首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seafloor images of coarse‐grained submarine channel–levée systems commonly reveal complex braid‐plain patterns of low‐amplitude bedforms and zones of apparent bypass; however, mechanisms of channel evolution and the resultant channel‐fill architecture are poorly understood. At Playa Esqueleto the lateral relationships between various elements of a deep‐marine slope channel system are well‐exposed. Specifically, the transition from gravel‐dominated axial thalwegs to laterally persistent marginal sandstones and isolated gravel‐filled scours is revealed. Marginal sandstones pass into a monotonous thin‐bedded succession which built to form relatively low‐relief levées bounding the channel belt; in turn, the levées onlap the canyon walls. Three orders of confinement were important during the evolution of the channel system: (i) first‐order confinement was provided by the erosional canyon which confined the entire system; (ii) confined levées built of turbidite sandstones and mudstones formed the second‐order confinement, and it is demonstrated that these built from overspill at thalweg margins; and (iii) third‐order confinement describes the erosional confinement of coarse‐grained thalwegs and scours. Finer‐grained sediment was transported in suspension and largely was unaffected by topography at the scale of individual thalwegs. Facies and clast analyses of conglomerate overlying channel‐marginal scours reveal that they were deposited by composite gravity flows, which were non‐cohesive, grain‐dominant debris flows with more fluidal cores. These flows were capable of basal erosion but were strongly depositional; frictional freezing at flow margins built gravel levées, while the core maintained a more fluidal transport regime. The resultant architecture consists of matrix‐rich, poorly sorted levées bounding better‐sorted, traction‐dominated cores. The planform geometry is interpreted to have consisted of a low‐sinuosity gravel braid‐plain built by accretion around mid‐channel and bank‐attached bars. This part of the system may be analogous to fluvial systems; however, the finer‐grained sediment load formed thick suspension clouds, probably several orders of magnitude thicker than the relief of braid‐plain topography and therefore controlled by the levées and canyon wall confinement.  相似文献   

2.
The Bashkirian Lower Brimham Grit of North Yorkshire, England, is a fluvio‐deltaic sandstone succession that crops out as a complex series of pinnacles, the three‐dimensional arrangement of which allows high‐resolution architectural analysis of genetically‐related lithofacies assemblages. Combined analysis of sedimentary graphic log profiles, architectural panels and palaeocurrent data have enabled three‐dimensional geometrical relationships to be established for a suite of architectural elements so as to develop a comprehensive depositional model. Small‐scale observations of facies have been related to larger‐scale architectural elements to facilitate interpretation of the palaeoenvironment of deposition to a level of detail that has rarely been attempted previously, thereby allowing interpretation of formative processes. Detailed architectural panels form the basis of a semi‐quantitative technique for recording the variety and complexity of the sedimentary lithofacies present, their association within recognizable architectural elements and, thus, the inferred spatio‐temporal relationship of neighbouring elements. Fluvial channel‐fill elements bounded by erosional surfaces are characterized internally by a hierarchy of sets and cosets with subtly varying compositions, textures and structures. Simple, cross‐bedded sets represent in‐channel migration of isolated mesoforms (dunes); cosets of both trough and planar‐tabular cross‐bedded facies represent lateral‐accreting and downstream‐accreting macroforms (bars) characterized by highly variable, yet predictable, patterns of palaeocurrent indicators. Relationships between sandstone‐dominated strata bounded by third‐order and fifth‐order surfaces, which represent in‐channel bar deposits and incised channel bases, respectively, chronicle the origin of the preserved succession in response to autocyclic barform development and abandonment, major episodes of incision probably influenced by episodic tectonic subsidence, differential tilting and fluvial incision associated with slip on the nearby North Craven Fault system. Overall, the succession represents the preserved product of an upper‐delta plain system that was traversed by a migratory fluvial braid‐belt system comprising a poorly‐confined network of fluvial channels developed between major sandy barforms that evolved via combined lateral‐accretion and downstream‐accretion.  相似文献   

3.
Existing facies models of tide‐dominated deltas largely omit fine‐grained, mud‐rich successions. Sedimentary facies and sequence stratigraphic analysis of the exceptionally well‐preserved Late Eocene Dir Abu Lifa Member (Western Desert, Egypt) aims to bridge this gap. The succession was deposited in a structurally controlled, shallow, macrotidal embayment and deposition was supplemented by fluvial processes but lacked wave influence. The succession contains two stacked, progradational parasequence sets bounded by regionally extensive flooding surfaces. Within this succession two main genetic elements are identified: non‐channelized tidal bars and tidal channels. Non‐channelized tidal bars comprise coarsening‐upward sandbodies, including large, downcurrent‐dipping accretion surfaces, sometimes capped by palaeosols indicating emergence. Tidal channels are preserved as single‐storey and multilateral bodies filled by: (i) laterally migrating, elongate tidal bars (inclined heterolithic strata, 5 to 25 m thick); (ii) forward‐facing lobate bars (sigmoidal heterolithic strata, up to 10 m thick); (iii) side bars displaying oblique to vertical accretion (4 to 7 m thick); or (iv) vertically‐accreting mud (1 to 4 m thick). Palaeocurrent data show that channels were swept by bidirectional tidal currents and typically were mutually evasive. Along‐strike variability defines a similar large‐scale architecture in both parasequence sets: a deeply scoured channel belt characterized by widespread inclined heterolithic strata is eroded from the parasequence‐set top, and flanked by stacked, non‐channelized tidal bars and smaller channelized bodies. The tide‐dominated delta is characterized by: (i) the regressive stratigraphic context; (ii) net‐progradational stratigraphic architecture within the succession; (iii) the absence of upward deepening trends and tidal ravinement surfaces; and (iv) architectural relations that demonstrate contemporaneous tidal distributary channel infill and tidal bar accretion at the delta front. The detailed facies analysis of this fine‐grained, tide‐dominated deltaic succession expands the range of depositional models available for the evaluation of ancient tidal successions, which are currently biased towards transgressive, valley‐confined estuarine and coarser grained deltaic depositional systems.  相似文献   

4.
Facies models that adequately represent the diverse range of fine‐grained fluvial systems are currently lacking from the literature. In this paper, the spectrum of these systems on the arid plains of western equatorial Pangea is explored, as well as the source and nature of the fine‐grained sediments. Eight fluvial elements in the Early Permian Clear Fork Formation of north‐central Texas represent channel systems up to 7 m deep with coarse basal deposits, three types of lateral‐accretion deposits and sandstone sheets, with laminated, disrupted and massive mudstones laid down in abandoned channels and on floodplains. The three fine‐grained fluvial styles represent a continuum between two end‐members: sustained lateral accretion of bedload composed of quartzose sediments and mud aggregates on point bars, and oblique accretion of suspended sediment on steep accretionary benches and banks with limited lateral migration. This spectrum is controlled, in part, by grain size and the proportion of suspended to bedload sediments. The presence of rarely documented swept ripples on exhumed accretion surfaces is attributed to rapid decline in water levels and downstream re‐entry of overbank floodwaters into the channel. Rill casts, roots and disrupted mudstones low down in channel bodies indicate periods of near‐dryness. Laterally extensive sheet sandstones were formed by episodic flows in broad, sandbed channels. The fluvial sediments were primarily intrabasinally sourced with extrabasinal sediments brought in during major floods from upland source areas or reworked from local storage in the basin, representing a supply limited system. The upward change in cement composition from mainly calcite and ankerite to dolomite and gypsum with minor celestine implies increasingly saline groundwater and progressive aridification, supporting Late Palaeozoic palaeoclimatic models. By integrating petrographic data with sedimentology, a plethora of information about ancient landscapes and climate is provided, allowing a fuller comparison between the Clear Fork Formation and modern dryland alluvial plains.  相似文献   

5.
通过地层沉积序列、粒度特征、砾石特征综合分析认为,成都平原东郊台地中更新统合江组为河流相沉积,垂向上具有明显的"河流二元"结构特征,主要以细粒沉积物为主,底部砾石层多为中-粗砾,磨圆较好,具有定向性。该组可细分为河道、边滩、堤岸-河漫3种沉积微相类型,对应发育3种岩相类型。河道砾石岩相沿十陵镇-红河镇-大面镇一带呈北西-南东向展布,边滩砂坝岩相集中发育于大面镇-西河镇东侧古河道凹岸处,堤岸-漫滩粘土岩相广泛分布于研究区内。这3种岩相特性及分布对工程建设的影响存在差异:河道砾石层作为地下水储集层的同时,水溶蚀使其地层结构稳定性被破坏,影响工程稳固技术的选择;边滩砂坝分布较为集中,对区内工程建设影响面最小;堤岸-河漫粘土广泛分布,是一种分布稳定的软弱层,对地下水有一定的封闭效果,同时软弱层的特性使其降低了边坡、坝体的稳定性。  相似文献   

6.
Distinct styles of fluvial deposition in a Cambrian rift basin   总被引:1,自引:0,他引:1  
Process‐based and facies models to account for the origin of pre‐vegetation (i.e. pre‐Silurian) preserved fluvial sedimentary architectures remain poorly defined in terms of their ability to account for the nature of the fluvial conditions required to accumulate and preserve architectural elements in the absence of the stabilizing influence of vegetation. In pre‐vegetation fluvial successions, the repeated reworking of bars and minor channels that resulted in the generation and preservation of broad, tabular, stacked sandstone‐sheets has been previously regarded as the dominant sedimentary mechanism. This situation is closely analogous to modern‐day poorly vegetated systems developed in arid climatic settings. However, this study demonstrates the widespread presence of substantially more complex stratigraphic architectures. The Guarda Velha Formation of Southern Brazil is a >500 m‐thick synrift fluvial succession of Cambrian age that records the deposits and sedimentary architecture of three distinct fluvial successions: (i) an early rift‐stage system characterized by coarse‐grained channel elements indicative of a distributive pattern with flow transverse to the basin axis; and two coeval systems from the early‐ to climax‐rift stages that represent (ii) an axially directed, trunk fluvial system characterized by large‐scale amalgamated sandy braid‐bar elements, and (iii) a distributive fluvial system characterized by multi‐storey, sandy braided‐channel elements that flowed transverse to the basin axis. Integration of facies and architectural‐element analysis with regional stratigraphic basin analysis, palaeocurrent and pebble‐provenance analysis demonstrates the mechanisms responsible for preserving the varied range of fluvial architectures present in this pre‐vegetation, rift‐basin setting. Identified major controls that influenced pre‐vegetation fluvial sedimentary style include: (i) spatial and temporal variation in discharge regime; (ii) the varying sedimentological characteristics of distinct catchment areas; (iii) the role of tectonic basin configuration and its direct role in influencing palaeoflow direction and fluvial style, whereby both the axial and transverse fluvial systems undertook a distinctive response to syn‐depositional movement on basin‐bounding faults. Detailed architectural analyses of these deposits reveal significant variations in geometry, with characteristics considerably more complex than that of simple, laterally extensive, stacked sandstone‐sheets predicted by most existing depositional models for pre‐vegetation fluvial systems. These results suggest that the sheet‐braided style actually encompasses a varied number of different pre‐vegetation fluvial styles. Moreover, this study demonstrates that contemporaneous axial and transverse fluvial systems with distinctive architectural expressions can be preserved in the same overall tectonic and climatic setting.  相似文献   

7.
The alluvial architecture of fine‐grained (silt‐bed) meandering rivers remains poorly understood in comparison to the extensive study given to sand‐bed and gravel‐bed channels. This paucity of knowledge stems, in part, from the difficulty of studying such modern rivers and deriving analogue information from which to inform facies models for ancient sediments. This paper employs a new technique, the parametric echosounder, to quantify the subsurface structure of the Río Bermejo, Argentina, which is a predominantly silt‐bed river with a large suspended sediment load. These results show that the parametric echosounder can provide high‐resolution (decimetre) subsurface imaging from fine‐grained rivers that is equivalent to the more commonly used ground‐penetrating radar that has been shown to work well in coarser‐grained rivers. Analysis of the data reveals that the alluvial architecture of the Río Bermejo is characterized by large‐scale inclined heterolithic stratification generated by point‐bar evolution, and associated large‐scale scour surfaces that result from channel migration. The small‐scale and medium‐scale structure of the sedimentary architecture is generated by vertical accretion deposits, bed sets associated with small bars, dunes and climbing ripples and the cut and fill from small cross‐bar channels. This style of alluvial architecture is very different from other modern fine‐grained rivers reported in the literature that emphasize the presence of oblique accretion. The Río Bermejo differs from these other rivers because it is much more active, with very high rates of bank erosion and channel migration. Modern examples of this type of highly active fine‐grained river have been reported rarely in the literature, although ancient examples are more prevalent and show similarities with the alluvial architecture of the Río Bermejo, which thus represents a useful analogue for their identification and interpretation. Although the full spectrum of the sedimentology of fine‐grained rivers has yet to be revealed, meandering rivers dominated by lateral or oblique accretion probably represent end members of such channels, with the specific style of sedimentation being controlled by grain size and sediment load characteristics.  相似文献   

8.
The Schleenhain open pit coal mine, located 30 km south of Leipzig, Germany, exposes Upper Eocene and Oligocene non-marine strata representing fluvial deposition in the centre of the Weisselster Basin. Active mining and successive cuts provided the rare opportunity to obtain a three-dimensional perspective of laterally extensive surface outcrops. These were used to construct a detailed fence diagram, which provided the basis for recognition of key architectural elements in the weakly consolidated meandering stream deposits. In addition to the eight basic architectural elements of Miall (1985 ), the element SL (shallow lake deposits) was newly defined and the element CH (channel) was subdivided into CHg (palaeo-river system) and CHk (small channel). The profiles contain parts of two fining-upward cycles, which are separated by an unconformity spanning the Early Oligocene. Deposits of the first cycle begin with transverse sand bars (downstream accretion deposits-DA) and point bars (lateral accretion deposits-LA). The upper part of the cycle is represented by overbank fines (OF) and the element SL, which consists of laterally discontinuous lenses of dark, plant-bearing, kaolinite-rich clays, that were deposited in shallow lakes adjacent to the active channel. Coal seams interlayered with palaeosols are the main constituents of element OF. Sheetlike bodies of medium to fine gravels (gravel bars and bedforms-GB) on an erosive coal surface mark the beginning of the second cycle. Dissolution of underlying Permian salts and sulphates prior to, during, and after the deposition of the Palaeogene strata caused the development of two synclines within the outcrop. Coal seams and clay horizons which thicken and dip towards the centre of the synclines, provide evidence for their chronological development.  相似文献   

9.
The 30 to 155 m thick Early Permian (Artinskian) Warchha Sandstone of the Salt Range, Pakistan is a conglomerate, sandstone and claystone succession within which seven lithofacies types (Gt, St, Sp, Sr, Sh, Fl and Fm) occur in a predictable order as repeated fining-upward cycles. Common sedimentary structures in the conglomerates and sandstones include planar and trough cross-bedding, planar lamination, soft sediment-deformed bedding, compound cosets of strata with low-angle inclined bounding surfaces and lags of imbricated pebbles. Structures in the finer-grained facies include desiccation cracks, raindrop imprints, caliche nodules and bioturbation. Groups of associated facies are arranged into nine distinct architectural elements (channels, gravel bars, sandy bedforms, downstream and laterally accreting barforms, sand sheets, crevasse splays, levees, floodplain units and shallow lakes), which is consistent with a fluvial origin for the succession. The types of architectural elements present and their relationship to each other demonstrate that the Warchha Sandstone preserves a record of a meandering river system that drained the northern margin of Gondwanaland. The dominance of fine-grained (floodplain) facies over gravel-grade (channel-base) facies and the widespread occurrence of large-scale lateral accretion elements supports the interpretation of a high-sinuosity, meandering fluvial system in which channel bodies accumulated via the lateral accretion of point bars but in which the active channels covered only a small part of a broad floodplain at any time instant. Although the regional and temporal distribution of these deposits is complex, in broad terms the lower part is dominated by stacked, multistorey channel bodies, whereas single-storey channel elements isolated in abundant fine-grained floodplain deposits dominate the middle and upper parts of the formation.  相似文献   

10.
This study describes the structure of gravel bars in Nahal Zin, an ephemeral stream in the Negev desert. The internal structure of the bars was examined along trenches and in shallow pits. Gravel sheets and unit bars form during transporting flow events in the main channel, on intra-bar channels and near bar heads. Unit bars are dominated by the Go facies. Compound bars develop from accretion around, and modification of, unit bars. Compound bars are active under the current flow regime and the average depth of the fill layer is about 35 cm. The structure of compound bars is dominated by Gm (massive), containing large amounts of sand. The second most common facies is clast-supported, openwork, and well sorted sediments of the Go (pebbles) facies. Bar formation, and the development of the range of facies evident in the bars is controlled by sediment supply, particularly the high volumes of sand-sized sediment, the passage of gravel sheets and bedforms during floods, and the lateral and vertical instability of the channel. Repeated scour and fill events have produced a diverse arrangement of facies, with numerous erosional contacts between depositional units. Lateral and downstream shifts in the pattern of scour and fill due to flow and antecedent conditions shape the channel morphology and bar internal structure. Ephemeral river bars differ from those of humid and proglacial rivers in terms of the dominant facies present, the arrangement of the facies within the bars, and the sedimentary structures developed within the depositional units and on the bar surface.  相似文献   

11.
The mode of channel‐bend transformation (i.e. expansion, translation, rotation or a combination thereof) has a direct bearing on the dimensions, shape, bedding architecture and connectivity of point‐bar sandstone bodies within a fluvial meander belt, but is generally difficult to recognize in vertical outcrops. This study demonstrates how the bend transformation mode and relative rate of channel‐floor aggradation can be deciphered from longitudinal outcrop sections aligned parallel to the meander‐belt axis, as a crucial methodological aid to the reconstruction of ancient fluvial systems and the development of outcrop analogue models for fluvial petroleum reservoirs. The study focuses on single‐storey and multi‐storey fluvial meander‐belt sandstone bodies in the Palaeogene piggyback Boyabat Basin of north‐central Turkey. The sandstone bodies are several hundred metres wide, 5 to 40 m thick and encased in muddy floodplain deposits. The individual channel‐belt storeys are 5 to 9 m thick and their transverse sections show lateral‐accretion bed packages representing point bars. Point bars in longitudinal sections are recognizable as broad mounds whose parts with downstream‐inclined, subhorizontal and upstream‐inclined bedding represent, respectively, the bar downstream, central and upstream parts. The inter‐bar channel thalweg is recognizable as the transition zone between adjacent point‐bar bedsets with opposing dip directions into or out of the outcrop section. The diverging or converging adjacent thalweg trajectories, or a trajectory migrating in up‐valley direction, indicate point‐bar broadening and hence channel‐bend expansion. A concurrent down‐valley migration of adjacent trajectories indicates channel‐bend translation. Bend rotation is recognizable from the replacement of a depositional riffle by an erosional pool zone or vice versa along the thalweg trajectory. The steepness of the thalweg trajectory reflects the relative rate of channel‐floor aggradation. This study discusses further how the late‐stage foreland tectonics, with its alternating pulses of uplift and subsidence and a progressive narrowing of the basin, has forced aggradation of fluvial channels and caused vertical stacking of meander belts.  相似文献   

12.
13.
Evolution and deposits of a gravelly braid bar, Sagavanirktok River, Alaska   总被引:2,自引:0,他引:2  
The evolution, migration and deposits of a gravelly braid bar in the Sagavanirktok River, northern Alaska, are described in unprecedented detail using annual aerial photographs, ground‐penetrating radar (GPR) profiles, trenches and cores. Compound braid bars in the Sagavanirktok River form by chute cut‐off of point bars and by growth of mid‐channel unit bars. Subsequent growth is primarily by accretion of unit bars onto their lateral and downstream margins. The upstream ends of braid bars may be sites of erosion or unit bar deposition. Compound braid bar deposits vary in thickness laterally and are thickest in medial sections and near cut banks. Compound bar deposits are typically composed of three to seven sets of simple large‐scale inclined strata, each simple set formed by a unit bar. The simple large‐scale strata contain medium‐scale cross‐strata (from dune migration) and planar strata (from migration of bedload sheets). The upstream and medial parts of compound braid bar deposits show very little vertical variation in grain size, but downstream and lateral margins tend to fine upwards. The deposits are mostly poorly sorted sands and gravels, although sands tend to be deposited at the top of the braid bar, and open‐framework gravels preferentially occur near the top and base of the braid bar. The patterns of braid bar growth and migration, and the nature of the deposits, described from the Sagavanirktok River are generally similar to other sandy and gravelly braided rivers, and consistent with the theoretical braid bar model of Bridge (1993).  相似文献   

14.
Although facies models of braided, meandering and anastomosing rivers have provided the cornerstones of fluvial sedimentology for several decades, the depositional processes and external controls on sheetflow fluvial systems remain poorly understood. Sheetflow fluvial systems represent a volumetrically significant part of the non‐marine sedimentary record and documented here are the lithofacies, depositional processes and possible roles of rapid subsidence and arid climate in generating a sheetflow‐dominated fluvial system in the Cenozoic hinterland of the central Andes. A 6500 m thick succession comprising the Late Eocene–Oligocene Potoco Formation is exposed continuously for >100 km along the eastern limb of the Corque syncline in the high Altiplano plateau of Bolivia. Fluvial sandstone and mudstone units were deposited over an extensive region (>10 000 km2) with remarkably few incised channels or stacked‐channel complexes. The Potoco succession provides an exceptional example of rapid production of accommodation sustained over a prolonged period of time in a non‐marine setting (>0·45 mm year−1 for 14 Myr). The lower ≈4000 m of the succession coarsens upward and consists of fine‐grained to medium‐grained sandstone, mudstone and gypsum deposits with palaeocurrent indicators demonstrating eastward transport. The upper 2500 m also coarsens upward, but contains mostly fine‐grained to medium‐grained sandstone that exhibits westward palaeoflow. Three facies associations were identified from the Potoco Formation and are interpreted to represent different depositional environments in a sheetflow‐dominated system. (i) Playa lake deposits confined to the lower 750 m are composed of interbedded gypsum, gypsiferous mudstone and sandstone. (ii) Floodplain deposits occur throughout the succession and include laterally extensive (>200 m) laminated to massive mudstone and horizontally stratified and ripple cross‐stratified sandstone. Pedogenic alteration and root casts are common. (iii) Poorly confined channel and unconfined sheet sandstone deposits include laterally continuous beds (50 to >200 m) that are defined primarily by horizontally stratified and ripple cross‐stratified sandstone encased in mudstone‐rich floodplain deposits. The ubiquitous thin‐sheet geometry and spatial distribution of individual facies within channel sandstone and floodplain deposits suggest that confined to unconfined, episodic (flash) flood events were the primary mode of deposition. The laterally extensive deposition and possible distributary nature of this sheetflow‐dominated system are attributed to fluvial fan conditions in an arid to semi‐arid, possibly seasonal, environment. High rates of sediment accumulation and tectonic subsidence during early Andean orogenesis may have favoured the development and long‐term maintenance of a sheetflow system rather than a braided, meandering or anastomosing fluvial style. It is suggested here that rapidly produced accommodation space and a relatively arid, seasonal climate are critical conditions promoting the generation of sheetflow‐dominated fluvial systems.  相似文献   

15.
Meltwater flows emanating from the Pyrenees during the Pleistocene constructed a braided outwash plain in the Ebro Basin and led to the karstification of the Neogene gypsum bedrock. Synsedimentary evaporite dissolution locally increased subsidence rates and generated dolines and collapses that enabled the accumulation and preservation of outwash gravels and associated windblown deposits that were protected from erosion by later meltwater flows. In these localized depocentres, maximum rates of wind deceleration resulted from airflow expansion, enabling the accumulation of cross‐stratified sets of aeolian strata climbing at steep angles and thereby preserving up to 5 m thick sets. The outwash plain was characterized by longitudinal and transverse fluvial gravel bars, channels and windblown facies organized into aeolian sand sheets, transverse and complex aeolian dunes, and loess accumulations. Flat‐lying aeolian deposits merge laterally to partly deformed aeolian deposits encased in dolines and collapses. Synsedimentary evaporite dissolution caused gravels and aeolian sand deposits to subside, such that formerly near‐horizontal strata became inclined and generated multiple internal angular unconformities. During episodes when the wind was undersaturated with respect to its potential sand transporting capacity, deflation occurred over the outwash plain and coarse‐grained lags with ventifacts developed. Subsequent high‐energy flows episodically reached the aeolian dune field, leading to dune destruction and the generation of hyperconcentrated flow deposits composed in part of reworked aeolian sands. Lacustrine deposits in the distal part of the outwash plain preserve rhythmically laminated lutites and associated Gilbert‐type gravel deltas, which developed when fluvial streams reached proglacial lakes. This study documents the first evidence of an extensive Pleistocene proglacial aeolian dune field located in the Ebro Basin (41˙50° N), south of what has hitherto been considered to be the southern boundary of Pleistocene aeolian deposits in Europe. A non‐conventional mechanism (evaporite karst‐related subsidence) for the preservation of aeolian sands in the stratigraphic record is proposed.  相似文献   

16.
Precambrian fluvial deposits have been traditionally described as architecturally simple, forming shallow and wide braidplains with sheet‐like geometry. The varied architecture and morphodynamics of the 1·6 Ga Ellice Formation of Elu Basin, Nunavut, Canada, are examined from detailed studies of section and planform exposures along coastal platforms and stepped cliffs. The Ellice Formation overlies older Proterozoic sandstones and Archean crystalline rocks, recording sedimentation in fluvial, aeolian, coastal and nearshore‐marine environments. The fluvial deposits display palaeoflow towards the west/north‐west, while overlying shallow‐marine deposits record transgression towards the east/south‐east. The Ellice Formation displays dispersed palaeoflow at its base, and also at higher stratigraphic levels, where fluvial and aeolian deposits are associated. Elsewhere, mainly unimodal palaeoflow points to extensive low‐sinuosity fluvial deposition. Within the terrestrial deposits, fluvial, fluvial–aeolian and coastal architectural elements are recognized. Fluvial elements comprise cross‐bedded sandstone and minor conglomerate, exhibiting an overall fining‐upward trend with associated decrease in preservation, dimension and amalgamation of channel bodies. These motifs are interpreted to portray a shift in depositional environment from proximal trunk rivers to distal alluvial plains. Low‐sinuosity fluvial elements are the most common, and include major channel bodies, elongate side bars and mid‐channel bars with well‐developed scroll topography. High‐sinuosity channel‐bar complexes exhibit upbar‐flow rotation and yield evidence of bar expansion coupled with rotation and translation. Fluvial–aeolian elements are composed of aeolian dunes juxtaposed with isolated channel bodies and bank‐attached bars. Minor mixed fluvial–aeolian sheets record local deposition in unconfined settings (possibly floodbasins) or inter‐distributary highlands. Finally, coastal elements comprise small deltaic complexes composed of sand‐rich distributary‐channel bodies feeding heterolithic mouth bars. Overall, the sedimentary record of the Ellice Formation demonstrates an example from the Precambrian where alluvium was locally characterized by a higher geomorphic variability than previously recognized.  相似文献   

17.
18.
为了查明洞庭盆地西缘早更新世砾石层沉积特征及沉积环境,在1:5万地质调查基础上,对常德南斗姆湖地区几处第四系砾石层剖面进行了较系统的测量与统计。结果表明: 砾石成分主要来源于寒武纪或前寒武纪地层。砾石分选系数Sa 为1.16~1.64,部分测点Sa>1.40,反映砾石形成时水动力很强,部分砾石层为快速堆积。砾石扁度F为2.06~2.32,大于2.0,砾石以扁平状为主。砾石普遍弱—中等风化,部分砾石强风化,反映砾石在沉积搬运过程中存在风化暴露。砾向分析显示古水流主要来源于SWW—NW向,表明砾石层形成时期古地貌与现有地貌有较大差异。剖面对比得出,区内砾石层是在冲洪积扇基础上发育的以辫状河相为主的沉积体。对研究区砾石层沉积相及古地貌的新认识,为区内金刚石原生矿床的找矿工作提供支撑。  相似文献   

19.
新疆克拉玛依油田三叠系克下组冲积扇内部构型*   总被引:1,自引:0,他引:1       下载免费PDF全文
应用研究区丰富的密井网和邻近露头资料,探讨了新疆克拉玛依油田三叠系克下组冲积扇内部构型单元的层次划分系统,并建立相应的沉积构型模式。在冲积扇的扇根、扇中和扇缘各亚相带,进一步划分了3个级次的构型要素以表达其内的沉积复杂性。扇根亚相主要由主槽、片流带和漫洪带组成,其中,在主槽内主要发育槽流砾石(岩)体(可细分为砾石坝和流沟)与泥石流沉积,在片流带内主要发育片流砂砾体(可细分为砾石坝和流沟),在漫洪带主要发育漫洪砂体和漫洪细粒沉积,总体构型样式以广泛分布的砾石坝夹含流沟和漫洪沉积的“泛连通体”为特征;扇中亚相主要由辫流带和漫流带组成,其中,辫流带的主体构型要素为辫流水道(可细分为砂坝和沟道),总体构型样式为复合宽带状辫流水道砂体与漫流细粒沉积侧向相间、垂向互层为特征;扇缘亚相主要由径流带和漫流带组成,其中,径流带的主体构型要素为径流水道,总体构型样式以窄带状径流水道和漫流砂体镶嵌于漫流—湿地泥岩之中为特征。  相似文献   

20.
嫩江现代河流沉积体岩相及内部构形要素分析   总被引:10,自引:0,他引:10       下载免费PDF全文
王俊玲  任纪舜 《地质科学》2001,36(4):385-394
嫩江是松辽盆地北部一条多河型河流。本文以黑龙江省富裕县塔哈乡大马岗嫩江现代河流沉积露头为例,运用Miall结构要素分析法对嫩江现代河流沉积体岩相类型、层次界面及内部构形要素进行了系统研究,表明大马岗沉积体主要由块状层理细砾相、大型及小型低角度槽状交错层理细砂相、同沉积变形层理细砂相、波状交错层理细砂相、薄层状粉砂质泥与细砂互层相、微波状层理粉砂相、块状层理泥质粉砂相、水平层理泥相、块状层理粉砂质泥相等16种岩相构成,不同岩相空间分布变化差异较大。在大马岗沉积体内部识别出1~5级层次界面,划分出具有成因意义的7种构形要素:河道、砾质坝、侧向加积沉积体、单一侧积砂层、纹层砂席、砂底形及越岸细粒沉积,这种构形要素的划分丰富了Miall的分类方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号