首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coherent synchrotron emission by particles moving along semi-infinite tracks is discussed, with a specific application to radio emission from air showers induced by high-energy cosmic rays. It is shown that in general, radiation from a particle moving along a semi-infinite orbit consists of usual synchrotron emission and modified impulsive bremsstrahlung. The latter component is due to the instantaneous onset of the curved trajectory of the emitting particle at its creation. Inclusion of the bremsstrahlung leads to broadening of the radiation pattern and a slower decay of the spectrum at the cut-off frequency than the conventional synchrotron emission. Possible implications of these features for air shower radio emission are discussed.  相似文献   

2.
《Astroparticle Physics》2004,21(6):565-581
The mass composition of high-energy cosmic rays at energies above 1015 eV can provide crucial information for the understanding of their origin. Air showers were measured simultaneously with the SPASE-2 air shower array and the AMANDA-B10 Cherenkov telescope at the South Pole. This combination has the advantage to sample almost all high-energy shower muons and is thus a new approach to the determination of the cosmic ray composition. The change in the cosmic ray mass composition was measured versus existing data from direct measurements at low energies. Our data show an increase of the mean log atomic mass lnA by about 0.8 between 500 TeV and 5 PeV. This trend of an increasing mass through the “knee” region is robust against a variety of systematic effects.  相似文献   

3.
The extragalactic flux of protons is predicted to be suppressed above the famous Greisen–Zatsepin–Kuzmin cut-off at about EGZK  50 EeV due to the resonant photo-pion production with the cosmic microwave background. Current cosmic ray data do not give a conclusive confirmation of the GZK cut-off and the quest about the origin and the chemical composition of the highest energy cosmic rays is still open. Amongst other particles neutrinos are expected to add to the composition of the cosmic radiation at highest energies. We present an approach to simulate neutrino induced air showers by a full Monte Carlo simulation chain. Starting with neutrinos at the top of the atmosphere, the performed simulations take into account the details of the neutrino propagation inside the Earth and atmosphere as well as inside the surrounding mountains. The products of the interactions are input for air shower simulations. The mountains are modelled by means of a digital elevation map. To exemplify the potential and features of the developed tools we study the possibility to detect neutrino induced extensive air showers with the fluorescence detector set-up of the Pierre Auger Observatory. Both, down-going neutrinos and up-going neutrinos are simulated and their rates are determined. To evaluate the sensitivity, as a function of the incoming direction, the aperture, the acceptance and the total observable event rates are calculated for the Waxman–Bahcall (WB) bound.  相似文献   

4.
The events following the impact of intergalactic suprathermal grains with atmosphere are examined, and some similarity is found between the expected air shower and observations of largest cosmic ray showers. It is concluded that the largest air showers are, in any case, initiated by primaries of intergalactic origin. Whether the primaries are suprathermal dust grains or single nuclei is inconclusive.  相似文献   

5.
Radio detection of cosmic-ray-induced air showers has come to a flight the last decade. Along with the experimental efforts, several theoretical models were developed. The main radio-emission mechanisms are established to be the geomagnetic emission due to deflection of electrons and positrons in Earth’s magnetic field and the charge-excess emission due to a net electron excess in the air shower front. It was only recently shown that Cherenkov effects play an important role in the radio emission from air showers. In this article we show the importance of these effects to extract quantitatively the position of the shower maximum from the radio signal, which is a sensitive measure for the mass of the initial cosmic ray. We also show that the relative magnitude of the charge-excess and geomagnetic emission changes considerably at small observer distances where Cherenkov effects apply.  相似文献   

6.
The energy reconstruction of extensive air showers measured with the LOFAR Radboud Air Shower Array (LORA) is presented in detail. LORA is a particle detector array located in the center of the LOFAR radio telescope in the Netherlands. The aim of this work is to provide an accurate and independent energy measurement for the air showers measured through their radio signal with the LOFAR antennas. The energy reconstruction is performed using a parameterized relation between the measured shower size and the cosmic-ray energy obtained from air shower simulations. In order to illustrate the capabilities of LORA, the all-particle cosmic-ray energy spectrum has been reconstructed, assuming that cosmic rays are composed only of protons or iron nuclei in the energy range between ∼2 × 1016 and 2 × 1018 eV. The results are compatible with literature values and a changing mass composition in the transition region from a Galactic to an extragalactic origin of cosmic rays.  相似文献   

7.
Particle bursts detected on the earth's surface during thunderstorms by various particle detectors originated from the relativistic runaway electron avalanches (RREAs) initiated by free electrons accelerated in the strong atmospheric electric fields. Two oppositely directed dipoles in the thundercloud accelerate electrons in the direction of the earth's surface, and to the open space. The particle bursts observed by orbiting gamma ray observatories are called terrestrial gamma ray flashes (TGFs, with energies of several MeV, only sometimes reaching tens of MeV); ones registered by particle detectors located on the ground – are called thunderstorm ground enhancements (TGEs, with energies, usually reaching 40-50 MeV). Balloons and aircraft in the troposphere register gamma ray glows (with energies of several MeV). Recently, high-energy atmospheric physics includes also, so-called, downward TGFs (DTGFs), intense particle bursts with a duration of a few milliseconds.Well-known extensive air showers (EASs) originate from the interactions of galactic protons and fully-stripped nuclei with the atmosphere atoms. EAS particles have very dense cores around the shower axes. However, high-energy particles in the EAS cores comprise a very thin disc of (a few tens of ns), and a particle detector traversed by an EAS core will not register a particle burst, but only one very large pulse. Only neutron monitor, by collecting delayed thermal neutrons from EAS core particle interactions with soil, can register particle bursts. We discuss the relation between short particle bursts available from the largest particle arrays with EAS phenomena. We demonstrate that the neutron monitors can extend the EAS “lifetime” up to a few milliseconds, a time comparable with DTGFs duration. The possibility to use the network of neutron monitors for high-energy cosmic ray research is also deliberated.Plain Language Summary: Short and extended particle bursts are registered in space, the troposphere, and the earth's surface. Coordinated monitoring of the particle fluxes, near-surface electric fields, and lightning flashes makes it possible to formulate a hypothesis on the origin of intense bursts and their relation to extensive air showers and atmospheric discharges. Analysis of the observational data and possible origination scenarios of particle bursts allows us to conclude that the bursts can be explained by the electron acceleration in the thunderous atmosphere and by gigantic showers developed in the terrestrial atmosphere by high-energy protons and fully-stripped nuclei accelerated in Galaxy.  相似文献   

8.
Lofar     
H01 A first glance at LOFAR: Experience with the Initial Test Station H02 The Square Kilometer Array (SKA) – Status and Prospects H03 LOFAR calibration: confrontation with real WSRT data H04 Simulations of magnetic fields in the cosmos H05 RM structure in the polarized synchrotron emission from our Galaxy and the Perseus cluster of Galaxies H06 Mapping the Reionization Era through the 21 cm Emission Line H07 Spiral galaxies seen with LOFAR H08 Software Infrastructure for Distributed Data Processing H09 The Low Frequency Array (LOFAR) – Status and Prospects H10 Coincident cosmic ray measurements with LOPES and KASCADE‐Grande H11 Radio relics in a cosmological cluster merger simulation H12 Detection of radio pulses from cosmic ray air showers with LOPES H13 Geosynchrotron radio emission from extensive air showers H14 Imaging capabilities of future radio telescopes H15 Digital signal processing system of Multi‐Beam Meter Wavelengths Array. H16 The Multi‐Beam Meter Wavelengths Array H17 Monitoring of the Solar Activity by LOFAR H18 Calibration of LOPES30 H19 An Outreach Project for LOFAR and Cosmic Ray Detection H20 Galactic tomography based on observations with LOFAR and Effelsberg H21 150 MHz observations with the Westerbork and GMRT radio telescopes of Abell 2256 and the Bootes field: Ultra‐steep spectrum radio sources as probes of cluster and galaxy evolution H22 Experience of simultaneous observations with two independent multi‐beams of the Large Phased Array H23 GRID Computing at Forschungszentrum Karlsruhe suitable for LOFAR  相似文献   

9.
Extensive air showers, induced by high energy cosmic rays impinging on the Earth’s atmosphere, produce radio emission that is measured with the LOFAR radio telescope. As the emission comes from a finite distance of a few kilometers, the incident wavefront is non-planar. A spherical, conical or hyperbolic shape of the wavefront has been proposed, but measurements of individual air showers have been inconclusive so far. For a selected high-quality sample of 161 measured extensive air showers, we have reconstructed the wavefront by measuring pulse arrival times to sub-nanosecond precision in 200 to 350 individual antennas. For each measured air shower, we have fitted a conical, spherical, and hyperboloid shape to the arrival times. The fit quality and a likelihood analysis show that a hyperboloid is the best parameterization. Using a non-planar wavefront shape gives an improved angular resolution, when reconstructing the shower arrival direction. Furthermore, a dependence of the wavefront shape on the shower geometry can be seen. This suggests that it will be possible to use a wavefront shape analysis to get an additional handle on the atmospheric depth of the shower maximum, which is sensitive to the mass of the primary particle.  相似文献   

10.
The Cherenkov radio pulse emitted by hadronic showers of energies in the EeV range in ice is calculated for the first time using full three dimensional simulations of both shower development and the coherent radio pulse emitted as the excess charge develops in the shower. A Monte Carlo, ZHAireS, has been developed for this purpose combining the high energy hadronic interaction capabilities of AIRES, and the dense media propagation capabilities of TIERRAS, with the precise low energy tracking and specific algorithms developed to calculate the radio emission in ZHS. A thinning technique is implemented to allow the simulation of radio pulses induced by showers up to 10 EeV in ice. The code is validated comparing the results for electromagnetic and hadronic showers to those obtained with GEANT4 and ZHS codes. The contribution to the pulse of other shower particles in addition to electrons and positrons, mainly protons, pions and muons, is found to be below 3% for 10 PeV and above proton induced showers. The characteristics of hadronic showers and the corresponding Cherenkov frequency spectra are compared with those from purely electromagnetic showers. The dependence of the spectra on shower energy and high-energy hadronic model is addressed and parameterizations for the radio emission in hadronic showers in ice are given for practical applications.  相似文献   

11.
12.
CODALEMA is one of the pioneer experiments dedicated to the radio detection of ultra high energy cosmic rays (UHECR), located at the radio observatory of Nançay (France). The CODALEMA experiment uses both a particle detector array and a radio antenna array. Data from both detection systems have been used to determine the ground coordinates of the core of extensive air showers (EAS). We discuss the observed systematic shift of the core positions determined with these two detection techniques. We show that this shift is due to the charge-excess contribution to the total radio emission of air showers, using the simulation code SELFAS. The dependences of the radio core shift to the primary cosmic ray characteristics are studied in details. The observation of this systematic shift can be considered as an experimental signature of the charge excess contribution.  相似文献   

13.
The burst of radio emission by an extensive air shower provides a promising alternative for detecting ultra-high energy cosmic rays. We have developed an independent numerical program to simulate these radio signals. Our code is based on a microscopic treatment, with both the geosynchrotron radiation and charge included.Here we give the first presentation of our basic program and its results. When the time-domain signals for different polarizations are computed, we find that the pulses take on a bipolar pattern and the spectrum is suppressed towards the lower frequencies. We investigate how showers at different heights in the atmosphere contribute to the total signal, and examine the signal strength and distribution at sites with different elevations. We also study the signal from showers with different inclination angles and azimuth directions. In all these cases we find the charge excess effect is important.  相似文献   

14.
Coherent electromagnetic erenkov radiation is produced by cosmic ray air showers passing through the atmosphere. This radiation is detected by radio telescopes. We demonstrate here that the effect of random spatial fluctuations in the refractive index of air, about a mean exceeding unity, causes the airshower to emit not only the spontaneous coherent radio emission described elsewhere by Kahn and Lerche, but also an induced radiation field which can exceed the spontaneous field in certain frequency bands. Further the conditions for emission of the coherent radio erenkov radiation are altered by the presence of the refractive index fluctuations. And the Earth's magnetic field gives rise to the dominant term in the far-field radiation, be it spontaneous or induced, since it causes a systematic separation of electrons and positrons in the shower which, for parameters currently acceptable for air showers, is the major factor in determining the far-field radiation pattern. Also we suggest that the coherent 500 Mc/sec radiation seen from occasional showers is probably a reflection of an atmospheric correlation length of order 15 cm at the time the shower passes through the atmosphere.  相似文献   

15.
《Astroparticle Physics》2002,16(4):183-386
Frequency distributions of local muon densities in high-energy extensive air showers (EAS) are presented as signature of the primary cosmic ray energy spectrum in the knee region. Together with the gross shower variables like shower core position, angle of incidence, and the shower sizes, the KASCADE experiment is able to measure local muon densities for two different muon energy thresholds. The spectra have been reconstructed for various core distances, as well as for particular subsamples, classified on the basis of the shower size ratio Nμ/Ne. The measured density spectra of the total sample exhibit clear kinks reflecting the knee of the primary energy spectrum. While relatively sharp changes of the slopes are observed in the spectrum of EAS with small values of the shower size ratio, no such feature is detected at EAS of large Nμ/Ne ratio in the energy range of 1–10 PeV. Comparing the spectra for various thresholds and core distances with detailed Monte Carlo simulations the validity of EAS simulations is discussed.  相似文献   

16.
The Telescope Array experiment studies ultra high energy cosmic rays using a hybrid detector. Fluorescence telescopes measure the longitudinal development of the extensive air shower generated when a primary cosmic ray particle interacts with the atmosphere. Meanwhile, scintillator detectors measure the lateral distribution of secondary shower particles that hit the ground. The Middle Drum (MD) fluorescence telescope station consists of 14 telescopes from the High Resolution Fly’s Eye (HiRes) experiment, providing a direct link back to the HiRes measurements. Using the scintillator detector data in conjunction with the telescope data improves the geometrical reconstruction of the showers significantly, and hence, provides a more accurate reconstruction of the energy of the primary particle. The Middle Drum hybrid spectrum is presented and compared to that measured by the Middle Drum station in monocular mode. Further, the hybrid data establishes a link between the Middle Drum data and the surface array. A comparison between the Middle Drum hybrid energy spectrum and scintillator Surface Detector (SD) spectrum is also shown.  相似文献   

17.
We present the calculation of coherent radio pulses emitted by extensive air showers induced by ultra-high energy cosmic rays accounting for reflection on the Earth’s surface. Results have been obtained with a simulation program that calculates the contributions from shower particles after reflection at a surface plane. The properties of the radiation are discussed in detail emphasizing the effects of reflection. The shape of the frequency spectrum is shown to be closely related to the angle of the observer with respect to shower axis, becoming hardest in the Cherenkov direction. The intensity of the flux at a fixed observation angle is shown to scale with the square of the primary particle energy to very good accuracy indicating the coherent aspect of the emission. The simulation methods of this paper provide the foundations for energy reconstruction of experiments looking at the Earth from balloons and satellites. They can also be used in dedicated studies of existing and future experimental proposals.  相似文献   

18.
The intra-cluster and inter-galactic media that pervade the large scale structure of the Universe are known to be magnetized at sub-micro Gauss to micro Gauss levels and to contain cosmic rays. The acceleration of cosmic rays and their evolution along with that of magnetic fields in these media is still not well understood. Diffuse radio sources of synchrotron origin associated with the Intra-Cluster Medium (ICM) such as radio halos, relics and mini-halos are direct probes of the underlying mechanisms of cosmic ray acceleration. Observations with radio telescopes such as the Giant Metrewave Radio Telescope, the Very Large Array and the Westerbork Synthesis Radio Telescope have led to the discoveries of about 80 such sources and allowed detailed studies in the frequency range 0.15–1.4 GHz of a few. These studies have revealed scaling relations between the thermal and non-thermal properties of clusters and favour the role of shocks in the formation of radio relics and of turbulent re-acceleration in the formation of radio halos and mini-halos. The radio halos are known to occur in merging clusters and mini-halos are detected in about half of the cool-core clusters. Due to the limitations of current radio telescopes, low mass galaxy clusters and galaxy groups remain unexplored as they are expected to contain much weaker radio sources. Distinguishing between the primary and the secondary models of cosmic ray acceleration mechanisms requires spectral measurements over a wide range of radio frequencies and with high sensitivity. Simulations have also predicted weak diffuse radio sources associated with filaments connecting galaxy clusters. The Square Kilometre Array (SKA) is a next generation radio telescope that will operate in the frequency range of 0.05–20 GHz with unprecedented sensitivities and resolutions. The expected detection limits of SKA will reveal a few hundred to thousand new radio halos, relics and mini-halos providing the first large and comprehensive samples for their study. The wide frequency coverage along with sensitivity to extended structures will be able to constrain the cosmic ray acceleration mechanisms. The higher frequency (>5 GHz) observations will be able to use the Sunyaev–Zel’dovich effect to probe the ICM pressure in addition to tracers such as lobes of head–tail radio sources. The SKA also opens prospects to detect the ‘off-state’ or the lowest level of radio emission from the ICM predicted by the hadronic models and the turbulent re-acceleration models.  相似文献   

19.
In this paper, we used CORSIKA code to understand the characteristics of cosmic ray induced showers at extremely high energy as a function of energy, detector distance to shower axis, number, and density of secondary charged particles and the nature particle producing the shower. Based on the standard properties of the atmosphere, lateral and longitudinal development of the shower for photons and electrons has been investigated. Fluorescent light has been collected by the detector for protons, helium, oxygen, silicon, calcium and iron primary cosmic rays in different energies. So we have obtained a number of electrons per unit area, distance to the shower axis, shape function of particles density, percentage of fluorescent light, lateral distribution of energy dissipated in the atmosphere and visual field angle of detector as well as size of the shower image. We have also shown that location of highest percentage of fluorescence light is directly proportional to atomic number of elements. Also we have shown when the distance from shower axis increases and the shape function of particles density decreases severely. At the first stages of development, shower axis distance from detector is high and visual field angle is small; then with shower moving toward the Earth, angle increases. Overall, in higher energies, the fluorescent light method has more efficiency. The paper provides standard calibration lines for high energy showers which can be used to determine the nature of the particles.  相似文献   

20.
High energy neutrinos play a very important role for the understanding of the origin and propagation of ultra high energy cosmic rays (UHECR). They can be produced as a consequence of the hadronic interactions suffered by the cosmic rays in the acceleration regions, as by products of the propagation of the UHECR in the radiation background and as a main product of the decay of super heavy relic particles. A new era of very large exposure space observatories, of which the JEM-EUSO mission is a prime example, is on the horizon which opens the possibility of neutrino detection in the highest energy region of the spectrum. In the present work we use a combination of the PYTHIA interaction code with the CONEX shower simulation package in order to produce fast one-dimensional simulations of neutrino initiated showers in air. We make a detail study of the structure of the corresponding longitudinal profiles, but focus our physical analysis mainly on the development of showers at mid and high altitudes, where they can be an interesting target for space fluorescence observatories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号