首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The duration of elementary eruption process and intervals between them for flares of different importance have been determined based on the photometric data for flares, observed by a TRACE spacecraft at a wavelength of 195 Å. It has been revealed that the values of these parameters increase with increasing flare importance. It is assumed that the appearance of elementary nonstationary flare centers correlates with the origination of solitons at self-organized criticality.  相似文献   

4.
The topology and dynamics of the three-dimensional magnetic field in the solar atmosphere govern various solar eruptive phenomena and activities, such as flares, coronal mass ejections, and filaments/prominences. We have to observe and model the vector magnetic field to understand the structures and physical mechanisms of these solar activities. Vector magnetic fields on the photosphere are routinely observed via the polarized light, and inferred with the inversion of Stokes profiles. To analyze these vector magnetic fields, we need first to remove the 180° ambiguity of the transverse components and correct the projection effect. Then, the vector magnetic field can be served as the boundary conditions for a force-free field modeling after a proper preprocessing. The photospheric velocity field can also be derived from a time sequence of vector magnetic fields.Three-dimensional magnetic field could be derived and studied with theoretical force-free field models, numerical nonlinear force-free field models, magnetohydrostatic models, and magnetohydrodynamic models. Magnetic energy can be computed with three-dimensional magnetic field models or a time series of vector magnetic field. The magnetic topology is analyzed by pinpointing the positions of magnetic null points, bald patches, and quasi-separatrix layers. As a well conserved physical quantity,magnetic helicity can be computed with various methods, such as the finite volume method, discrete flux tube method, and helicity flux integration method. This quantity serves as a promising parameter characterizing the activity level of solar active regions.  相似文献   

5.
We simulate the time evolution of the neutral and charged species in the terrestrial middle atmosphere using a 1-D radiative-convective model with interactive neutral and ion chemistry driven by four different sets of daily spectral solar irradiance (SSI) available in the literature for the year 2000. Obtained daily time series of ozone, hydroxyl and electron densities are used to calculate their sensitivity to the short-term SSI variability at 205 nm. All applied SSI data sets possess 27-day solar rotation cycle; however, its amplitude and phase as well as the correlation between considered SSI time series differ among data sets leading to the different behavior of the atmospheric response. Contrary, the ozone and hydroxyl sensitivities to the SSI changes during solar rotation cycle are almost identical for all applied SSI data sets in the stratosphere. In the mesosphere, the difference in correlation between SSI in Herzberg continuum and Lyman-α line in considered SSI data sets leads to substantial scatter of the sensitivity estimates based on 205 nm. Our results show that for the sensitivity analysis in the stratosphere based on the SSI at 205 nm any considered SSI data sets can be applied. For the mesosphere, where the sensitivity strongly varies among applied SSI data sets more robust results can be obtained using the sensitivity calculations based on the SSI in Lyman-α line.  相似文献   

6.
Monthly indices of Southern Atmospheric Oscillation (SOI) and corresponding Wolf numbers, geoeffective solar flares, magnetic AE indices as well as daily average values of the southward component of the interplanetary magnetic field (IMF B z) and data on the wind characteristics at Antarctic stations Vostok, Leningradskaya, and Russkaya are analyzed. It is shown that a sharp decrease in the SOI indices, which corresponds to the beginning of El Nin’o (ENSO), is preceded one or two months before by a 20% increase in the monthly average Wolf numbers. In warm years of Southern Atmospheric Oscillation a linear relationship is observed between the SOI indices and the number of geoeffective solar flares with correlation coefficients p < ?0.5. It is shown that in warm years a change in the general direction of the surface wind to anomalous at the above stations is preceded one or two days before by an increase in the daily average values of IMF B z. An increase in the SOI indices is preceded one or two months before by a considerable increase in the monthly average values of the magnetic AE indices.  相似文献   

7.
8.
There have been a number of investigations for examining the possible link between long-term climate variability and solar activity.A continuous δ18O record of peat cellulose covering the past 6000 years and the response of climate variation inferred from the proxy record to solar forcing are reported.Results show that during the past 5000 years the abrupt climate variations,including 17 warming and 17 cooling,and a serious of periodicities,such as 86,101,110,127,132,140,155,207,245,311,820 and 1050 years,are strikingly correlative to the changes of solar irradiation and periodicity.These observations are considered as further evidence for a close relationship between solar activity and climate variations on time scales of decades to centuries.  相似文献   

9.
Coronal mass ejections(CMEs) and solar flares are the large-scale and most energetic eruptive phenomena in our solar system and able to release a large quantity of plasma and magnetic flux from the solar atmosphere into the solar wind. When these high-speed magnetized plasmas along with the energetic particles arrive at the Earth, they may interact with the magnetosphere and ionosphere, and seriously affect the safety of human high-tech activities in outer space. The travel time of a CME to 1 AU is about 1–3 days, while energetic particles from the eruptions arrive even earlier. An efficient forecast of these phenomena therefore requires a clear detection of CMEs/flares at the stage as early as possible. To estimate the possibility of an eruption leading to a CME/flare, we need to elucidate some fundamental but elusive processes including in particular the origin and structures of CMEs/flares. Understanding these processes can not only improve the prediction of the occurrence of CMEs/flares and their effects on geospace and the heliosphere but also help understand the mass ejections and flares on other solar-type stars. The main purpose of this review is to address the origin and early structures of CMEs/flares, from multi-wavelength observational perspective. First of all, we start with the ongoing debate of whether the pre-eruptive configuration, i.e., a helical magnetic flux rope(MFR), of CMEs/flares exists before the eruption and then emphatically introduce observational manifestations of the MFR. Secondly, we elaborate on the possible formation mechanisms of the MFR through distinct ways. Thirdly, we discuss the initiation of the MFR and associated dynamics during its evolution toward the CME/flare. Finally, we come to some conclusions and put forward some prospects in the future.  相似文献   

10.
We analyze the relationship between some space weather indices (Dst, Ap, F10.7) and geomagnetic effects on the regional (European) scale, over the period 1960–2001. The remaining external field signal (RES) detected in the Northward magnetic component of the European observatory annual means are used as an indicator of the regional geomagnetic activity. Relationship RES-F10.7 suggests correction factors for getting the geomagnetic annual means of the Northern component less affected by the external sources. We have found some time lags among investigated parameters. These delays may suggest that the Ap responds to the solar activity in a differently than Dst and RES, Ap being more sensitive to the high-speed streams (HSS) and the Alfvenic waves present in HSS, while Dst and RES being more influenced by the coronal mass ejections activity (CME).  相似文献   

11.
The Indian summer monsoon rainfall (ISMR) plays an important role in the climate system of South Asia. Recently, studies about ISMR variations have been going into more depth. In this present paper, we mainly use the Scargle periodogram and wavelet transform methods to study the periodicity of ISMR changes between 1871 and 2004 and review the possible influence of solar activity on the rainfall. Analysis results show complicated ISMR variations have periodicities with remarkable time-variable characteristics. Investigating a possible connection between the rainfall and solar variations, we believe that solar activity affects the ISMR variations to some extent.  相似文献   

12.
The relationships between different manifestations of solar and geomagnetic activity and the structural peculiarities of the dynamics of the pole wobble and irregularities in the Earth??s rotation are studied using singular spectrum analysis. There are two close major peaks and several lower ones in the same frequency range (1.1?C1.3 years) in the Chandler wobble (CW) spectrum. Components in the geomagnetic activity were distinguished in the same frequency band (by the Dst and Ap indices). Six- to seven-year oscillations in the Earth??s rotation rate with a complex dynamics of amplitude variations are shown in variations in geomagnetic activity. It is revealed that secular (decade) variations in the Earth??s rotation rate on average repeat global variations in the secular trend of the Earth??s geomagnetic field with a delay of eight years during the whole observation period.  相似文献   

13.
The relation of the Kp index of geomagnetic activity to the solar wind electric field (E SW) and the projection of this field onto the geomagnetic dipole has been estimated. An analysis indicated that the southward component of the IMF vector (B z < 0) is the main geoeffective parameter, as was repeatedly indicated by many researchers. The presence of this component in any combinations of the interplanetary medium parameters is responsible for a high correlation between such combinations and geomagnetic activity referred to by the authors of different studies. Precisely this field component also plays the main role in the relation between the Kp index and the relative orientation of E SW and the Earth’ magnetic moment.  相似文献   

14.
The results of a three-dimensional numerical simulation of changes in the temperature and wind within a height range of up to 100 km caused by changes in fluxes in the solar ultraviolet (UV) radiation in the 23rd solar activity cycle (which was characterized by unusually low values of UV-radiation fluxes) and also of global changes in the ozone content are presented. The simulation results showed that the response of the temperature to variations in the UV radiation are substantially of a nonzonal character, which is caused by the presence in the model of sources of quasi-stationary waves corresponding to the observational data.  相似文献   

15.
The collision of a solar wind tangential discontinuity with the bow shock and magnetopause is considered in the scope of an MHD approximation. Using MHD methods of trial calculations and generalized shock polars, it has been indicated that a fast shock refracted into the magnetosheath originates when density increases across a tangential discontinuity and a fast rarefaction wave is generated when density decreases at this discontinuity. It has been indicated that a shock front shift under the action of collisions with a tangential discontinuity is experimentally observed and a fast bow shock can be transformed into a slow shock. Using a specific event as an example, it has been demonstrated that solar wind tangential discontinuity affects the geomagnetic field behavior.  相似文献   

16.
The response of the equatorial electrojet (EEJ) to solar eclipses is studied in this work. We analyzed the magnetic field measurements obtained by three satellites, CHAMP, SAC-C and Ørsted and correlated them with ground-based observations during the eclipses. The observations show a local weakening of the EEJ after the shadow passed the dip equator. The size of the effect is, however, comparable with the day-to-day variability. In four out of five events we found the formation of a counter electrojet in the wake of the eclipse. We propose that the depression of the EEJ during an eclipse favors the formation of a counter electrojet.  相似文献   

17.
This article studies long-period variations in the Earth’s upper atmosphere density over several solar activity cycles, using long-term data on the evolution of motion of three artificial satellites (Intercosmos-19, Meteor-1-2, and Cosmos-1154) in orbits at heights of 400–1000 km. The time interval when the satellites were in the orbits covered three solar activity cycles (partly the 21st, completely the 22nd, and partly the 23rd). It is found that the variations in the average density of the upper atmosphere at heights of 400–600 km in the 1980–2000 period were governed by the changes in the solar activity level.  相似文献   

18.
The work describes the results of calculations obtained with the Atmospheric Research Model (ARM) general circulation model. The temperature response of the troposphere and middle atmosphere to variations in UV solar radiation were found to have a large-scale wave structure when planetary waves at the lower model boundary were taken into account. In the present paper, the results from the processing of global temperature fields with three databases (ERA-20C, NOAA-CIRES 20th Century Reanalysis, v2, and NCEP/NCAR Reanalysis I) are provided. Analysis of the differences of the mean monthly temperature global fields (January and July) between the maxima and minima of three solar activity cycles (21, 22, and 23 cycles) also demonstrated their nonzonal structure. It was shown that the amplitude of this difference in January in the stratosphere (10 hPa) can be 7–29 K in the Northern Hemisphere. In July, this effect is prominent in Southern Hemisphere. In the troposphere (500 hPa), a nonzonal temperature effect is present in both the Northern and Southern Hemispheres; the amplitude of the effects amounts to approximately 5–12 K. In conclusion, we discuss that the mechanism of solar energy impact on atmospheric temperature discovered by numerical modeling is supported after reanalysis data processing.  相似文献   

19.
We study the effect of turbulent drift of a large-scale magnetic field that results from the interaction of helical convective motions and differential rotation in the solar convection zone. The principal direction of the drift corresponds to the direction of the large-scale vorticity vector. Thus, the effect produces a latitudinal transport of the large-scale magnetic field in the convective zone wherever the angular velocity has a strong radial gradient. The direction of the drift depends on the sign of helicity and it is defined by the Parker–Yoshimura rule. The analytic calculations are done within the framework of mean-field magnetohydrodynamics using the minimal τ-approximation. We estimate the magnitude of the drift velocity and find that it can be a few m/s near the base of the solar convection zone. The implications of this effect for the solar dynamo are illustrated on the basis of an axisymmetric mean-field dynamo model with a subsurface shear layer. The model shows that near the bottom of the convection zone the helicity–vorticity pumping results mostly from the kinetic helicity contributions. We find that the magnetic helicity contributions to the pumping effect are dominant at the subsurface shear layer. There the magnitude of the drift velocity is found to be a few cm/s. We find that the helicity–vorticity pumping effect can have an influence on the features of the sunspot time–latitude diagram, producing a fast drift of the sunspot activity maximum at the rise phase of the cycle and a slow drift at the decay phase of the cycle.  相似文献   

20.
The origination of various plasma inhomogeneities in the magnetosheath in front of the Earth’s magnetosphere is analyzed within classical magnetohydrodynamics. The effect of directional discontinuities or tangential and rotational discontinuities of the solar wind on plasma is studied. The origination of inhomogeneities of the type of secondary MHD waves in the magnetosheath is shown; the former equalize plasma parameters when restoring the stationary state. The effect of a rotational discontinuity on the bow shock–Earth’s magnetosphere system is of special interest, with distinguishing of plasma inhomogeneities of the plateau type observed in the near-Earth space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号