首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Stellar flare is one of the most challenging problems in Astrophysics. Up to now, most of the detected flare stars are of the late spectral type (e.g. UV Ceti type stars etc.). The non-classical flare stars with early spectral type are very rare, In 1975, Kunkel collected a few possible early type flare stars in his review paper, all of which had emission line spectra (W.E.Kunkal, 1975). They are many orders of magnitude more powerful than dMe flares. The nature of this kind of flare stars are unknown.Recently, a later A-type flare star BD 47 819, near the open cluster a Persei, was discovered by Jun-jie Wang. The V magnitude of the star was 9.25, ans B-V = 0.413(Prosser, 1992). Its spectral type was A7 in CSI catalog of Strasbourg (1979), and A5 in Fehrenbach's list(Fehrenbach, 1987).BD 47 819 will be taken a special interest to be recgnized, not only for lack of knowledge on the nature of all the early type flare stars, but also as it is a peculiar A-5 type variable with flare activity. From its spect  相似文献   

2.
PSR B1259–63 is a γ-ray emitting high mass X-ray binary system, in which the compact object is a millisecond pulsar.The system has an orbital period of 1236.7 d and shows peculiar γ-ray flares when the neutron star moves out of the stellar disk of the companion star.The γ-ray flare events were firstly discovered by using Fermi-LAT around the 2010 periastron passage, which was repeated for the 2014 and 2017 periastron passages.We analyze the Fermi-LAT data for all the three periastron passages and found that in each flare the energy spectrum can be represented well by a simple power law.The γ-ray light curves show that in 2010 and 2014 after each periastron there are two main flares,but in 2017 there are four flares including one precursor about 10 d after the periastron passage.The first main flares in 2010 and 2014 are located at around 35 d after the periastron passage, and the main flare in 2014 is delayed by roughly 1.7 d with respect to that in 2010.In the 2017 flare, the source shows a precursor about 10 d after the periastron passage, but the following two flares become weaker and lag behind those in 2010 by roughly 5 d.The strongest flares in 2017 occurred 58 d and 70 d after the periastron passage.These results challenge the previous models.  相似文献   

3.
We conducted photometric and spectroscopic observations of Ross 15 in order to further study the flare properties of this less observed flare star.A total of 28 B-band flares are detected in 128 hr of photometric observations,leading to a total flare rate of 0.22-0.040.04 h-1,more accurate than that provided by previous work.We give the energy range of the B-band flare(1029.5-1031.5 erg) and the flare frequency distribution(FFD) for the star.Within the same energy range,the FFD is lower than that of GJ 1243(M4)and YZ CMi(M4.5),roughly in the middle of those of three M5-type stars and higher than the average FFDs of spectral types> M6.We performed,for the first time for Ross 15,simultaneous high-cadence spectroscopic and photometric observations,resulting in detection of the most energetic flare in our sample.The intensity enhancements of the continuum and Balmer lines with significant correlations between them are detected during the flare,which is the same as those of other deeply studied flare stars with similar spectral type.  相似文献   

4.
Here we present research on an ultra-luminous X-ray source(ULX) candidate 2XMM J140229.91+542118.8. The X-ray light curves of this ULX candidate in M101 exhibit features of a flare star.More importantly, the Chandra light curve displays unusual X-ray double flares, which is comprised of two close peaks. The X-ray(0.3–11.0 ke V) flux of the first peak was derived from the two-temperature APEC model as ~ 1.1 ± 0.1 × 10-12 erg cm-2s-1. The observed flux at its first peak increased by about two orders of magnitude in X-ray as compared to quiescence. The slope of the second fast decay phase is steeper than the slope of the first fast decay phase, indicating that the appearance of a second flare accelerated the cooling of the first flare in a way we do not understand yet. We also observed its optical counterpart using a 2.16 m telescope administered by National Astronomical Observatories, Chinese Academy of Sciences.By optical spectral fitting, it is confirmed to be a late type d Me2.5 star. According to the spectral type and apparent magnitude of its optical counterpart, we estimate the photometric distance to be ~ 133.4 ± 14.2pc. According to the X-ray spectral fitting, a possible explanation is provided. However, more similar close double flares are needed to confirm whether this accelerated cooling event is a unique coincidence or a common physical process during double flaring.  相似文献   

5.
Temporal and spectral characteristics of X-ray emission from 60 flares of intensity ≥C class observed by the Solar X-ray Spectrometer(SOXS) during 2003–2011 are presented. We analyze the X-ray emission observed in four and three energy bands by the Si and Cadmium-Zinc-Telluride(CZT)detectors, respectively. The number of peaks in the intensity profile of the flares varies between 1 and 3. We find moderate correlation(R ≈0.2) between the rise time and the peak flux of the first peak of the flare irrespective of energy band, which is indicative of its energy-independent nature. Moreover, the magnetic field complexity of the flaring region is found to be highly anti-correlated(R = 0.61) with the rise time of the flares while positively correlated(R = 0.28) with the peak flux of the flare. The time delay between the peak of the X-ray emission in a given energy band and that in 25–30 keV decreases with increasing energy, suggesting conduction cooling is dominant in the lower energies. Analysis of 340 spectra from 14 flares reveals that the peak of differential emission measure(DEM) evolution is delayed by 60–360 s relative to that of the temperature, and this time delay is inversely proportional to the peak flux of the flare. We conclude that temporal and intensity characteristics of flares are dependent on energy as well as the magnetic field configuration of the active region.  相似文献   

6.
The CCD photometric observations of open star cluster M37(NGC 2099) were carried out up to a limiting magnitude of V ~ 20 in both B and V filters to search for variable stars using a 2k×4k CCD and the 1.3 m telescope at the Vainu Bapu Observatory, Kavalur.A total of 314 stars were in the first observing run, out of which 60 were identified as variables.Eight out of the identified 60 variables are classified as W UMa binary stars.For model fitting, we used PHOEBE based on the W-D code to estimate the physical parameters of these newly detected W UMa binaries that theoretically best match the observed light curves.  相似文献   

7.
We report the results of a time-series CCD photometric survey of variable stars in the field of open cluster NGC 2126. In about a one square degree field covering the cluster, a total of 21 variable candidates are detected during this survey, of which 16 are newly found. The periods, classifications and spectral types of 14 newly discovered variables are discussed, which consist of six eclipsing binary systems, three pulsating variable stars, three long period variables, one RS CVn star, and one W UMa or δ Scuff star. In addition, there are two variable candidates, the properties of which cannot be determined. By a method based on fitting observed spectral energy distributions of stars with theoretical ones, the membership probabilities and the fundamental parameters of this cluster are determined. As a result, five variables are probably members of NGC 2126. The fundamental parameters of this cluster are determined as: metallicity to be 0.008 Z, age log(t) = 8.95, distance modulus (m - M)0 = 10.34 and reddening value E(B - V) = 0.55 mag.  相似文献   

8.
We report on an archival X-ray observation of the eclipsing RS CVn binary XY UMa(P_(orb) ≈0.48 d). In two Chandra ACIS observations spanning 200 ks and almost five orbital periods, three flares occurred. We find no evidence for eclipses in the X-ray flux. The flares took place around times of primary eclipse, with one flare occurring shortly( 0.125 P_(orb)) after a primary eclipse, and the other two happening shortly( 0.05 P_(orb)) before a primary eclipse. Two flares occurred within roughly one orbital period(?φ≈1.024 P_(orb)) of each other. We analyze the light curve and spectra of the system, and investigate coronal length scales during both quiescence and flares, as well as the timing of the flares. We explore the possibility that the flares are orbit-induced by introducing a small orbital eccentricity, which is quite challenging for this close binary.  相似文献   

9.
We carry out a re-analysis of the photometric data in R_cI_c bands which were taken during the Nainital Microlensing Survey from 1998 to 2002 with the aim to detect gravitational microlensing events in the direction of M31. Here, we do photometric analysis of a faint W UMa binary CSS_J004259.3 +410629 identified in the target field. The orbital period of this star is found to be 0.266402±0.000018 d.The photometric mass ratio, q,is found to be 0.28 ± 0.01. The photometric light curves are investigated using the Wilson-Devinney(WD) code and absolute parameters are determined using empirical relations which provide masses and radii of the binary as M_1 = 1.19 ± 0.09 M_☉,M_2 = 0.33 ± 0.02 M_⊙ and R_1=1.02±0.04 R_⊙,R_2 = 0.58 ±0.08 R_⊙ respectively based on R_c band data. Quite similar values are found by analyzing I_c band data. From the photometric light curve examination, the star is understood to be a low mass-ratio overcontact binary of A-subtype with a high fill-out factor of about 47%. The binary system is found to be located approximately at a distance of 2.64 ± 0.03 kpc having a separation of 2.01 ± 0.05 R_⊙ between the two components.  相似文献   

10.
We study RXTE PCA data for the high mass X-ray binary source SMC X-1 between 2003–10 and 2003–12 when the source was in its high states.The source is found to be frequently bursting which can be seen as flares in lightcurves that occur at a rate of one every 800 s, with an average of 4–5 Type Ⅱ X-ray bursts per hour.We note that typically a burst was short, lasting for a few tens of seconds in addition to a few long bursts spanning more than a hundred seconds that were also observed.The flares apparently occupied 2.5% of the total observing time of 225.5 ks.We note a total of 272 flares with mean FWHM of the flare ~21 s.The rms variability and aperiodic variability are independent of flares.As observed, the pulse profiles of the lightcurves do not change their shape, implying that there is no change in the geometry of an accretion disk due to a burst.The hardness ratio and rms variability of lightcurves exhibit no correlation with the flares.The flare fraction shows a positive correlation with the peak-to-peak ratio of the primary and secondary peaks of the pulse profile.The observed hardening or softening of the spectrum cannot be correlated with the flaring rate but may be due to the interstellar absorption of X-rays as evident from the change in hydrogen column density(n_H).It is found that the luminosity of the source increases with the flaring rate.Considering that the viscous timescale is equal to the mean recurrence time of flares, we fixed the viscosity parameter α~ 0.16.  相似文献   

11.
We present photometric analysis of the two W UMa type binaries identified in the field of distant open star cluster NGC 6866. Although these systems, namely ID487 and ID494, were reported by Joshi et al., a detailed study of these stars has not been carried out before. The orbital periods of these stars are found to be 0.415110±0.000001 day and 0.366709±0.000004 day, respectively. Based on the photometric and infrared colors, we find their respective spectral types to be K0 and K3. The photometric light variations of both stars show the O'Connell effect which can be explained by employing a dark spot on the secondary components. The V and I band light curves are analyzed using the Wilson-Devinney(WD) code and relations given by Gazeas which yield radii and masses for the binary components of star ID487 of R_1= 1.24 ± 0.01R⊙, R_2 = 1.11 ± 0.02R⊙, and M_1 = 1.24 ± 0.02M⊙, M_2 = 0.96 ± 0.05M⊙and for star ID494 of R_1 = 1.22 ± 0.02R⊙, R_2 = 0.81 ± 0.01 R0 ⊙, and M_1 = 1.2± 0.06 M⊙, M_2 = 0.47 ± 0.01M⊙.  相似文献   

12.
With the successful launch of Swift satellite,more and more data of early X-ray afterglows from short gamma-ray bursts have been collected.Some interesting features such as unusual afterglow light curves and unexpected X-ray flares are revealed.Especially,in some cases,there is a fiat segment in the X-ray afterglow light curve.Here we present a simplified model in which we believe that the flattening part is due to energy injection from the central engine.We assume that this energy injection arises from the magnetic dipole radiation of a millisecond pulsar formed after the merger of two neutron stars.We check this model with the short GRB 060313.Our numerical results suggest that energy injection from a millisecond magnetar could make part of the X-ray afterglow light curve flat.  相似文献   

13.
We propose a magnetic confinement nuclear fusion mechanism for the evolution of a solar flare in the solar atmosphere.The mechanism agrees with two observed characteristics of explosive flares and coronal mass ejections(CMEs) that have proved to be very difficult to explain with previous mechanisms:the huge enrichments of3 He and the high energy gamma ray radiation.The twisted magnetic flux rope is a typical structure during the solar flares,which is closely related to the solar active region that magnetic fields have almost complete control over the plasma.Consequently,the plasma inside the flux rope is heated to more than 1.0×107 K by an adiabatic compression process,and then the thermonuclear fusion can take place in the flux rope accompanied with high energy gamma rays.We utilize the time-dependent ideal 2.5-dimensional magnetohydrodynamic(MHD) simulation to demonstrate the physical mechanism for producing flares,which reveals three stages of flare development with the process of magnetic energy conversion and intense release during the solar flares and CMEs in the solar atmosphere.Furthermore,we discuss the relationship between magnetic reconnection and solar eruptions.  相似文献   

14.
Symbiotic stars are interacting binary systems with the longest orbital periods. They are typically formed by a white dwarf and a red giant that are embedded in a nebula. These objects are natural astrophysical laboratories for studying the evolution of binaries. Current estimates of the population of symbiotic stars in the Milky Way vary from 3000 up to 400 000. However, a current census has found less than 300. The Large sky Area Multi-Object fiber Spectroscopic Telescope(LAMOST) survey can obtain hundreds of thousands of stellar spectra per year, providing a good opportunity to search for new symbiotic stars. We detect four such binaries among 4 147 802 spectra released by LAMOST, of which two are new identifications. The first is LAMOST J12280490–014825.7, considered to be an S-type halo symbiotic star. The second is LAMOST J202629.80+423652.0, a D-type symbiotic star.  相似文献   

15.
The spin period variations and hard X-ray spectral properties of the Be/Xray pulsar GRO J1008–57 are studied with INTEGRAL observations during two outbursts in 2004 June and 2009 March.The pulsation periods of~93.66 s in 2004and~93.73 s in 2009 are determined.Pulse profiles of GRO J1008–57 during outbursts are strongly energy dependent with a double-peaked profile from 3–7 keV and a single-peaked profile in hard X-rays above 7 keV.Combined with previous measurements,we find that GRO J1008–57 has undergone a spin-down trend from 1993–2009 with a rate of~4.1×10-5s d-1,and could have changed into a spin-up trend after 2009.We find a relatively soft spectrum in the early phase of the 2009 outburst with cutoff energy~13 keV.Above a hard X-ray flux of~10-9erg cm-2s-1,the spectra of GRO J1008–57 during outbursts need an enhanced hydrogen absorption with column density~6×1022cm-2.The observed dip-like pulse profile of GRO J1008–57 in soft X-ray bands could be caused by this intrinsic absorption.Around the outburst peaks,a possible cyclotron resonance scattering feature at~74 keV is detected in the spectra of GRO J1008–57 which is consistent with the feature that was reported in MAXI/GSC observations,making the source a neutron star with the highest known magnetic field(~6.6×1012G)among accreting X-ray pulsars.This marginal feature is supported by the present detections in GRO J1008–57 following the correlation between the fundamental line energies and cutoff energies in accreting X-ray pulsars.Finally we discovered two modulation periods at~124.38 d and~248.78 d using RXTE/ASM light curves of GRO J1008–57.Two flare peaks appearing in the folded light curve had different spectral properties.The normal outburst lasting 0.1 of an orbital phase had a hard spectrum and could not be significantly detected below 3 keV.The second flare lasting ten days showed a very soft spectrum without significant detections above 5 keV.GRO J1008–57 is a good candidate of an accreting system with an equatorial circumstellar disk around the companion star.The neutron star passing the disk of the Be star near periastron and apastron produces two X-ray flares.The soft spectral properties in the secondary flares still need further detailed studies with soft X-ray spectroscopy.  相似文献   

16.
Flare-induced signals in polarization measurements which were manifested as apparent polarity reversal in magnetograms have been reported since 1981. We are motivated to further quantify the phenomenon by asking two questions: can we distinguish the flare-induced signals from real magnetic changes during flares, and what we can learn about flare energy release from the flare-induced signals? We select the X2.6 flare that occurred on 2005 January 15, for further study. The flare took place in NOAA active region (AR) 10720 at approximately the central meridian, which makes the interpretation of the vector magnetograms less ambiguous. We have identified that flare-induced signals during this flare appeared in six zones. The zones are located within an average distance of 5 Mm from their weight center to the main magnetic neutral line, have an average size of (0.6±0.4) ×10^17 cm^2, duration of 13±4 min, and flux density change of 181±125 G in the area of reversed polarity. The following new facts have been revealed by this study: (1) the flare-induced signal is also seen in the transverse magnetograms but with smaller magnitude, e.g., about 50 G; (2) the flare-induced signal mainly manifests itself as apparent polarity reversal, but the signal starts and ends as a weakening of flux density; (3) The flare-induced signals appear in phase with the peaks of hard X-ray emission as observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and mostly trace the position of RHESSI hard X-ray footpoint sources. (4) in four zones, it takes place cotemporally with real magnetic changes which persist after the flare. Only for the other two zones does the flux density recover to the pre-flare level immediately after the flare. The physical implications of the flare-induced signal are discussed in view of its relevance to the non-thermal electron precipitation and primary energy release in the flare.  相似文献   

17.
We present a detailed spectroscopic study of pre-main sequence star V565 Mon,which is the illuminating star of the Parsamian 17 cometary nebula.Observations were performed with the 2.6 m telescope in Byurakan Astrophysical Observatory on 2018 February 15.Radial velocities and equivalent widths of the most prominent lines of V565 Mon are presented.We build the spectral energy distribution and estimate the main parameters of the star,for example the obtained bolometric luminosity of V565 Mon is LV565≈130 L.Considering all features of V565 Mon,we come to the conclusion that this young intermediate-mass star belongs to some intermediate class between T Tau and HAeBe stars.Very unusual for a young star is the presence of strong absorption BaⅡlines in the spectrum.Possible explanations on this issue are discussed.Hence,we think that V565 Mon is a unique example,which can help to understand some open questions involved in the problem of nucleosynthesis in young stars.  相似文献   

18.
We compare two contrasting X-class flares in terms of magnetic free energy, relative magnetic helicity and decay index of the active regions(ARs) in which they occurred. The events in question are the eruptive X2.2 flare from AR 11158 accompanied by a halo coronal mass ejection(CME) and the confined X3.1 flare from AR 12192 with no associated CME. These two flares exhibit similar behavior of free magnetic energy and helicity buildup for a few days preceding them. A major difference between the two flares is found to lie in the time-dependent change of magnetic helicity of the ARs that hosted them. AR 11158 shows a significant decrease in magnetic helicity starting ~4 hours prior to the flare, but no apparent decrease in helicity is observed in AR 12192. By examining the magnetic helicity injection rates in terms of sign, we confirmed that the drastic decrease in magnetic helicity before the eruptive X2.2 flare was not caused by the injection of reversed helicity through the photosphere but rather the CME-related change in the coronal magnetic field. Another major difference we find is that AR 11158 had a significantly larger decay index and therefore weaker overlying field than AR 12192. These results suggest that the coronal magnetic helicity and the decay index of the overlying field can provide a clue about the occurrence of CMEs.  相似文献   

19.
New light curves and photometric solutions of FP Lyn, FV CVn and V354 UMa are presented.We found that these three systems are W-subtype shallow contact binaries. In addition, it is obvious that the light curves of FP Lyn and V354 UMa are asymmetric. Therefore, a hot spot was added on the primary star of FP Lyn and a dark spot was added on the secondary star of V354 UMa. At the same time, we added a third light to the photometric solution of FP Lyn for the final result. The obtained mass ratios and fill-out factors are q = 1.153 and f = 13.4% for FP Lyn, q = 1.075 and f = 4.6% for FV CVn, and q = 3.623 and f = 10.7% for V354 UMa respectively. The investigations of orbital period for these three systems indicate that the periods are variable. FP Lyn and V354 UMa were discovered to have secularly increasing components with rates of dp/dt = 4.19 × 10~(-7) d yr~(-1) and dp/dt = 7.70 × 10~(-7) d yr~(-1) respectively,which are feasibly caused by conservative mass transfer from the less massive component to the more massive component. In addition, some variable components were discovered for FV CVn, including a rate of dp/dt =~(-1).13 × 10~(-6) d yr~(-1) accompanied by a cyclic oscillation with amplitude and period of 0.0069 d and 10.65 yr respectively. The most likely explanation for the long-term decrease is angular momentum loss.The existence of an additional star is the most plausible explanation for the periodic variation.  相似文献   

20.
We suggest a short-lived supermassive magnetar model to account for the X-ray flares following shortγ-ray bursts. In this model the central engine of the shortγ-ray bursts is a supermassive millisecond magnetar, formed in coalescence of double neutron stars. The X-ray flares are powered by the dipole radiation of the magnetar. When the magnetar has lost a significant part of its angular momentum, it collapses to a black hole and the X-ray flares cease abruptly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号