首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Llithology of massive diamictons was studied in two areas of the eastern Barents Sea using cores and geophysical data. These sediments dominate in the Pleistocene section as two seismostratigraphic complexes (SSC): Upper Weichselian (SSC III) and locally distributed Lower Weichselian (SSC V). Diamictons of these complexes represent tills produced by the geological activity of the Pleistocene Novaya Zemlya and Scandinavian ice sheets. The Upper Weichselian glacial sequence is laterally heterogeneous. It includes two seismic facies represented by ordinary (overconsolidated) tills (they also constitute SSC V) and a spacious moraine of the specific type with the normally consolidated sediments (they avoided compaction by the ice load) and certain lithological specifics. The last glacial sediments were formed in a specific subglacial setting similar to the sediments under fast ice streams of Antarctica. However, the specific features allow us to define these sediments as a new (Barents Sea) facies of tills related to zones of intense basal melting of glaciers.  相似文献   

2.
Until recently, little was known about the Quaternary marine sedimentary record in East Greenland. Geophysical and geological investigations in Scoresby Sund were undertaken to characterize the nature and chronology of this record. Seismic records show that almost 70% of the outer fjord system is covered by about 10 m of unlithified sediments, making direct correlation with the Quaternary records on land and the adjacent continental margin difficult. These acoustically unstratified sediments are scoured by icebergs above 550 m water depth. Almost 90% of core material is massive diamicton of Holocene age, deposited mainly from iceberg rafting and turbid meltwater. Sedimentation rates are 0.1 -0.3 m 1000 yr-1. Thicker accumulations of unlithified Quaternary sediments in Scoresby Sund occur as sediment ridges and in two other major depocentres. A low sediment ridge runs across the mouth of Scoresby Sund, and is interpreted as an end moraine of Late Weichselian Flakkerhuk stadial age. The very restricted sediment thickness suggests that grounded ice filled the fjord during the Flakkerhuk and an ice shelf was not present. High inputs of ice rafted debris to the continental margin at about 18 000 BP indicate this as a probable age for the moraine. During the Allerød Interstadial, ice probably retreated from the outer fjord system, since massive diamictons similar to those of Holocene age are present at the base of most cores. A major depocentre of acoustically stratified sediments at the head of Hall Bredning is interpreted to represent ice proximal deposits from a glacier margin extending across the fjord. It is adjacent to dated moraines on land and is inferred to be of Milne Land stadial age (about 10 000 BP). A similar age is interpreted for acoustically laminated sediments and a moraine at the entrance of Vikingebugt, on the south side of Scoresby Sund. Dated kame terraces in the inner fjord system indicate that ice retreated to its present position 6–7000 years ago.  相似文献   

3.
The Late Quaternary ( c . 130,000–10,000 BP) glacial history of the central west coast of Jameson Land, East Greenland, is reconstructed through glacial stratigraphical studies. Seven major sedimentary units are described and defined. They represent two interglacial events (where one is the Holocene). one interstadial event and two glacial events. The older interglacial event comprises marine and fluvial sediments, and is correlated to the Langelandselv interglacial, corresponding to oxygen isotope sub-stage 5e. It is followed by an Early Weichselian major glaciation during the Aucellaelv stade, and subsequently by an Early Weichselian interstadial marine and deltaic event (the Hugin Sø interstade). Sediments relating to the Middle Weichselian have not been recognized in the area. The Hugin Sø interstade deposits have been overrun by a Late Weichselian ice advance, during the Flakkerhuk stade, when the glacier, which probably was a thin, low gradient fjord glacier in Scoresby Sund, draped older sediments and landforms with a thin till. Subsequent to the final deglaciation, some time before 10,000BP, the sea reached the marine limit around 70 m a.s.l., and early Holocene marine, fluvial and littoral sediments were deposited in the coastal areas.  相似文献   

4.
The marine Quaternary of Vendsyssel has been studied in a series of new boreholes in the area, and the climatic development is discussed on the basis of foraminiferal assemblages and stable isotopes. The foraminiferal zones are correlated with previously published records from northern Denmark, and the spatial local and regional distribution is discussed in details based on the new evidence. The new data show that the marine sedimentation in Vendsyssel was not continuous from the Late Saalian to the Middle Weichselian, as previously thought. For example, there is indication of a hiatus at our key site, Åsted Vest in the central part of Vendsyssel, at the transition between regional foraminiferal zones N4 and N3, i.e. at the Late Saalian (MIS 6) – Eemian (MIS 5e) transition. The hitherto most complete Early Weichselian succession (zone N2) in Vendsyssel is presented from Åsted Vest. Deposits from the Early Weichselian sea‐level lowstands (MIS 5d and 5b) may, however, be missing in parts of the area. Two major breaks in the marine deposition during the Middle Weichselian represent glacial advances into northern Denmark. The first event occurred just after deposition of the regional foraminiferal zone N2 (late MIS 4), and the second event in the middle part of zone N1 (early MIS 3). Zone N1 is succeeded by a series of non‐marine units deposited during the sea‐level lowstand of the Weichselian maximum glaciation (late MIS 3 and MIS 2), including deeply incised tunnel valleys, which have been refilled with non‐marine sediments during the Late Weichselian. Vendsyssel was inundated by the sea again during the Late Weichselian, at c. 18 kyr BP. Subsequently, the marine conditions were gradually changed by forced regression caused by local isostatic uplift, and around the Weichselian–Holocene transition most of Vendsyssel was above sea level. A continuous deposition across the Late Weichselian–Holocene boundary only occurred at relatively deep sites such as Skagen. The environmental and climatic indications for Vendsyssel are in accordance with the global sea‐level curve, and the Quaternary record is correlated with the oxygen isotope record from the NorthGRIP ice core, as well as the marine isotope stages.  相似文献   

5.
The stratigraphic record from a boring penetrating the 104 m thick Quaternary sequence on the island of Anholt is summarized. The spatial distribution of the pre-Quaternary formations and the surface topography of these are described on the basis of reflection seismic profiles. It is concluded that Anholt is located in the crestal zone of a southeast–northwest trending anticline in the pre-Quaternary. The anticline was formed during the Late Cretaceous–Early Tertiary inversion episodes and was later deeply truncated by erosion. A southeast–northwest trending erosional channel, c. 2 km wide and with a maximum depth c. 250 m below sea level, is located southeast of Anholt along the crest of the anticline. This channel is not present at the bore locality. Although no direct correlation from the boring to the seismic profiles could be achieved it is argued that a strong reflection near the base of the Quaternary outside the channel may be correlated with the Saalian–Eemian complex found in the boring. Three younger sequences of probable Early and Middle Weichselian, Late Glacial and Holocene age respectively have been recognized. The Late Glacial and Holocene sediments appear to have been deposited in erosional troughs and channels cut into a sequence of Lower and Middle Weichselian sediments. Post-Eemian till deposits or other evidence unambiguously indicating the presence of Weichselian glaciers have not been found, either in the boring or in the seismic profiles. It is therefore assumed that the erosion of the Lower-Middle Weichselian sequence was of fluvial origin and can be ascribed to the lowstand period of the Weichselian glacial period. The western part of Anholt can possibly be regarded as an erosional remnant of the Lower-Middle Weichselian sequence.  相似文献   

6.
Based on c. 1500 km reflection seismic profiles, the Quaternary formations and their pre-Quaternary substratum in the southeastern Kattegat are described and a geological interpretation is suggested. The major volume of Quaternary deposits is found in a broad north-northwest south-southeast trending topographic depression. The substratum consists of Upper Cretaceous limestone in the region north of the Sorgenfrei–Tornquist Zone, and inside this zone older Mesozoic sedimentary rocks and Precambrian crystalline rocks are found. The Quaternary is divided into four seismic units. No direct stratigraphic control is available, but the units are assumed to represent a period ranging from Late Saalian to Holocene. The oldest unit (unit 3) is composed of deposits of supposed Late Saalian to Middle Weichselian age. This unit was severely eroded probably by the Late Weichselian ice sheets in a zone extending 40–50 km from the Swedish coast. Unit 2 represents the Late Weichselian till deposits. North and east of the island of Anholt unit 3 is cut by a system of channels eroded by glacial meltwater. By the erosion a relief up to c. 100 m was formed. After the recession of the Late Weichselian ice, an up to 100 m thick sequence of water-lain sediments (unit 1) was deposited in the erosional basin and channels. Holocene deposits (unit 0) of considerable thickness have only been identified in the channels in the northern part of the area.  相似文献   

7.
Extensive, 20–100 m thick Quaternary sediment accumulations, deposited before the latest Weichselian stage, were discovered in the Suupohja region in western Finland, near the centre of the Scandinavian glaciations. Fourteen lithofacies have been identified and interpreted in the accumulations. Geomorphologically and lithostratigraphically these accumulations occur in two forms: (1) till-covered beaded gravelly ridges that have occasional fine-grained sediments and paleosols between the gravel and the overlying till, and (2) irregularly shaped broad multilayer accumulations that include up to seven till units, three silt/clay units and three sand units. These sediments have been deposited in glacial, glaciofluvial, glaciomarine/-lacustrine and possibly in littoral and eolian environments during up to six glacial–deglacial cycles. The units are divided into five formations, which are proposed to form the Suupohja Group. According to the luminescence datings, lithostratigraphy and sedimentary structures, the sediments below the uppermost till are interpreted to have been deposited before the latest Weichselian glaciation, which occurred during the Middle or Late Weichselian Substage. This article clarifies the multiple lithostratigraphy of the Suupohja region and introduces potential type sections for further stratigraphic studies. The rich diversity of the sediments and their large extent makes this region one of the key areas in the Pleistocene research of the glaciated areas of northern Europe.  相似文献   

8.
Genesis of hummocky moraine in the Bolmen area, southwestern Sweden   总被引:2,自引:0,他引:2  
During the late Weichselian deglaciation of southern Scandinavia vast areas of hummocky moraine were formed. The genesis of this landform was studied by geomorphological and sedimentological methods in an area in southwestern Sweden. Four exposures in moraine hummocks were investigated using sedimentological methods. They were found to be composed of stratified diamictons with frost-shattered boulders and deformed intrabeds of sorted sediments. The diamictons were interpreted as sediment-flow deposits, with the hummocks formed in stagnant ice by flowage of supraglacial glacial debris into depressions and subsequent inversion of the landscape due to ice melt. With the exception of hummocky moraine, the study area contains low relief moraine, which like the hummocky moraine was supraglacially formed. A new model is presented where the distribution of hummocky and low relief moraine is dependent on the vertical distribution of glacial debris in the ice sheet, which in turn is related to the flow regime of the ice sheet prior to stagnation. A compressive flow before stagnation favoured development of the hummocky moraine, while low relief moraine formation occurred where the ice flow was extending or at steady state.  相似文献   

9.
The Rautuvaara section in northern Finnish Lapland has been widely considered as the stratotype for the northern Fennoscandian late Middle and Late Pleistocene. It exposes four till units interbedded with sorted sediments resting on Precambrian bedrock. In order to shed light on the Scandinavian Ice Sheet (SIS) history and palaeoenvironmental evolution in northern Fennoscandia through time, a chronostratigraphical study was carried out at the Rautuvaara site. The succession was studied using sedimentological methods and different sand‐rich units between till units were dated using the Optical Stimulated Luminescence (OSL) method. The results obtained indicate that the whole sediment succession at Rautuvaara was deposited during the Weichselian Stage and there is no indication of older deposits. The SIS advanced across Finnish Lapland to adjacent areas to the east at least once during the Early Weichselian, twice during the Middle Weichselian (~MIS 4 and MIS 3) and once during the Late Weichselian substages. Glaciolacustrine sediments interbedded between the till units indicate that a glacial lake repeatedly existed after each deglacial phase. The results also suggest that there were two ice‐free intervals in northern Fennoscandia during the Middle Weichselian close to the SIS glaciation centre.  相似文献   

10.
Principles and terminology for classification of the Quaternary are discussed, including lithostratigraphy, biostratigraphy. morphostratigraphy, climatostratigraphy and chronostratigraphy. The main conclusion is a proposal for a common chronostratigraphical classification of the Quaternary in Norden (and partly continental NW Europe). The Quaternary is subdivided into the Pleistocene and the Holocene Series. The Pleistocene is further subdivided into several provisional stages (Weichselian, Eemian, etc.), based on the sequence of glacials/interglacials. but with the boundaries preferably defined by stratotypes. The Late Weichselian and the Flandrian (Holocene) are subdivided into chronozoncs (Bolling, Older Dryas, Allerød, Younger Dryas, Preboreal, Boreal, Atlantic, Subboreal, Subatlantic) with the boundaries dcfined in conventional radiocarbon years.  相似文献   

11.
应用粒度分析辨别某些第四纪混杂堆积成因初探   总被引:5,自引:0,他引:5  
本文从粒度特征分析了青海昆仑山垭口地区的第四纪混杂堆积和甘肃武都泥石流堆积以及贡嘎山海洋性冰川的现代冰碛之间的差异性,明显看出,由于各种第四纪混杂堆积的搬运介质、搬运过程及沉积过程不同,第四纪混杂堆积的粒度特征存在明显的不同。沉积物的粒度特征反映了沉积环境。因此,用粒度特征来辨别各种第四纪混杂堆积也是一种行之有效的方法。  相似文献   

12.
The Quaternary deposits in the Store Middelgrund–Rørdebanke area midway between the island of Anholt and Hallandsåsen on the Swedish coast are described on the basis of reflection seismic profiles with a vertical resolution of 5–10 m. The Quaternary rests on Upper Cretaceous limestone, the surface of which is nearly horizontal. Three Quaternary sequences are defined and interpreted as: (1) Late Weichselian marine or lacustrine deposits, (2) Late Weichselian glaciogenic deposits, and (3) Late Saalian–Eemian and Early–Middle Weichselian deposits. Sequence 3 is probably comparable to the upwards-coarsening sequence known from Skaerumhede in Vendsyssel. The layers in sequence 3 are dislocated in the eastern part of the Store Middelgrund–Rødebanke area mainly by gentle folding, but other types of deformations occur. Folding could be the result of horizontal push from an ice sheet approaching from the east. Alternatively the folding is an effect of vertical, gravitational forces acting on the sediments due to an unstable density profile, as described by the Rayleigh–Taylor instability model. The zone of deformation is located close to the northern flank of the tectonically active Sorgenfrei–Tornquist Zone. It is suggested that the initiation of the folding process was facilitated by tremors from small earthquakes.  相似文献   

13.
Thirteen samples from three cores and boreholes are examined using micromorphology to test existing interpretations of Late Quaternary sedimentary sequences from the Norwegian Channel, North Sea Fan and the North Sea Plateau. Previous studies have interpreted these sediments using arbitrary parameters as reflecting Late Weichselian subglacial and glacimarine conditions associated with the Scandinavian Ice Sheet and Norwegian Channel ice stream. This study develops existing micromorphological criteria to interpret the samples as reflecting specific processes of subglacial deformation and proximal and distal glacimarine sedimentation during and subsequent to the Last Glacial Maximum. The study concludes by outlining diagnostic criteria for the identification of these sediment types from core and borehole samples of other Quaternary sediments.  相似文献   

14.
Three Pleistocene tills can be distinguished in a coastal cliff section near Heiligenhafen, northern Germany, on the basis of structural and petrographic characteristics. The Lower and Middle Tills had previously been ascribed to the Saalian, and the Upper Till to the Late Weichselian. The former two tills are folded, and unconformably overlain by the Upper Till. In this paper, structural and sedimentological observations are used to investigate whether the Lower and Middle Tills belong to one glacial advance, or two separate (Saalian) advances, as was suggested in earlier studies based on fine gravel stratigraphy.From the contact with local rocks to the top of the MT there is a steady increase in allochtonous components (Scandinavian rocks) and decrease in parautochtonous (chalk and flint) and autochtonous components (local Eocene siltstone and meltwater sediments). This is paralleled by a trend towards increasing deformation (finite strain) from the bedrock to the top of the section. The most obvious aspect of this latter trend is the massive appearance of the MT which can be interpreted as the result of homogenization by repeated folding and attenuation of sediment lenses which have been incorporated into the till. This interpretation is supported by macroscopic and microscopic observations of structures in both tills.The structural analysis of the tills is based on the marked contrast in symmetry between sections parallel and perpendicular to the shear direction. Structures on all scales in the LT as well as in the MT indicate E–W (dextral) shearing, except in the western part of the section, where this is overprinted by W–E (sinistral) shearing.The sediment inclusions in the chalk-rich LT are mainly fragments of one or more strongly extended glaciofluvial delta bodies with a depositional direction towards WSW. Locally these delta sediments rest on Eocene siltstone and contain numerous angular fragments of this local bedrock. Boudins and lenses of sorted sediments are incorporated into the till and occur as “islands of low strain” in a high strain homogeneous matrix.It is concluded that the LT and MT do not belong to two stratigraphically separate Saalian advances. The section is alternatively interpreted as one subglacial shear zone (deformation till) with upward increasing strain and allochtonous component content. It probably formed during the Younger Saalian (Warthe) westward advance from the Baltic region. Folding of the two diamicts occurred due to lateral compression near the Late Saalian ice margin. The section was finally overridden by the Late Weichselian Young Baltic advance, eroding the folded LT and MT and depositing the UT.  相似文献   

15.
Late Weichselian and Holocene sediment flux and sedimentation rates in a continental‐shelf trough, Andfjord, and its inshore continuation, Vågsfjord, North Norway, have been analysed. The study is based on sediment cores and high‐resolution acoustic data. Andfjord was deglaciated between 14.6 and 13 14C kyr BP (17.5 and 15.6 calibrated (cal.) kyr BP), the Vågsfjord basin before 12.5 14C kyr BP (14.7 cal. kyr BP), and the heads of the inner tributary fjords about 9.7 14C kyr BP (11.2 cal. kyr BP). In Andfjord, five seismostratigraphical units are correlated to a radiocarbon dated lithostratigraphy. Three seismostratigraphical units are recognised in Vågsfjord. A total volume of 23 km3 post‐glacial glacimarine and marine sediments was mapped in the study area, of which 80% are of Late Weichselian origin. Sedimentation rates in outer Andfjord indicate reduced sediment accumulation with increasing distance from the ice margin. The Late Weichselian sediment flux and sedimentation rates are significantly higher in Vågsfjord than Andfjord. Basin morphology, the position of the ice front and the timing of deglaciation are assumed to be the reasons for this. Late Weichselian sedimentation rates in Andfjord and Vågsfjord are comparable to modern subpolar glacimarine environments of Greenland, Baffin Island and Spitsbergen. Downwasting of the Fennoscandian Ice Sheet, and winnowing of the banks owing to the full introduction of the Norwegian Current, caused very high sedimentation rates in parts of the Andfjord trough at the Late Weichselian–Holocene boundary. Holocene sediment flux and sedimentation rates in Andfjord are about half the amount found in Vågsfjord, and about one‐tenth the amount of Late Weichselian values. A strong bottom current system, established at the Late Weichselian–Holocene boundary, caused erosion of the Late Weichselian sediments and an asymmetric Holocene sediment distribution. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Pebbly clays and diamictons containing marine shell fragments and peat lenses exposed beneath subglacially deposited Late Devensian till at the Burn of Benholm provide new insights into the glacial history of Quaternary sequences in eastern Scotland. The peat yielded pollen of interstadial affinity (including Bruckenthalia spiculifolia) and non‐finite radiocarbon dates. Comparisons with other pre‐Late Devensian pollen records in northern Scotland suggest that the peat lenses are remnants of an Early Devensian interstadial deposit, of Oxygen Isotope Substage 5c or 5a age. Reworked faunal assemblages in the shelly sediments include Quaternary marine molluscs of low boreal aspect, as well as Mesozoic and Palaeozoic microfossils. Amino acid ratios from fragments of Arctica islandica suggest that the shells are of Oxygen Isotope Stage 9 age or older. The fabric and composition of the shelly sediments are consistent with their emplacement as deformation till during the onshore movement of glacially transported rafts of marine sediment. Folded and sheared contacts between the shelly deposits, peat lenses and the overlying Late Devensian till indicate that the fossiliferous sediments were glacitectonised during the main Late Devensian glaciation, when ice moved from Strathmore and overrode the site from the southwest. British Geological Survey. © NERC 2000.  相似文献   

17.
Coastal Jameson Land is characterized by thick Quaternary deposits from the last interglacial/glacial cycle. The successions at the mouth of Langelandselv exhibit a key stratigraphy where sediments from the Langelandselv interglaciation (Eemian) are overlain by three till units interbedded with glacimarine and deltaic interstadial successions. Immediately after the retreat of glaciers after the extensive Scoresby Sund glaciation (Saalian). advection of warm Atlantic surface water surpassed what is known from the Holocene. The two lowermost Weichselian tills, deposited during the Aucellaelv and Jyllandselv stades (Early Weichselian), reflect short-lasting readvances of fjord glaciers. Luminescence dates and correlation with adjacent areas suggest ages of 110–80 ka and 70–60 ka for the Hugin Sø and the Møselv interstades, respectively.  相似文献   

18.
The foraminiferal fauna and lithology of 17 short sediment cores from two profiles in the Norwegian Channel have been investigated. Three ecostratigraphical zones are distinguished and their depositional environment, age and correlation with adjacent areas are discussed. The zones form a climatically conditioned succession (from below): the Cassidulina-Nonion zone contains an arctic fauna affected by meltwater influx, and its deposition was in progress in Late Weichselian; the Uvigerina-Cassidulina zone with a mixed fauna of arctic and boreal species is referred to the Early Flandrian; the Uvigerina-Bulimina zone contains a boreal fauna and was deposited under influence of Atlantic water; its age is regarded as Middle and Late Flandrian. Transport and deposition of sediments in the channel is discussed on the basis of recent current conditions and distribution of the zones.  相似文献   

19.
The Middle Weichselian (OIS 4‐3) and the transition from Early to Middle Weichselian are the most problematic and disputed time intervals of the Late Pleistocene with regard to the palaeogeography of the Fennoscandian glaciations. The number of sites with sediments of Middle Weichselian age in the Baltic region is very limited. An extensive area (77 km2) of lacustrine sediments (sand, clay, silt with humus and interlayers of peat), under the relief‐forming Upper Weichselian till, was discovered in the vicinity of the Venta settlement, northwestern Lithuania, and named the Venta Palaeolacustrine Basin. The Svirkanciai outcrop (56°18′05″N, 22°53′00″E) (15 m in height) of this palaeobasin is composed of two sediment complexes of different genesis and age. The lower part consists of silt and very fine‐grained sand of lacustrine origin. According to palynological data, the lacustrine sediments accumulated under boreo‐arctic climatic conditions. The pollen records suggest that local vegetation was sparse forest with open areas. An Optically Stimulated Luminescence (OSL) date of the lacustrine sand yielded an age of >79±6 ka, which indicates that lacustrine conditions may have occurred during part of the Early Weichselian Odderade Interstadial (Jonionys 2). However, the palynological data from Svirkanciai suggest a Middle Weichselian age, possibly correlating with the Oerel Interstadial (Jonionys 3) 55 ka ago. No traces of early Middle Weichselian Schalkholz (Nemunas 2a) stadial glacial advance have been found in the Venta sections. This also suggests a Middle Weichselian age for the Svirkanciai lacustrine sediments.  相似文献   

20.
On the basis of field data, datings from both electron spin resonance – and optically stimulated luminescence, and micro- and macrofauna, in addition to presence of diatoms, three Late Pleistocene marine units have been identified in the coastal areas of the Kola Peninsula. The stratigraphically lowest sequence is correlated to the Ponoi Beds and the Boreal transgression, attributed to the marine isotope stages (MIS) 5e to 5d in the White Sea depression and to MIS 5e to 5c in the Barents Sea. Thermophilic fauna and diatoms indicate normal water salinity and a water temperature above zero. The second marine unit, referred as the Strel'na Beds, can be correlated with the Early Weischselian transgression, termed the Belomorian transgression. With low water salinity and a water temperature similar or colder than the present times, Belomorian transgressions are reliably detected in the White Sea and are not clearly found in the Barents Sea. The results obtained from the sediments of the Ponoi and Strel'na Beds indicate a continuously existing marine reservoir from 130 to 80–70 ka ago (entire MIS 5) in the White Sea depression. The early Middle Weichselian Barents–Kara ice-sheet invasion and its recession might have caused the glacioeustatic Middle Weichselian (MIS 3) transgression, and the third Late Pleistocene marine sequence has been deposited in the regressing shallow cold sea with less saline waters. The results help in the understanding of the history of Late Quaternary ice sheets in North Eurasia and provide evidence for the debatable Early and Middle Weichselian marine events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号