首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nava  F.  Reynoso  H.  Glowacka  E. 《Mathematical Geosciences》2023,55(4):579-605

Space–time seismic clusters, localized bursts of seismic activity, are a feature of background seismicity before the occurrence of large earthquakes, a feature that agrees with observations of diminishing Gutenberg–Richter b-value, fractal dimension, and entropy, and is therefore suggestive of high stress. However, identification and quantification of these space–time clusters, particularly when they are small, is not an easy task and requires a priori assumptions. A novel method for space–time cluster identification, based on an extension of the concept of apparent velocities, is proposed because space–time clusters in the background seismicity have a particular signature in the apparent velocity domain. The contents of histogram peaks due to clusters in the apparent velocity histogram can be used to quantify the cluster activity compared with null hypothesis levels. Identification of the earthquakes corresponding to the apparent velocities in the peaks allows identification of cluster activity in time and space. Apparent velocity peaks do appear in real catalog data for southern California and northern Baja California before the Landers 1992 M = 7.3, Hector Mine 1999 M = 7.1, El Mayor-Cucapah 2010 M = 7.2, and Ridgecrest 2019 M = 7.1 earthquakes, and they appear only within 15 to 25 years before the occurrence of large earthquakes. They are not observed either long before the large earthquakes or after them, and hence could be related to high local states of stress and be of value as a possible precursory observable.

  相似文献   

2.
The fulfillment of a scaling law for earthquake recurrence–time distributions is a clear indication of the importance of correlations in the structure of seismicity. In order to characterize these correlations we measure conditional recurrence–time and magnitude distributions for worldwide seismicity as well as for Southern California during stationary periods. Disregarding the spatial structure, we conclude that the relevant correlations in seismicity are those of the recurrence time with previous recurrence times and magnitudes; in the latter case, the conditional distribution verifies a scaling relation depending on the difference between the magnitudes of the two events defining the recurrence time. In contrast, with our present resolution, magnitude seems to be independent on the history contained in the seismic catalogs (except perhaps for Southern California for very short time scales, less than about 30 min for the magnitude ranges analyzed).  相似文献   

3.
Dimitriu  P. P.  Scordilis  E. M.  Karacostas  V. G. 《Natural Hazards》2000,21(2-3):277-295
Two-dimensional multifractal analysis is performed in a seismic area of Northern Greece responsible for recent strong earthquakes, including the Arnea sequence of May 1995, culminating in a Mw 5.3 event on 4/5/1995. It is found that multifractality gradually increases prior to the major seismic activity and that declusterization replaces clusterization not long before its initialization. The fractal dimensions D(q) (q > 0) abruptly drop for aftershocks, reflecting their very strong spatial clustering. The observed seismicity patterns seem to be compatible with a percolation process. Before the main sequence, the fractal dimension is consistently in the range 1.67–1.96 (standard deviation included). Percolation theory predicts 1.9 for 2D percolation clusters and 1.8 for the backbone of 3D percolation clusters. If the observed gradual increase in multifractality is due to multifractality reaching a maximum prior to the major slip (percolation), this may enable us to roughly estimate its time of occurrence.  相似文献   

4.
We studied the temporal behavior of the background shallow seismicity rate in 700 circular areas across inland Japan. To search for and test the significance of the possible rate changes in background seismicity, we developed an efficient computational method that applies the space–time ETAS model proposed by Ogata in 1998 to the areas. Also, we conducted Monte Carlo tests using a simulated catalog to validate the model we applied. Our first finding was that the activation anomalies were found so frequently that the constant background seismicity hypothesis may not be appropriate and/or the triggered event model with constraints on the parameters may not adequately describe the observed seismicity. However, quiescence occasionally occurs merely by chance. Another outcome of our study was that we could automatically find several anomalous background seismicity rate changes associated with the occurrence of large earthquakes. Very significant seismic activation was found before the M6.1 Mt. Iwate earthquake of 1998. Also, possible seismic quiescence was found in an area 150 km southwest of the focal region of the M7.3 Western Tottori earthquake of 2000. The seismicity rate in the area recovered after the mainshock.  相似文献   

5.
In the region of Three Gorges Reservoir (TGR) in China, there has been occurrence of several frequent earthquakes of moderate intensity since reservoir impounding occurred in 2003. These earthquakes are generally believed to be induced by reservoir impoundment and water-level variations. Usually, the geo-stress will change, when natural earthquakes occur. Following this principle, this paper adopted the rate and state theory to simulate and estimate Coulomb stress changes in the TGR region and obtained the pattern of Coulomb stress changes with time and the event sequence as well as the distribution of Coulomb stress changes in space. First, the TGR regional catalogue was analyzed and processed, leading to quantification of the magnitude of completeness and all of the parameters that are used in the stress–seismicity inversion process, including the reference seismicity rates, characteristic relaxation time, fault constitutive parameters, and stress rates. Second, the temporal evolution of the stress changes in different time windows was computed and analyzed, and it was found that there is an association between the Coulomb stress changes and rates of increase in the cumulative number of earthquakes. In addition, the earthquake occurred in November 2008 (M S = 4.1) was analyzed and attempted to simulate the distribution of stress changes in space through the stress–seismicity inversion model. The results proved that the modeled area coincides with the historical area of earthquakes that occurred after 2008. Finally, a prediction was made about the earthquake productivity rates after 2015, which showed a declining earthquake rate over time that ultimately returned to the background seismicity. This result is essentially in agreement with Omori’s law. To conclude, it is rational to use the stress-inversion method to analyze the relationship between induced earthquake seismicity and local stress changes as well as to simulate the area of earthquake occurrence and productivity rates of reservoir-induced earthquakes.  相似文献   

6.
We test the Bowman and King [Bowman, D.D., King, G.C.P., 2001a, Accelerating seismicity and stress accumulation before large earthquakes. Geophys. Res. Lett., 28 (21), 4039–4042, Bowman, D.D., King, G.C.P., 2001b. Stress transfer and seismicity changes before large earthquakes. C. R. Acad. Sci. Paris, 333, 591–599] Stress Accumulation model by examining the evolution of seismicity rates prior to the 1992 Landers, California earthquake. The Stress Accumulation (SA) model was developed to explain observations of accelerating seismicity preceding large earthquakes. The model proposes that accelerating seismicity sequences result from the tectonic loading of large fault structures through aseismic slip in the elasto-plastic lower crust. This loading progressively increases the stress on smaller faults within a critical region around the main structure, thereby causing the observed acceleration of precursory activity. A secondary prediction of the SA model is that the precursory seismicity rates should increase first at the edges of the critical region, with the rates gradually rising over time at closer distances to the main fault. We test this prediction by examining year-long seismicity rates between 1960 and 2004, as a function of distance from the Landers rupture. To quantify the significance of trends in the seismicity rates, we auto-correlate the data, using a range of spatial and temporal lags. We find weak evidence for increased seismicity rates propagating towards the Landers rupture, but cannot conclusively distinguish these results from those obtained for a random earthquake catalog. However, we find a strong indication of periodicity in the rate fluctuations, as well as high correlation between activity 130–170 km from Landers and seismicity rates within 50 km of the Landers rupture temporally offset 1.5–2 years. The implications of this spatio–temporal correlation will be addressed in future studies.  相似文献   

7.
荣代潞  李亚荣 《地球科学》2009,34(4):673-681
为研究大震前地震空间相关长度的变化特征, 分析了青藏块体东北缘6次中强地震前的地震活动的时空演变.在计算空间相关长度过程中, 采用长轴与孕震区主要断裂走向一致的椭圆形空间窗, 并设计了优化程序.比较椭圆形和圆形空间窗的结果, 表明对所研究的6次中强地震前都观测到了增长的地震空间相关长度.椭圆形空间窗的结果比圆形的结果更好, 相关长度增长幅度较大, 曲率参数值较小.利用3种合成地震目录对结果进行了显著性检验.3种随机数据的检验结果都否定了零假设, 表明观察到的模型不是由随机数据干扰造成的, 这一观点的置信水平被证实为99%以上.最后得出主震震级与临界区的尺度(等效半径)关系为logRe~0.46(±0.02)M, 与理论值符合得较好.   相似文献   

8.
The Van earthquake (M W 7.1, 23 October 2011) in E-Anatolia is typical representative of intraplate earthquakes. Its thrust focal character and aftershock seismicity pattern indicate the most prominent type of compound earthquakes due to its multifractal dynamic complexity and uneven compressional nature, ever seen all over Turkey. Seismicity pattern of aftershocks appears to be invariably complex in its overall characteristics of aligned clustering events. The population and distribution of the aftershock events clearly exhibit spatial variability, clustering-declustering and intermittency, consistent with multifractal scaling. The sequential growth of events during time scale shows multifractal behavior of seismicity in the focal zone. The results indicate that the extensive heterogeneity and time-dependent strength are considered to generate distinct aftershock events. These factors have structural impacts on intraplate seismicity, suggesting multifractal and unstable nature of the Van event. Multifractal seismicity is controlled by complex evolution of crustal-scale faulting, mechanical heterogeneity and seismic deformation anisotropy. Overall seismicity pattern of aftershocks provides the mechanism for strain softening process to explain the principal thrusting event in the Van earthquake. Strain localization with fault weakening controls the seismic characterization of Van earthquake and contributes to explain the anomalous occurrence of aftershocks and intraplate nature of the Van earthquake.  相似文献   

9.
We found a characteristic space–time pattern of the tidal triggering effect on earthquake occurrence in the subducting Philippine Sea plate beneath the locked zone of the plate interface in the Tokai region, central Japan, where a large interplate earthquake may be impending. We measured the correlation between the Earth tide and earthquake occurrence using microearthquakes that took place in the Philippine Sea plate for about two decades. For each event, we assigned the tidal phase angle at the origin time by theoretically calculating the tidal shear stress on the fault plane. Based on the distribution of the tidal phase angles, we statistically tested whether they concentrate near some particular angle or not by using Schuster's test. In this test, the result is evaluated by p-value, which represents the significance level to reject the null hypothesis that earthquakes occur randomly irrespective of the tidal phase angle. As a result of analysis, no correlation was found for the data set including all the earthquakes. However, we found a systematic pattern in the temporal variation of the tidal effect; the p-value significantly decreased preceding the occurrence of M ≥ 4.5 earthquakes, and it recovered a high level afterwards. We note that those M ≥ 4.5 earthquakes were considerably larger than the normal background seismicity in the study area. The frequency distribution of tidal phase angles in the pre-event period exhibited a peak at the phase angle where the tidal shear stress is at its maximum to accelerate the fault slip. This indicates that the observed small p-value is a physical consequence of the tidal effect. We also found a distinctive feature in the spatial distribution of p-values. The small p-values appeared just beneath the strongly coupled portion of the plate interface, as inferred from the seismicity rate change in the past few years.  相似文献   

10.
A technique based on the ν-value, which is defined by % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca% GGOaGafqiXdqNbaebacaGGPaWaaWbaaSqabeaacaaIYaaaaaGcbaWa% a0aaaeaacqaHepaDdaahaaWcbeqaaiaaikdaaaaaaaaaaaa!3CEB!\[{{(\bar \tau )^2 } \mathord{\left/ {\vphantom {{(\bar \tau )^2 } {\overline {\tau ^2 } }}} \right. \kern-\nulldelimiterspace} {\overline {\tau ^2 } }}\], where τ is the time interval between two adjacent earthquakes and indicates the pattern of time sequences of earthquakes, has been applied to the 25 March 1986 Aegean Sea (Greece) earthquake (M L = 5.2) in an attempt to discover temporal changes in seismicity. The analysis of several earthquake sequences revealed that low ν-values preceded the occurrence of relatively large earthquakes. The ν-value technique may be used for monitoring the seismicity changes.  相似文献   

11.
The Himalayan fold-thrust belt has been visited by many disastrous earthquakes (magnitude > 6) time and again. This active collisional orogen bordering Indian subcontinent in the north remains a potential seismic threat of similar magnitude in the adjoining countries like India, Pakistan, Nepal, Bhutan and China. Though earthquake forecasting is riddled with all conjectures and still not a proven presumption, identifying likely source zones of such disastrous earthquakes would be an important contribution to seismic hazard assessment. In this study, we have worked out spatio-temporal clustering of earthquakes (Mb ?? 4.5; 1964?C2006) in the Himalayas. ??Point density?? spatial statistics has helped in detecting 22 spatial seismicity clusters. Earthquake catalog is then treated with a moving time-distance window technique (inter-event time 35 days and distance 100 ± 20 km) to bring out temporal clusters by recognizing several foreshock-main shock-aftershock (FMA) sequences. A total of 53 such temporal sequences identified in the process are confined within the 22 spatial clusters. Though each of these spatio-temporal clusters deserves in-depth analysis, we short-listed only eight such clusters that are dissected by active tectonic discontinuities like MBT/MCT for detail study. Spatio-temporal clusters have been used to constrain the potential source zones. These eight well-defined spatio-temporal clusters demonstrate recurrent moderate to large earthquakes. We assumed that the length of these clusters are indicating the possible maximum rupture lengths and thus empirically estimated the maximum possible magnitudes of eight clusters that can be generated from them (from west to east) as 8.0, 8.3, 8.2, 8.3, 8.2, 8.4, 8.0 and 7.7. Based on comparative study of the eight cluster zones contemplating with their temporal recurrences, historical seismic records, presence of intersecting faults and estimated magnitudes, we have guessed the possibility that Kangra, East Nepal, Garhwal and Kumaun?CWest Nepal clusters, in decreasing order of earthquake threat, are potential source zones for large earthquakes (??7.7 M) in future.  相似文献   

12.
The Pattern Informatics (PI) technique [Tiampo, K.F., Rundle, J.B., McGinnis, S., Gross, S., Klein, W., 2002. Mean-field threshold systems and phase dynamics: An application to earthquake fault systems, Europhys. Lett., 60, 481–487] is founded on the premise that changes in the seismicity rate are a proxy for changes in the underlying stress. This new approach to the study of seismicity quantifies its local and regional space–time patterns and identifies regions of local quiescence or activation. Here we use a modification of the PI method to quantify localized changes surrounding the epicenters of large earthquakes in California in an attempt to objectively quantify the rupture zones of these upcoming events. We show that this method can be used to forecast the size and magnitude of future earthquakes.  相似文献   

13.
A world-wide correlation between satellite-derived gravity signatures and the relative abundance of teledetected earthquakes over mid-ocean ridges has yielded some unexpected results. Rift valley disappearances along slow-spreading centres and attendant excess volcanism coincide with seismicity gaps, at times related to nearby hotspots, whereas earthquake clusters along virtually aseismic, faster-spreading centres systematically indicate the presence of active propagating ridge tips. Therefore, at the world scale of investigation, seismicity fairly well predicts ridge morphology and 2nd order axial discontinuities. The occurrence of a certain degree of seismicity along the 'ductile' Reykjanes ridge south of the Iceland hotspot is tentatively explained in terms of prevailing shear stresses due to oblique spreading which accumulate on the available brittle volume on the flanks of the ridge rather than on its crest.  相似文献   

14.
We investigate the evolution of seismicity within large earthquake cycles in a model of a discrete strike-slip fault in elastic solid. The model dynamics is governed by realistic boundary conditions consisting of constant velocity motion of regions around the fault, static/kinetic friction and dislocation creep along the fault, and 3D elastic stress transfer. The fault consists of brittle parts which fail during earthquakes and undergo small creep deformation between events, and aseismic creep cells which are characterized by high ongoing creep motion. This mixture of brittle and creep cells is found to generate realistic aftershock sequences which follow the modified Omori law and scale with the mainshock size. Furthermore, we find that the distribution of interevent times of the simulated earthquakes is in good agreement with observations. The temporal occurrence, however, is magnitude-dependent; in particular, the small events are clustered in time, whereas the largest earthquakes occur quasiperiodically. Averaging the seismicity before several large earthquakes, we observe an increase of activity and a broadening scaling range of magnitudes when the time of the next mainshock is approached. These results are characteristics of a critical point behavior. The presence of critical point dynamics is further supported by the evolution of the stress field in the model, which is compatible with the observation of accelerating moment release in natural fault systems.  相似文献   

15.
16.
The aim of this study is to apply spatial pattern analysis techniques to a seismic data catalog of earthquakes beneath the Red Sea to try and detect clusters and explore global and local spatial patterns in the occurrence of earthquakes over the years from 1900 to 2009 using a geographical information system (GIS). The spatial pattern analysis techniques chosen for this study were quadrant count analysis, average nearest neighbor, global Moran’s I, Getis–Ord general G, Anselin Local Moran’s I, Getis–Ord Gi*, kernel density estimation, and geographical distributions. Each of these techniques was implemented in the GIS so that computations could be carried out quickly and efficiently. Results showed that (1) these techniques were capable of detecting clusters in the spatial patterns of the occurrence of the earthquakes; (2) both global and local spatial statistics indicate that earthquakes were clustered in the study area beneath the Red Sea; (3) earthquakes with higher magnitudes on the Richter scale were notably concentrated in the central and southern parts of the Red Sea where seismic activities were most active; and (4) earthquakes with moderate magnitudes on the Richter scale were particularly concentrated in the northern part of the Red Sea where there is an area of late-stage continental rifting comprised of a broad trough without a recognizable spreading center, although there were several small, isolated deep troughs. We conclude that the pattern analysis techniques applied to the seismic data catalog of earthquakes beneath the Red Sea could detect clusters in the occurrence of earthquakes from 1900 to 2009.  相似文献   

17.
This study examined the spatial-temporal variations in seismicity parameters for the September 10th, 2008 Qeshm earthquake in south Iran. To this aim, artificial neural networks and Adaptive Neural Fuzzy Inference System (ANFIS) were applied. The supervised Radial Basis Function (RBF) network and ANFIS model were implemented because they have shown the efficiency in classification and prediction problems. The eight seismicity parameters were calculated to analyze spatial and temporal seismicity pattern. The data preprocessing that included normalization and Principal Component Analysis (PCA) techniques was led before the data was fed into the RBF network and ANFIS model. Although the accuracy of RBF network and ANFIS model could be evaluated rather similar, the RBF exhibited a higher performance than the ANFIS for prediction of the epicenter area and time of occurrence of the 2008 Qeshm main shock. A proper training on the basis of RBF network and ANFIS model might adopt the physical understanding between seismic data and generate more effective results than conventional prediction approaches. The results of the present study indicated that the RBF neural networks and the ANFIS models could be suitable tools for accurate prediction of epicenteral area as well as time of occurrence of forthcoming strong earthquakes in active seismogenic areas.  相似文献   

18.
The spatial distribution of the epicenters and hypocenters is analyzed for earthquakes of 2 ≤ M < 6 that occurred in the northeastern segment of the Amur Plate in two phases of changes in the angular speed of the Earth’s rotation. Groups of seismic events in the magnitude interval of 5 ≤ M < 6 are distinguished in the form of NE-trending seismic clusters regularly alternating along the plane of latitude. The seismic clusters are up to 1500 km long and 180–240 km wide and cover the seismic zones with different geodynamic and seismotectonic conditions of seismicity origination. In terms of the epicentral distributions for earthquakes with 2 ≤ M < 4, seismic activity zones are distinguished; these zones are seen as seimolineaments coupling the Tan Lu seismic zones and the eastern flanks of the latitudinal seismic zones. A scheme of distinguishing the compression and extension zones from the spatial clusters of earthquakes with 5 ≤ M < 6 in two phases of changes in the angular speed of the Earth’s rotation is proposed. This scheme satisfactorily agrees with the model of seismotectonic reconstructions of the compression–extension fields and axes.  相似文献   

19.
Seismicity and faulting attributable to fluid extraction   总被引:6,自引:0,他引:6  
The association between fluid injection and seismicity has been well documented and widely publicized. Less well known, but probably equally widespread are faulting and shallow seismicity attributable solely to fluid extraction, particularly in association with petroleum production.

Two unequivocable examples of seismicity and faulting associated with fluid extraction in the United States are: The Goose Creek, Texas oil field event of 1925 (involving surface rupture); and the Wilmington, California oil field events (involving subsurface rupture) of 1947, 1949, 1951 (2), 1955, and 1961. Six additional cases of intensity I–VII earthquakes (M < 4.6) without reported faulting may be attributable to shallow production from other large oil and gas fields. In addition to these examples are thirteen cases of apparently aseismic surface rupture associated with production from California and Texas oil fields. Small earthquakes in the Eloy—Picacho area of Arizona may be attributable to withdrawal of groundwater, but their relation to widespread fissuring is enigmatic. The clearest example of extraction-induced seismicity outside of North America is the 1951 series of earthquakes associated with gas production from the Po River delta near Caviga, Italy.

Faulting and seismicity associated with fluid extraction are attributed to differential compaction at depth caused by reduction of reservoir fluid pressure and attendant increase in effective stress. Surface and subsurface measurements and theoretical and model studies show that differential compaction leads not only to differential subsidence and centripetally-directed horizontal displacements, but to changes in both vertical- and horizontal-strain regimes. Study of well-documented examples indicates that the occurrence and nature of faulting and seismicity associated with compaction are functions chiefly of: (1) the pre-exploitation strain regime, and (2) the magnitude of contractional horizontal strain centered over the compacting materials relative to that of the surrounding annulus of extensional horizontal strain.

The examples cited include natural systems strained only by extraction of fluids, as well as some subsequently subjected to injection. Faulting and seismicity have accompanied both decrease and subsequent increase of fluid pressures; reversal of fluid-pressure decline by injection may enhance the likelihood of subsurface faulting and seismicity due chiefly to earlier fluid pressure reduction. A consistent common denominator appears to be continuing compaction at depth; the relative effects of fluid extraction followed by injection are not easily separated.  相似文献   


20.
Distributions of time between consecutive earthquakes verify an approximately universal scaling law for stationary seismicity. The shape of these distributions is shown to arise as a mixture of one distribution for short‐distance events and an exponential distribution for far‐off events, the distinction from short and long distances being relative to the size of the region studied. The distributions of consecutive distances show a double power law decay and verify an approximate scaling law which guarantees the simultaneous fulfillment of the scaling laws for time. The interplay between space and time can be seen as well by looking at the distribution of distances for a fixed time separation. These results suggest that seismicity can be understood as a series of intertwined independent continuous‐time random walks, with power law‐distributed waiting times and Lévy‐flight jumps. However, a simple model based on these ideas does not capture the invariance of seismicity under renormalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号