首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the experimental deformation of models made with sheets of paraffin wax, simulating a bedded cover resting on a basement wrench fault. During the experiments, “en échelon” folds appear in the cover. As a result of early fault motion, folds first appear at heterogeneities in the bedding and with axes at about 45° to the trace of the wrench fault. Further fault displacement causes a bulk rotation of fold axes towards parallelism with the basement wrench fault, and a resulting curvature of fold axes at larger fault displacement.Folding affects an area which tends to quickly stabilize in width, since folding weakens the sheared cover and subsequent deformation is concentrated in it. Axial surfaces of folds are initially upright, then tend to become inclined with an external vergence, forming a fan centered on the basement wrench fault. Deeper layer-deformation, close to the basement, involves fold reorientations that are greater than in the upper layers. Therefore, down a given vertical line, there is no continuity between surface and deep structures. The geometry and orientation of folds appearing at later stages of wrenching is controlled by the geometry and orientation of already extant folds.  相似文献   

2.
In the South Rifian ridges (SRR), the dominated structures correspond to the faulted anticline characteristic of a foreland orogeny context, front of the Rif Alpine belt. These anticlines correspond to thrust propagation folds. Geometric model of these structures shows that the normal faults have controlled the Mesozoic sedimentation during extensive episodes and participated in determining areas of thrusting during Miocene compressional phases. However, the normal fault strike which is relative to the direction of the shortening determined the geometry of diverse folds whether into the frontal ramps, lateral, or oblique. In the meantime, the systematic fracturing study in the Jurassic limestone beds, in different parts of the folds with axes oriented E-W, NW-SE, and NE-SW, permits to propose a relative fracturing chronology and tries investigating the relationship between folding and fracturing. The three main fracture families, oblique, transversal, and axial, appear simultaneously during the amplification of the fold. The simple shear in the limb contributes the latest to the folding reactivation and the density of the intensification of these microfractures. Likewise, given the important downslope fold limb dip of the ramp propagation folds, theoretically the shear intensity is more important, and micro-fractures are more important in the downslope fold limb, thus the uphill one.  相似文献   

3.
A 3000 m Jurassic-Cretaceous-Palaeogene succession dominated by carbonates is deformed by NNE trending open folds of Palaeogene age. Conjugate wrench faults and a system of normal faults extend the fold belt axially and probably evolved during anticlockwise rotation in a transpressive regime related to the oblique convergence of the African and Arabian plates across the Lebanese segment of the Dead Sea transform fault. Three sets and four systems of conjugate mesoscopic fractures, symmetrically orientated with reference to bedding and the plunge of the fold in which they are contained, resulted in minor axial elongation. Pressure solution on surfaces striking parallel to the fold belt locally achieved up to 50% shortening.The N30°E vertical Yammouné Fault Zone, which connects with the principal rift faults to the north and south, is accompanied by mesostructures which indicate that displacements were dominantly left-lateral and that the 1–2 km Zone is younger than the folds, possibly of Neogene age.  相似文献   

4.
《Gondwana Research》2006,9(4):457-471
The Arabian-Nubian-Shield (ANS) is composed of a number of island arcs together with fragments of oceanic lithospere and minor continental terranes. The terranes collided with each other until c. 600 Ma ago. Subsequently, they were accreted onto West Gondwana, west of the present River Nile. Apart from widespread ophiolite nappe emplacement, collisional deformation and related lithospheric thickening appear to be relatively weak. Early post-collisional structures comprise not only extensional features such as fault-bounded (molasse) basins and metamorphic core complexes, but also major wrench fault systems, and thrusts and folds. The Hammamat Group was deposited in fault-bounded basins, which formed due to N-S to NW-SE directed extension. Hammamat Group sediments were intruded by late orogenic granites, dated as c. 595 Ma old. A NNW-SSE-oriented compression prevailed after the deposition of the Hammamat Sediments. This is documented by the presence of NW-verging folds and SE-dipping thrusts that were refolded and thrusted in the same direction. Restoration of a NNW-SSE- oriented balanced section across Wadi Queih indicates more than 25% of shortening. Transpressional wrenching related to the Najd Fault System followed this stage. The wrenching produced NW-SE sinistral faults associated with positive flower structures that comprise NE-verging folds and SW-dipping thrusts. Section restoration across these late structures indicates 15 17% shortening in the NE-SW direction. At a regional scale, the two post-Hammamat compressional phases produced an interference pattern with domes and basins. It can be shown that the Najd Fault System splays into a horsetail structure in the Wadi Queih area and loses displacement towards N and NW. The present study shows a distinct space and time relationship between deposition of Hammamat Group/late-Pan-African clastic sediments and late stages of Najd Fault wrench faulting: Hammamat deposition is followed by two episodes of compression, with the second episode being related to Najd Fault transpression. Therefore, the Hammamat sediments do not represent the latest tectonic feature of the Pan-African orogeny in the ANS. The latest orogenic episodes were the two successive phases of compression and transpression, respectively. It is speculated that extension during (Hammamat) basin formation was sufficiently effective to reduce the thickness of the orogenic lithosphere until it became gravitationally stable, and incapable of further gravitational deformation.  相似文献   

5.
The Arabian-Nubian-Shield (ANS) is composed of a number of island arcs together with fragments of oceanic lithospere and minor continental terranes. The terranes collided with each other until c. 600 Ma ago. Subsequently, they were accreted onto West Gondwana, west of the present River Nile. Apart from widespread ophiolite nappe emplacement, collisional deformation and related lithospheric thickening appear to be relatively weak. Early post-collisional structures comprise not only extensional features such as fault-bounded (molasse) basins and metamorphic core complexes, but also major wrench fault systems, and thrusts and folds. The Hammamat Group was deposited in fault-bounded basins, which formed due to N-S to NW-SE directed extension. Hammamat Group sediments were intruded by late orogenic granites, dated as c. 595 Ma old. A NNW-SSE-oriented compression prevailed after the deposition of the Hammamat Sediments. This is documented by the presence of NW-verging folds and SE-dipping thrusts that were refolded and thrusted in the same direction. Restoration of a NNW-SSE- oriented balanced section across Wadi Queih indicates more than 25% of shortening. Transpressional wrenching related to the Najd Fault System followed this stage. The wrenching produced NW-SE sinistral faults associated with positive flower structures that comprise NE-verging folds and SW-dipping thrusts. Section restoration across these late structures indicates 15 17% shortening in the NE-SW direction. At a regional scale, the two post-Hammamat compressional phases produced an interference pattern with domes and basins. It can be shown that the Najd Fault System splays into a horsetail structure in the Wadi Queih area and loses displacement towards N and NW. The present study shows a distinct space and time relationship between deposition of Hammamat Group/late-Pan-African clastic sediments and late stages of Najd Fault wrench faulting: Hammamat deposition is followed by two episodes of compression, with the second episode being related to Najd Fault transpression. Therefore, the Hammamat sediments do not represent the latest tectonic feature of the Pan-African orogeny in the ANS. The latest orogenic episodes were the two successive phases of compression and transpression, respectively. It is speculated that extension during (Hammamat) basin formation was sufficiently effective to reduce the thickness of the orogenic lithosphere until it became gravitationally stable, and incapable of further gravitational deformation.  相似文献   

6.
《Geodinamica Acta》2003,16(2-6):131-147
Combining fieldwork and surface data, we have reconstructed the Cenozoic structural and tectonic evolution of the Northern Bresse. Analysis of drainage network geometry allowed to detect three major fault zones trending NE–SW, E–W and NW–SE, and smooth folds with NNE trending axes, all corroborated with shallow well data in the graben and fieldwork on edges. Cenozoic paleostress succession was determined through fault slip and calcite twin inversions, taking into account data of relative chronology. A N–S major compression, attributed to the Pyrenean orogenesis, has activated strike-slip faults trending NNE along the western edge and NE–SW in the graben. After a transitional minor E–W trending extension, the Oligocene WNW extension has structured the graben by a collapse along NNE to NE–SW normal faults. A local NNW extension closes this phase. The Alpine collision has led to an ENE compression at Early Miocene. The following WNW trending major compression has generated shallow deformation in Bresse, but no deformation along the western edge. The calculation of potential reactivation of pre-existing faults enables to propose a structural sketch map for this event, with a NE–SW trending transfer fault zone, inactivity of the NNE edge faults, and possibly large wavelength folding, which could explain the deposit agency and repartition of Miocene to Quaternary deformation.  相似文献   

7.
Mapping based on the interpreted seismic data covering the Abu Gharadig Basin in the northern Western Desert has revealed that the deposition of the Upper Cretaceous succession was controlled by dextral wrench tectonics. This dextral shear accompanied NW movement of the African Plate relative to Laurasian Plate. Structural depth maps of the Cenomanian Bahariya Formation and the Turonian-Coniacian D and A members of Abu Roash Formation display a clear NE-SW anticline dissected by NW-SE normal faults. This anticline represents one of the en echelon folds characterizing the wrench compressional component. The interpreted normal faults reflect the extensional T-fractures associated with the wrenching tectonics. The interaction between the aforementioned NE-SW anticline with the NW-SE extensional faults further confirms the effect of the Upper Cretaceous dextral wrench tectonic. However, the influence of this wrench tectonics was gradually diminishing from the Cenomanian up to the Coniacian times. The NW-SE compressional stress of the dextral wrench compressional component during the Cenomanian up to Coniacian age was greater in NW direction than the SE direction. Three mapped structural closures which are predicted to be potential hydrocarbon traps belonging to the Bahariya Formation and Abu Roash D Member, and are recommended to be drilled in the study area, with potential reservoirs. The regularity of the en echelon array of both anticlines and normal faults within the wrench zones suggests additional closures may be located elsewhere beside the study area.  相似文献   

8.
《Geodinamica Acta》1998,11(5):233-247
In New Zealand, the Marlborough strike-slip faults link the Hikurangi subduction zone to the Alpine fault collision zone. Stratigraphic and structural analysis in the Marlborough region constrain the inception of the current strike-slip tectonics.Six major Neogene basins are investigated. Their infill is composed of marine and freshwater sediments up to 3 km thick; they are characterised by coarse facies derived from the basins bounding relief, high sedimentation rates and asymmetric geometries. Proposed factors that controlled the basins' generation are the initial geometry of the strike-slip faults and the progressive strike-slip motion. Two groups of basins are presented: the early Miocene (23 My) basins were generated under wrench tectonics above releasing-jogs between basement faults. The late Miocene (11 My) basins were initiated by halfgrabens tilted along straighter faults during a transtensive stage. Development of faults during Cretaceous to Oligocene times facilitated the following propagation of wrench tectonics. The Pliocene (5 My) to current increasing convergence has shortened the basins and distorted the Miocene array of faults. This study indicates that the Marlborough Fault System is an old feature that connected part of the Hikurangi margin to the Alpine fault since the subduction and collision initiation.  相似文献   

9.
Based on fault geometry, petrography, and geochronology of granitic rocks as well as palaeomagnetic data from the Gyeongsang Basin, two conjugate fault sets are explained as a reflection of NNE-trending right-lateral wrench tectonics. According to this interpretation, the Gaum and Yangsan fault sets correspond to antithetic faulting by R′-shear and synthetic faulting by R-shear, respectively; they have rotated clockwise and counterclockwise, respectively, due to NE–SW compression (shortening), as a result of a NNE-trending wrenching force (simple shear). During progressive deformation, NS- or NNW-trending strike–slip faulting by P-shear occurred in the Yeongyang sub-basin, and finally the Yangsan fault formed as a wrench fault bisecting the P-shear and R-shear directions. Extension of the faults (R-shear, striking ~N22°E) generated by block rotation on the east side of the Yangsan fault (wrench fault, striking ~N13°E) resulted in convex eastward deflections. We suggest that this was caused by oroclinal bending of the existing faults generated by block rotations in opposite directions and is inferred to have been closely related to the East Sea (i.e. Sea of Japan) opening.  相似文献   

10.
Fault-slip data are used to reconstruct varying tectonic regimes associated with transverse fold development along the eastern and southern margins of the Jaca basin, southern Pyrenees, Spain. The Spanish Pyrenean foreland consists of thrust sheets and leading-edge décollement folds which developed within piggyback basins. Guara Formation limestones on the margins of the Jaca basin were deposited synchronously with deformation and are exposed in the External Sierra. Within the transverse folds, principal shortening axes determined from P and T dihedra plots of fault-slip data show a shift from steep shortening in stratigraphically older beds to NNE–SSW horizontal shortening in younger beds. Older strata are characterized by extensional faults interpreted to result from halotectonic (salt tectonics) deformation, whereas younger strata are characterized by contraction and strike-slip faults interpreted to result from thrust sheet emplacement. The interpretation of the timing for the shortening axes in the younger strata is supported by the observation that these axes are parallel to shortening axes determined from finite strain analysis, calcite twins, and regional thrusting directions determined from fault-related folds and slickenlines. This study shows that fault population analysis in syntectonic strata provides an opportunity to constrain kinematic evolution during orogeny.  相似文献   

11.
Abstract

In New Zealand, the Marlborough strike-slip faults link the Hikurangi subduction zone to the Alpine fault collision zone. Stratigraphic and structural analysis in the Marlborough region constrain the inception of the current strike-slip tectonics.

Six major Neogene basins are investigated. Their infill is composed of marine and freshwater sediments up to 3 km thick; they are characterised by coarse facies derived from the basins bounding relief, high sedimentation rates and asymmetric geometries. Proposed factors that controlled the basins generation are the initial geometry of the strike-slip faults and the progressive strike-slip motion. Two groups of basins are presented: the early Miocene (23 My) basins were generated under wrench tectonics above releasing-jogs between basement faults. The late Miocene (11 My) basins were initiated by halfgrabens tilted along straighter faults during a transtensive stage. Development of faults during Cretaceous to Oligocene times facilitated the following propagation of wrench tectonics. The Pliocene (5 My) to current increasing convergence has shortened the basins and distorted the Miocene array of faults. This study indicates that the Marlborough Fault System is an old feature that connected part of the Hikurangi margin to the Alpine fault since the subduction and collision initiation. © Elsevier, Paris  相似文献   

12.
Experimental (clay) models of inversion structures   总被引:3,自引:0,他引:3  
Experimental modeling is used to study the geometry and evolution of inversion structures. Two main types of inversion structures are analyzed:

1. (1) structures formed by fault-propagation folding; and

2. (2) structures formed by fault-bend folding on listric faults.

Fault-propagation inversion structures initially develop as broad drape folds with possible fault breakthrough during an early extensional phase. Syn-extensional strata deposited in the hanging wall typically thicken away from the fault. Compressional reactivation results in reversal of slip on the master and secondary faults, their rotation to shallower dips, and the development of a compressional fault-propagation fold. Key features of the fault-propagation fold are basinward thickening of syn-extensional units and resulting steep dips of the front limb of the structure. Fault-bend inversion structures initiate as rollover folds within extensional half-graben. Deformation is primarily localized along a system of antithetic faults. Syn-extensional strata typically thicken across the fault but also thin basinward away from the fault. During compression, the extensional rollover folds are folded into compressional fault-bend folds. Key features of this structure are thinning of syn-extensional units into the basin. Inversion of more symmetric graben results in a doubly-convex geometry of syn-extensional units. These observations of bed geometry and thickness provide predictive models for interpreting the geometries of inversion structures in areas of poor data quality.  相似文献   


13.
Detailed geologic mapping of the San Andreas fault zone in Los Angeles County since 1972 has revealed evidence for diverse histories of displacement on branch and secondary faults near Palmdale. The main trace of the San Andreas fault is well defined by a variety of physiographic features. The geologic record supports the concept of many kilometers of lateral displacement on the main trace and on some secondary faults, especially when dealing with pre-Quaternary rocks. However, the distribution of upper Pleistocene rocks along branch and secondary faults suggests a strong vertical component of displacement and, in many locations, Holocene displacement appears to be primarily vertical. The most recent movement on many secondary and some branch faults has been either high-angle (reverse and normal) or thrust. This is in contrast to the abundant evidence for lateral movement seen along the main San Andreas fault. We suggest that this change in the sense of displacement is more common than has been previously recognized.The branch and secondary faults described here have geomorphic features along them that are as fresh as similar features visible along the most recent trace of the San Andreas fault. From this we infer that surface rupture occurred on these faults in 1857, as it did on the main San Andreas fault. Branch faults commonly form “Riedel” and “thrust” shear configurations adjacent to the main San Andreas fault and affect a zone less than a few hundred meters wide. Holocene and upper Pleistocene deposits have been repeatedly offset along faults that also separate contrasting older rocks. Secondary faults are located up to 1500 m on either side of the San Andreas fault and trend subparallel to it. Moreover, our mapping indicates that some portions of these secondary faults appear to have been “inactive” throughout much of Quaternary time, even though Holocene and upper Pleistocene deposits have been repeatedly offset along other parts of these same faults. For example, near 37th Street E. and Barrel Springs Road, a limited stretch of the Nadeau fault has a very fresh normal scarp, in one place as much as 3 m high, which breaks upper Pleistocene or Holocene deposits. This scarp has two bevelled surfaces, the upper surface sloping significantly less than the lower, suggesting at least two periods of recent movement. Other exposures along this fault show undisturbed Quaternary deposits overlying the fault. The Cemetery and Little Rock faults also exhibit selected reactivation of isolated segments separated by “inactive” stretches.Activity on branch and secondary faults, as outlined above, is presumed to be the result of sympathetic movement on limited segments of older faults in response to major movement on the San Andreas fault. The recognition that Holocene activity is possible on faults where much of the evidence suggests prolonged inactivity emphasizes the need for regional, as well as detailed site studies to evaluate adequately the hazard of any fault trace in a major fault zone. Similar problems may be encountered when geodetic or other studies, Which depend on stable sites, are conducted in the vicinity of major faults.  相似文献   

14.
Three-dimensional modelling tools are used with structural and palaeomagnetic analysis to constrain the tectonic history of part of the Dauphiné zone (external Western Alps). Four compressive events are identified, three of them being older than the latest Oligocene. Deformation D1 consists of W–SW directed folds in the Mesozoic cover of the study area. This event, better recorded in the central and southern Pelvoux massif, could be of Eocene age or older. Deformation D2 induced N-NW-oriented basement thrusting and affected the whole southern Dauphiné basement massifs south of the study area. The main compressional event in the study area (D3) was WNW oriented and occurred before 24 Ma under a thick tectonic load probably of Penninic nappes. The D2-D3 shift corresponds to a rapid transition from northward propagation of the Alpine collision directly driven by Africa-Europe convergence, to the onset of westward escape into the Western Alpine arc. This Oligocene change in the collisional regime is recorded in the whole Alpine realm, and led to the activation of the Insubric line. The last event (D4) is late Miocene in age and coeval with the final uplift of the Grandes Rousses and Belledonne external massifs. It produced strike-slip faulting and local rotations that significantly deformed earlier Alpine folds and thrusts, Tethyan fault blocks and Hercynian structures. 3D modelling of an initially horizontal surface, the interface between basement and Mesozoic cover, highlights large-scale basement involved asymmetric folding that is also detected using structural analysis. Both, Jurassic block faulting and basement fold-and-thrust shortening were strongly dependent on the orientation of Tethyan extension and Alpine shortening relative to the late Hercynian fabric. The latter’s reactivation in response to oblique Jurassic extension produced an en-échelon syn-rift fault pattern, best developed in the western, strongly foliated basement units. Its Alpine reactivation occurred with maximum efficiency during the early stages of lateral escape, with tectonic transport in the overlying units being sub-perpendicular to it.  相似文献   

15.
Along active margins, tectonic features that develop in response to plate convergence are strongly controlled by subduction zone geometry. In West Junggar, a segment of the giant Palaeozoic collage of Central Asia, the West Karamay Unit represents a Carboniferous accretionary complex composed of fore-arc sedimentary rocks and ophiolitic mélanges. The occurrence of quasi-synchronous upright folds and folds with vertical axes suggests that transpression plays a significant role in the tectonic evolution of the West Junggar. Latest Carboniferous (ca. 300 Ma) alkaline plutons postdate this early phase of folding, which was synchronous with accretion of the Carboniferous complex. The Permian Dalabute sinistral fault overprints Carboniferous ductile shearing and split the West Karamay Unit ca. 100 km apart. Oblique convergence may have been provoked by the buckling of the Kazakh orocline and relative rotations between its segments. Depending upon the shape of the convergence zone, either upright folds and fold with vertical axes, or alternatively, strike–slip brittle faults developed in response to strain partitioning. Sinistral brittle faulting may account for the lateral imbrication of units in the West Junggar accretionary complex.  相似文献   

16.
GPS-derived velocities (1993–2002) in northwestern California show that processes other than subduction are in part accountable for observed upper-plate contraction north of the Mendocino triple junction (MTJ) region. After removing the component of elastic strain accumulation due to the Cascadia subduction zone from the station velocities, two additional processes account for accumulated strain in northern California. The first is the westward convergence of the Sierra Nevada–Great Valley (SNGV) block toward the coast and the second is the north–northwest impingement of the San Andreas fault system from the south on the northern California coastal region in the vicinity of Humboldt Bay. Sierra Nevada–Great Valley block motion is northwest toward the coast, convergent with the more northerly, north–northwest San Andreas transform fault-parallel motion. In addition to the westward-converging Sierra Nevada–Great Valley block, San Andreas transform-parallel shortening also occurs in the Humboldt Bay region. Approximately 22 mm/yr of distributed Pacific–SNGV motion is observed inland of Cape Mendocino across the northern projections of the Maacama and Bartlett Springs fault zones but station velocities decrease rapidly north of Cape Mendocino. The resultant 6–10 mm/yr of San Andreas fault-parallel shortening occurs above the southern edge of the subducted Gorda plate and at the latitude of Humboldt Bay. Part of the San Andreas fault-parallel shortening may be due to the viscous coupling of the southern edge of the Gorda plate to overlying North American plate. We conclude that significant portions of the upper-plate contraction observed north of the MTJ region are not solely a result of subduction of the Gorda plate but also a consequence of impingement of the western edge of the Sierra Nevada–Great Valley block and growth of the northernmost segments of the San Andreas fault system.  相似文献   

17.
At its eastern termination, the High Atlas Fault in the Western High Atlas in Morocco, consists of a splay of three faults. In the interjacent fault blocks, Neo- and Paleoproterozoic basement, forming the northernmost extremity of the NW-African Craton, is cropping out. The Precambrian basement witnesses a long history of brittle deformation starting at the end of the Pan-African Orogeny. A subsequent episode of normal faulting can be related to the development of a Hercynian basin along the northern passive margin of the cratonic promontory. With regard to the main tectonic activity in the Western High Atlas, basically two models exist: one emphasising block tectonics reflecting Mesozoic rifting followed by Alpine uplift and inversion, the other emphasising Late Paleozoic dextral wrench tectonics. The analysis of the fault activity along the splay faults reveals a predominantly Alpine history, consisting of the Triassic development of the Atlas Rift along the axial zone of the orogen, followed by uplift and inversion. The Late Jurassic to Cenozoic fault activity took place in a sinistral transpressive regime and was partitioned over the three splay faults. Dextral strike-slip fault activity could not be demonstrated in the fault blocks nor along the splay faults. Therefore the faults were probably not involved in Late Paleozoic dextral wrench tectonics.  相似文献   

18.
走滑断层研究进展及启示   总被引:2,自引:2,他引:0  
自走滑断层概念提出之后,走滑断层在地质科学研究上的重要性逐渐体现出来,并在几何学、运动学、动力学及其构造意义等方面取得了重要的认识,使得走滑断层的研究得到快速的发展,但其分类及其成因机制分析还存在一定的局限性。在走滑断层相关文献调研的基础上,文章对走滑断层原理、概念和相关术语发展历程进行了归纳总结,同时也对走滑断层的位移特征、识别标志、力学性质、走滑派生或伴生构造、走滑盆地特征、走滑断层分类及走滑断层实例等研究成果进行了系统性研究分析。在此基础上,结合走滑断层的力学机制,提出走滑断层新分类方式,并运用新的分类方式进一步对美国西海岸圣安德列斯断层、新西兰的阿尔卑斯断层和中国著名的郯庐断裂带以及阿尔金断裂带等典型断层进行简要分析。   相似文献   

19.
Hand-specimen and outcrop scale examples of folds are analyzed here to identify the characteristic signatures of fold-accommodation faults. We describe and analyze the geometric and kinematic relationships between folds and their associated faults in detail including the structural position and spatial distribution of faults within a fold, the displacement distribution along the faults by applying separation–distance plots for the outcrop scale examples, and the change of cut-off angle when the fault cut across folded layers. A comparison between fold-accommodation faults and fault related folds based on their separation–distribution plots and the problem of time sequence between faulting and folding are discussed in order to distinguish fold-accommodation faults from the reverse faults geometrically and kinematically similar to them. The analysis results show that fold-accommodation faults originate and terminate within a fold and usually do not modify the geometry of the fold because of their limited displacement. The out-of-syncline thrust has a diagnostically negative slope (separation value decreasing away from the upper fault tip) in the separation–distance graph. The change of cut-off angle and the spatial distribution of faults display a close relationship with the axial surface of the fold. Our analyses show that fold-accommodation faults are kinematically consistent with the flexural slip of the fold. The interbedded strata with competence contrast facilitate formation of fold-accommodation faults. These characteristic signatures are concluded as a set of primary identification criteria for fold-accommodation faults.  相似文献   

20.
早中生代(晚印支-早燕山期)岳阳-赤壁断褶带位于江南造山带与中扬子前陆盆地交界地带.作者对该构造带进行了地表地质调查,以此为基础探讨了构造剖面结构及构造变形动力机制.岳阳-赤壁断褶带自南而北可分为岳阳-临湘基底滑脱-逆冲带,桃花泉-肖家湾盖层滑脱褶皱带,以及赤壁-嘉鱼前陆盆地断-褶-盆构造带.岳阳-临湘基底滑脱-逆冲带自南而北依次有郭镇向斜、官山背斜、临湘倒转向斜和聂市背斜,组成隔槽式褶皱组合.褶皱轴面多向南倾,褶皱变形面为南华系盖层与冷家溪群褶皱基底间的角度不整合面和顺界面的滑脱断裂面.桃花泉-肖家湾盖层滑脱褶皱带主要发育轴面南倾倒转褶皱,褶皱波长较小,卷入地层为南华系-志留系以及上石炭统-中三叠统沉积盖层.赤壁-嘉鱼前陆盆地断-褶-盆构造带以南倾蒲圻断裂(江南断裂)为南部边界,发育T3-J2前陆盆地沉积,带内褶皱与断裂卷入地层包括沉积盖层以及T3-J2地层:南部断裂与褶皱轴面南倾.北部轴面近直立.自南西至北东,研究区内构造线走向由EW向渐变为NEE-NE向.上述构造分带及变形特征反映出自南向北的运动指向,表明岳阳-赤壁断褶带具前陆冲断带构造性质.从断裂相关褶皱理论出发,以地表构造特征为依据,厘定了岳阳-赤壁地质剖面结构并进行了变形动力机制分析,认识如下:①自南而北、自下而上的多个滑脱层及其间的南倾逆断裂或断坡(主要为江南断裂)组成近似台阶状的逆冲断裂系统,从总体上控制了构造块体的滑移、逆冲以及相应的构造格架或变形分区.②郭镇向斜为基底滑脱褶皱,官山背斜具滑脱褶皱和断裂传播褶皱双重成因,聂市背斜为断裂转折褶皱;临湘向斜为受两侧背斜控制的被动向斜,由于弯滑褶皱作用在其两翼沿不整合界面形成滑脱断裂.③岳阳-临湘基底滑脱-逆冲带隔槽式褶皱的形成主要受控于褶皱基底的滑脱和基底整体的水平压缩,其形成机制类似于肿缩式褶皱.最后讨论认为湘东北-鄂东南地区不存在大规模、长距离的逆冲推覆构造.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号