region west of the Kuroshio Current;rather,these waters flow northward along the eastern side of the Kuroshio Current.The upper water carried by the anticyclonic eddies cannot reach the shelf of the East China Sea(ECS).In contrast,the waters in the upper layer of the cyclonic eddy reach the western side of the Kuroshio Current and then flow northward.The dynamic mechanism analysis shows that the interaction between the Kuroshio Current and the cyclonic(anticyclonic) eddy decrease(increase)the horizontal potential vorticity(PV) gradient,or PV barrier,whereby the cyclonic(anticyclonic) eddy can(cannot) cross the Kuroshio Current.This study implies that the continental shelf could potentially be influenced by cyclonic eddies in the open ocean,which can transport heat and material from the upper open ocean acro s s the Kuroshio Current to the shelf waters.  相似文献   

11.
Absolute geostrophic currents in the North Pacific Ocean are calculated using the P-vector method and gridded Argo profiling data from January 2004 to December 2012. Three-dimensional structures and seasonal variability of meridional heat transport (MHT) and meridional salt transport (MST) are analyzed. The results show that geostrophic and Ekman components are generally opposite in sign, with the southward geostrophic component dominating in the subtropics and the northward Ekman component dominating in the tropics. In combination with the net surface heat flux and the MST through the Bering Strait, the MHT and MST of the western boundary currents (WBCs) are estimated for the first time. The results suggest that the WBCs are of great importance in maintaining the heat and salt balance of the North Pacific. The total interior MHT and MST in the tropics show nearly the same seasonal variability as that of the Ekman components, consistent with the variability of zonal wind stress. The geostrophic MHT in the tropics is mainly concentrated in the upper layers, while MST with large amplitude and annual variation can extend much deeper. This suggests that shallow processes dominate MHT in the North Pacific, while MST can be affected by deep ocean circulation. In the extratropical ocean, both MHT and MST are weak. However, there is relatively large and irregular seasonal variability of geostrophic MST, suggesting the importance of the geostrophic circulation in the MST of that area.  相似文献   

12.
Based on an analysis of drifter data from the World Ocean Circulation Experiment during 1979-1998, the sizes of the eddies in the North subtropical Pacific are determined from the radii of curvature of the drifter paths calculated by using a non-linear curve fitting method. To support the drifter data results, Sea Surface Height from the TOPEX/POSEIDON and ERS2 satellite data are analyzed in connection with the drifter paths. It is found that the eddies in the North Pacific (18^*- 23^*N and 125^*-150^*E) move westward at an average speed of approximately 0.098 ms^-1 and their average radius is 176 km, with radii ranging from 98 km to 298 km. During the nineteen-year period, only 4 out of approximately 200 drifters (2%) actually entered the South China Sea from the area adjacent to the Luzon Strait (18^*-22^*N and 121^*-125^*E) in the winter. It is also found that eddies from the interior of the North Pacific are unlikely to enter the South China Sea through the Luzon Strait.  相似文献   

13.
Summary of results from a high - resolution pan - Arctic ice - ocean model are presented for the northern North Pacific, Bering, Chukchi, and Beaufort seas. The main focus is on the mean circulation, communication from the Gulf of Alaska across the Bering Sea into the western Arctic Ocean and on mesoscale eddy activity within several important ecosystems. Model results from 1979 -2004 are compared to observations whenever possible. The high spatial model resolution at 1/12o (or -9 - km) in the horizontal and 45 levels in the vertical direction allows for representation of eddies with diameters as small as 36 km. However, we believe that upcoming new model integrations at even higher resolution will allow us to resolve even smaller eddies. This is especially important at the highest latitudes where the Rossby radius of deformation is as small as 10 km or less.  相似文献   

14.
Based on the statistics of surface drifter data of 1979–2011 and the simulation of nuclear pollutant particulate movements simulated using high quality ocean reanalysis surface current dataset, the transport pathways and impact strength of Fukushima nuclear pollutants in the North Pacific have been estimated. The particulates are used to increase the sampling size and enhance the representativeness of statistical results. The trajectories of the drifters and particulates are first examined to identify typical drifting pathways. The results show that there are three types of transport paths for nuclear pollutants at the surface: 1) most pollutant particles move eastward and are carried by the Kuroshio and Kuroshio-extension currents and reach the east side of the North Pacific after about 3.2–3.9 years; 2) some particles travel with the subtropical circulation branch and reach the east coast of China after about 1.6 years according to one drifter trajectory and about 3.6 years according to particulate trajectories; 3) a little of them travel with local, small scale circulations and reach the east coast of China after about 1.3–1.8 years. Based on the particulates, the impact strength of nuclear pollutants at these time scales can be estimated according to the temporal variations of relative concentration combined with the radioactive decay rate. For example, Cesium-137, carried by the strong North Pacific current, mainly accumulates in the eastern North Pacific and its impact strength is 4% of the initial level at the originating Fukushima area after 4 years. Due to local eddies, Cesium-137 in the western North Pacific is 1% of the initial pollutant level after 1.5 years and continuously increases to 3% after 4 years. The vertical movement of radioactive pollutants is not taken into account in the present study, and the estimation accuracy would be improved by considering three-dimensional flows.  相似文献   

15.
Absolute geostrophic currents in the North Pacific Ocean were calculated using P-vector method from newly gridded Argo profiling float data collected during 2004–2009. The meridional volume transport of geostrophic currents differed significantly from the classical Sverdrup balance, with differences of 10×106–20×106m3/s in the interior tropical Northwest Pacific Ocean. Analyses showed that errors of wind stress estimation could not explain all of the differences. The largest differences were found in the areas immediately north and south of the bifurcation latitude of the North Equatorial Current west of the dateline, and in the recirculation area of the Kuroshio and its extension, where nonlinear eddy activities were robust. Comparison of the geostrophic meridional transport and the wind-driven Sverdrup meridional transport in a high-resolution OFES simulation showed that nonlinear effects of the ocean circulation were the most likely reason for the differences. It is therefore suggested that the linear, steady wind-driven dynamics of the Sverdrup theory cannot completely explain the meridional transport of the interior circulation of the tropical Northwest Pacific Ocean.  相似文献   

16.
The method proposed by Stammer (1998) is modified using eddy statistics from altimeter observation to obtain more realistic eddy diffusivity (K) for the North Pacific. Compared with original estimates, the modified K has remarkably reduced values in the Kuroshio Extension (KE) and North Equatorial Counter Current (NECC) regions, but slightly enhanced values in the Subtropical Counter Current (STCC) region. In strong eastward flow areas like the KE and NECC, owing to a large difference between mean flow velocity and propagation velocity of mesoscale eddies, tracers inside the mesoscale eddies are transported outside rapidly by advection, and mixing length L is hence strongly suppressed. The low eddy probability (P) is also responsible for the reduced K in the NECC area. In the STCC region, however, L is mildly suppressed and P is very high, so K there is enhanced. The zonally-averaged K has two peaks with comparable magnitudes, in the latitude bands of the STCC and KE. In the core of KE, because of the reduced values of P and L, the zonally-averaged K is a minimum. Zonally-integrated eddy heat transport in the KE band, calculated based on the modified K, is much closer to the results of previous independent research, indicating the robustness of our modified K. The map of modified K provides useful informationfor modeling studies in the North Pacific.  相似文献   

17.
A 1.5-layer quasi-geostrophic reduced gravity ocean circulation model is used to study the propagation of mesoscale eddies across a western boundary current(WBC) either leaping across or penetrating in an anti-cyclonic path through the gap. The steady leaping WBC nearly blocks all eddies from propagating across it through the gap completely. However, both cyclonic and anti-cyclonic eddies can migrate across a penetrating WBC in the vicinity of a gap, while inducing an opposite type of eddies on the cyclonic side of the WBC by weakening or strengthening the intrusion of the WBC. Both type of eddies gained strength from the WBC in the course of the propagation across the WBC in the gap. Eddies approaching the gap from the upstream are found to migrate more easily into the western basin due to the advection of the WBC. The migration speeds of the eddies are almost unchanged by the presence of the WBC in all experiments.  相似文献   

18.
19.
lwn0DorIONDuringthepastdeade,thestchdilyinewsingkn0wedgeonthewestemequatorialPadfic~ndrculation,espedallythel0w-latitudewesternboundaryimtsOLwnes)inthePadficdrin,wasrnarkedbytheimportantdiscoveryoftwowesternb0undaryundercurmtS,theNcwGuineaCoastalUndemirmt(NGCUC)Oindstrometal.,l987)andtheMindanaoUndemin-ent(MUC)peuandCui,l989),whichledtobeterdescrip-tionoftheverticalstruCture0fthePadficLLwncralth0ughunderstandingofthePadricLLWBChdynawhesisstillincomp1etC,bousetheinfluenceofthetwone…  相似文献   

20.
Using a 1.5 layer nonlinear shallow-water reduced-gravity model, we executed numerical simulations to investigate the possibility of a western boundary current (WBC) path transition due to mesoscale eddies based on the background of the Kuroshio intrusion into the South China Sea (SCS) from the Luzon Strait. Because the WBC existed different current states with respect to different wind stress control parameters, we chose three steady WBC states (loop current, eddy shedding and leaping) as the background flow field and simulated the path transition of the WBC due to mesoscale eddies. Our simulations indicated that either an anticyclonic or cyclonic eddy can lead to path transition of the WBC with different modes. The simulation results also show that the mesoscale eddies can lead to path transition of the WBC from loop and eddy shedding state to leaping state because of the hysteresis effect. The leaping state is relatively stable compared with the mesoscale eddies. Moreover, an anticyclonic eddy is more effective in producing the WBC path transition for the path transition than a cyclonic eddy. Our results may help to explain some phenomena observed regarding the path transition of the Kuroshio due to the mesoscale eddies at the Luzon Strait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号