首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The upper ocean has complex and variable temperature stratification, and the surface layers in the northwest Bay of Bengal in winter indicate the presence of transient thermal inversions that wane with the advancement of the season. During winter, the sea surface loses heat and the surface waters of the coastal regions of the east coast of India are fairly stratified with the residual freshwater atop from the preceding southwest monsoonal discharge. The vertical stability favors the formation and sustenance of temperature inversions. To investigate the mechanism and the influence of ubiquitous internal waves that thrive on stability, a three-dimensional Princeton Ocean Model is configured for the east coast of India and is applied to study the process in the surface layers in association with the internal waves. The model domain constitutes a variable curvilinear grid, and the input fields comprise bathymetry, initial temperature and salinity, wind stress, air-sea heat fluxes and tidal forcing at the open boundaries. The numerical experiments demonstrate that vertical stability alone cannot cause, support or augment the internal wave oscillations, if the stratification is attributed to salinity only. Internal waves may therefore be perceived in stable layers, essentially from temperature-induced stratification. Despite stratification and enough vertical density gradient in the upper ocean, the conditions may not suit for the occurrence of internal waves due to thermal diffusive processes that overpower the salinity gradients. The vertical spreading of heat due to double diffusion is believed to be transparent to tidal forcing as the generation of internal waves is subdued even under density stratification. The model simulations indicate that the horizontal convergence/divergence motions, required for the manifestation of internal waves at the surface are inhibited in the presence of temperature inversion. The available SAR imageries in winter endorse the model simulations to this effect.  相似文献   

2.
We present data from three acoustic Doppler current profilers (ADCPs) moored off Cuddalore (12°N), Kakinada (16.5°N), and Gopalpur (19°N) on the continental slope of the western Bay of Bengal and one mooring on the slope of the northern bay (89°E, 19°N; referred to as being located at Paradip). The data were collected during May 2009 to March 2013 and the observations show that the seasonal cycle, which includes the annual cycle, the semi-annual cycle, and a peak around 120 days, dominates the observed variability of the East India Coastal Current (EICC). Spectral analysis suggests that the 120-day peak dominates the seasonal variability at Paradip and is strong at Gopalpur and Kakinada. The annual cycle is coherent along the western boundary of the bay, i.e., the east coast of India, but with significant phase differences between moorings. At the semi-annual and 120-day periods, the alongshore coherence is weaker. Intraseasonal variability is weaker than the seasonal cycle, particularly at Cuddalore and Paradip, and it exhibits seasonality: the strongest intraseasonal variation is during spring (February–April). Peaks around 12 and 20–22 days are also seen at Gopalpur, Kakinada, and Cuddalore. A striking feature of the currents is the upward phase propagation, but there are also instances when phase propagates downward. The much lower vertical phase speed in the top ~100 m at Cuddalore leads to a distinct undercurrent at this location; at other locations, the undercurrent, though it exists often, is not as striking. During spring, however, the EICC tends to flow poleward (eastward) at Cuddalore, Kakinada, and Gopalpur (Paradip) over the top ~300 m, which is the maximum depth to which observations were made. The cross-shore component of the EICC is much weaker than the alongshore component at Cuddalore and, except for a few bursts during spring, at Kakinada and Gopalpur. It is only at Paradip, on the slope of the northern boundary, that significant cross-shore flows are seen during spring and the summer monsoon (June–August) and these flows are seen to be associated with eddy-like circulations in the altimeter data. We use the ADCP data to validate popular current data products like OSCAR (Ocean Surface Currents Analyses Real-time), ECCO2 (Estimating the Circulation and Climate of the Ocean, Phase II), and GODAS (Global Ocean Data Assimilation System). The OSCAR currents at Paradip match the observed currents well, but the correlation is much weaker at the other three locations. Both ECCO2 and GODAS fair poorly, particularly the latter because its variability in this boundary-current regime is extremely weak. Though it performs badly at Paradip, ECCO2 does capture the observed variability on occasions at the other locations.  相似文献   

3.
Seasonal and diurnal variability of thermal structure in the coastal waters off Visakhapatnam has been examined in relation to the flow field and surface winds utilizing the hourly data of temperature and currents taken at a fixed location over a tidal cycle at monthly intervals. The coastal currents in the pre-monsoon period and strong near-surface winter cooling processes affect the thermal structure of the coastal sea. Upwelling which is predominant during March to May with an intermittent relaxing event helps in the development of a strong layered thermal structure while convective mixing due to winter inversions during November to February causes weak thermal gradients in the water column.  相似文献   

4.
Usingin situ data collected during 1992–1997, under the Indian programme of Joint Global Ocean Flux Study (JGOFS), we show that the biological productivity of the Arabian Sea is tightly coupled to the physical forcing mediated through nutrient availability. The Arabian Sea becomes productive in summer not only along the coastal regions of Somalia, Arabia and southern parts of the west coast of India due to coastal upwelling but also in the open waters of the central region. The open waters in the north are fertilized by a combination of divergence driven by cyclonic wind stress curl to the north of the Findlater Jet and lateral advection of nutrient-rich upwelled waters from Arabia. Productivity in the southern part of the central Arabian Sea, on the other hand, is driven by advection from the Somalia upwelling. Surface cooling and convection resulting from reduced solar radiation and increased evaporation make the northern region productive in winter. During both spring and fall inter-monsoons, this sea remains warm and stratified with low production as surface waters are oligotrophic. Inter-annual variability in physical forcing during winter resulted in one-and-a-half times higher production in 1997 than in 1995.  相似文献   

5.
《Atmósfera》2014,27(3):317-334
The Loop Current and its shed eddies dominate the circulation and dynamics of the Gulf of Mexico (GoM) basin. Those eddies are strongly energetic and are the cause of intense currents that may penetrate several hundred meters deep. However, there are regions in the GoM and periods of time in which the local atmospheric forcing plays an important role in its dynamics and thermodynamics. The circulation on the shelves, and particularly on the inner shelf, is mainly wind-driven with seasonality, changing direction during the year with periods of favorable upwelling/downwelling conditions. The wind-driven circulation is associated with the transport of waters with different temperature and salinity characteristics from one region to another. The interannual variability of the circulation on the shelves is linked to the atmospheric variability. Intraseasonal variability of the wind patterns considerably affects the likelihood and magnitude of upwelling and downwelling. The geometry of the GoM is such that large-scale winds may drive opposing upcoast/downcoast currents along different parts of the curving coast, resulting in convergence or divergence zones. The width of the shelves in the GoM is variable;while the West Florida Shelf, the Texas-Louisiana shelf and the Campeche Bank are more than 200 km wide, they are narrower near Veracruz and Tabasco. Another consequence of the GoM physiography and the wind forcing is the development of cross-shelf transports in the southern Bay of Campeche, the southern Texas shelf and southeast of the Mississippi river, which in turn vary during the year. During autumn-winter (from September to April), the GoM is affected by cold fronts coming from the northwest United States, which are associated with strong, dry, and cold winds that mix its waters and generate large sensible and latent heat fluxes from the ocean to the atmosphere. These frontal passages also cool the GoM surface waters due to mixing with lower temperature subsurface waters. During summer, tropical cyclones crossing the GoM can dramatically affect circulation and coastal upwelling.  相似文献   

6.
December 2004 tsunami in the Indian Ocean region has been simulated using MIKE-21 HD model. The vertical displacement of the seabed is incorporated into the numerical simulation by using time-varying bathymetry data. In the open ocean, sea surface height from altimeter observation has been used to validate the model results. To the west of the rupture zone, the crest is observed to precede the trough of the tsunami waves while to the east, trough preceded the crest. The model performance along the coastal region has been validated using de-tided sea levels from tide gauge measurements at Tuticorin, Chennai, Vishakapattanam, and Paradip ports along the east coast of India. Unique coastal characteristics of the tsunami waves, wave height, and wave celerity are reasonably simulated by the numerical model. Spectral analysis of tide gauge observations and corresponding model results has been done, and the distribution of frequency peaks from the analysis of gauge observations and the model results is observed to have a reasonable comparison. Low-frequency waves, contributed from the coastally trapped edge waves, are found to dominate both the tide gauge observations and the model results. The subsequent increase in the tsunami wave height observed at Chennai, Vishakapattanam, and Paradip has been explained on the basis of coastally trapped edge waves. From the validation studies using altimeter data and tide gauge data, it is observed that the model can be used effectively to simulate the tsunami wave height in the offshore as well as in the coastal region with satisfying performance.  相似文献   

7.
A three-dimensional numerical model of the type described by Johns and coworkers (1992), hereafter referred to as model (J), is applied to study the response of a coastal ocean to pure wind-stress forcing. Conservation equations are applied for mass, momentum, temperature, salinity and turbulence energy. Experiments are performed to investigate the evolution of the thermal structure and upwelling processes along the east coast of India during the pre-monsoon season. A comparison between the computed results and the limited observations on the thermal structure and alongshore currents over the inner-shelf off Visakhapatnam is presented.  相似文献   

8.
A three-dimensional numerical model is described to study theresponse of a coastal ocean excited by a tropical cyclone in the Bay of Bengal. The numericalexperiments have been carried out using the model to understand the dynamics and thermodynamics ofthe ocean due to different cyclonic systems approaching in different directions. In the firstexperiment, the model is used to simulate the vertical thermal structure of the ocean as a response ofpassage of the less intensified 1997 cyclone, which was skirting the east coast of India before crossingthe Bangladesh coast. The simulations are compared with the buoy data available during the storm period.In the next experiment, it is considered an idealized cyclone with hurricane winds movingnormal to the east coast of India crossing between Visakhapatnam and Kakinada to evolve thermalstructure and currents of the ocean. A net decrease of the SST of 6–7 °C is simulated whenthe severe cyclonic storm moved over the coastal ocean.  相似文献   

9.
The salinity intrusion in the Fraser estuary, Canada, migrates landward during the rising tide and is flushed downstream on the falling tide. Suspended sediment concentrations are higher during unstratified flows than during stratified conditions. Mixing between the upper layer and the salinity intrusion is restricted by a strong density interface on the rising tide but enhanced mixing occurs across a weak salinity gradient on the falling tide. A weakly-developed estuarine turbidity maximum (ETM) and positive internal waves occur at the tip of the salinity intrusion as it migrates seaward. Spectral analyses of optical backscatter probe time series indicate that sediment movement from the upper layer is restricted by the density interface on the rising tide. During the falling tide, sediment mixing is enhanced by internal waves at the surface of the ETM. Internal waves generated at the density interface have a higher frequency during the rising tide than the falling tide.  相似文献   

10.
The dynamics and thermodynamics of the surface layer of the Arabian Sea, north of about 10N, are dominated by the monsoon-related annual cycle of air-sea fluxes of momentum and heat. The currents in open-sea regime of this layer can be largely accounted for by Ekman drift and the thermal field is dominated by local heat fluxes. The geostrophic currents in open-sea subsurface regime also show a seasonal cycle and there is some evidence that signatures of this cycle appear as deep as 1000 m. The forcing due to Ekman suction is an important mechanism for the geostrophic currents in the central and western parts of the Sea. Recent studies suggest that the eastern part is strongly influenced by the Rossby waves radiated by the Kelvin waves propagating along the west coast of India. The circulation in the coastal region off Oman is driven mainly by local winds and there is no remotely driven western boundary current. Local wind-driving is also important to the coastal circulation off western India during the southwest monsoon but not during the northeast monsoon when a strong (approximately 7 × 106m3/sec) current moves poleward against weak winds. This current is driven by a pressure gradient which forms along this coast during the northeast monsoon due to either thermohaline-forcing or due to the arrival of Kelvin waves from the Bay of Bengal. The present speculation about flow of bottom water (deeper than about 3500 m) in the Arabian Sea is that it moves northward and upwells into the layer of North Indian Deep Water (approximately 1500–3500m). It is further speculated that the flow in this layer consists of a poleward western boundary current and a weak equatorward flow in the interior. It is not known if there is an annual cycle associated with the deep and the bottom water circulation.  相似文献   

11.
Data on temperature, major constituents and some trace elements, measured in the dissolved and particulate phases, were used to identify the hydrodynamics of a reservoir (the Bicaz reservoir, Romania). Results revealed that the reservoir experiences two thermal stratifications per year (summer and winter). However, the summer stratification is delayed by the high river inflow of June–July. Two layers were identified, a surface and a deep layer, whose location and impact vary with time. The surface layer originates from the river inflow (intrusion layer) and the deep current is produced by the outflow (velocity current). According to season, the river inflow either supplies the deep current or remains recordable up to the dam. Consequently, the structure of the water column, and thus the biogeochemical processes within it, are governed both by thermal stratification and by these layers.  相似文献   

12.
Flushing of dense water from cavities of the upper reaches of the Swan River estuary in Western Australia was investigated using measured salinity and dissolved oxygen profiles and a two-dimensional, laterally averaged hydrodynamic model (TISAT). Seasonal flushing of dense, hypoxic bottom waters from a relatively deep site took place over ∼3 days at the onset of winter in 1994. Model simulations of the purging of this dense water did not correspond closely with changes in the densimetric Froude number. Purging, expressed as depth of the halocline as a fraction of the total cavity depth, occurred when the simulated mean horizontal velocity at 2 m depth (top of cavity) changed from negative to strongly positive, indicating arrest of upstream flow and continuous downstream flow. This corresponded to freshwater discharge of about 50 m3 s−1. Oxygen depletion of bottom waters was closely related to stratification. Oxygen dynamics at the onset of winter river flow was analysed using an exponential decay model, assuning that there was no net inflow or outflow across the halocline and thus no vertical transport of oxygen during a period of strong stratification. The rate constant for oxygen decay at Ron Courtney Island (RCI) was estimated to be 0.232 d−1 for this period. Bottom waters at RCI declined to less than 1 mg 1−1 prior to complete flushing through increased river flows. This study provided in sights to how freshwater flows may be allocated to maintain suitable oxygen levels in the bottom waters of estuarine cavities.  相似文献   

13.
For the purpose of exploring seasonal stratification characteristics of water hydrochemistry, the seasonal dynamics and vertical thermal stratification of water temperature in Lake Lugu, the vertical profiles of water temperature (Temp), Electrical Conductivity (EC), Dissolved Oxygen (DO), pH and Chlorophyll-a (Chl-a) of Lake Lugu were monitored in January, April, July and October 2015, respectively. The results indicated that water body of Lake Lugu appeared thermal stratification in spring, summer and autumn, however, in winter, the water temperature in vertical direction was homogeneous. The thermocline was located between 10 and 25 m, nevertheless, it moved down to range from 20 to 30 m in autumn. In addition, water temperature in hypolimnion was maintained almost as a constant and consistent with annual temperature, indicating water body was stable all along. The results showed that the thermal stratification had some influences on vertical distributions of DO, EC, pH and Chl-a. The significant stratification of DO, EC and pH was found, especially in summer, DO and pH values in thermocline peaked due to greatly stable thermal stratification and temperature increase. In hypolimnion, DO concentration and pH value were very small. Moreover, Chl-a concentration was higher in the surface and lower in the bottom water, implying that human should be highly alter to prevent the emergence of a large area of algae in Lake Lugu. EC took on decreasing variation, besides, lower in the thermocline. While,Lugu Lake water salinity was lower and substantially constant (~ 0.10‰), without considering the effects of salinity, both in vertical sections and in epilimnion, thermocline and hypolimnion, there all existed a simple linear function of the relationship between EC andwater temperature, showing that Lugu Lake was affected by natural climate and keeps natural state.  相似文献   

14.
The time-dependent salinity stratification in an environment of highly variable turbulence of Gauthami-Godavari estuary is described. From time series observations at three stations over two tidal cycles each in the winter (December 1989) and the dry (April 1990) seasons in the Gauthami-Godavari estuary, the development of stratification is correlated with periods of substantially reduced velocity shear. Stratification is observed to be greatest around the low water slacks and least around the high water slacks. The formation of stratification relaxes viscous constraints and a buoyancy circulation rapidly develops. The breakdown of stratification drastically modifies the circulation and largely removes the vertical shear associated with the density driven flow. Destratification occurs around the high water slacks in the lower reaches fairly close to the mouth of the estuary. The variations in the fields of mass will strongly affect the response of the velocity field.  相似文献   

15.
Abundant dinocysts in a high-resolution core from Voldafjorden, western Norway, reflect changes in sea surface-water conditions during the last c. 11 300 BP. The period from c. 11 300 to 10 800 BP (Late Allerφd) was characterized by cool temperate surface-waters, high annual temperature variation and relatively strong stratification of the water column, which is characteristic of fjord environments. Due to the stratification of the surface waters, the uppermost layer may have warmed considerably. This generated a principal difference in temperature conditions between land and sea, with slightly higher temperatures in the marine environments. The period from c. 10 800 to 10 000 BP is characterized by very harsh conditions, with sea surface-water temperatures close to freezing and long lasting seasonal sea-ice cover. Similar temperature changes at the beginning and end of the Younger Dryas are characteristic for NW Europe, but those in Voldafjorden differ from those in the open sea and in the Norwegian Channel by being significantly larger. The stratification of the water column during the Late Allerφd was probably broken down because of incipient inflow of temperate normal saline waters, which caused a marked sea surface-water warming, at c. 10 000 BP. Surface-water conditions close to those of today were gradually established between c. 10000 and 9500 BP. However, these interglacial conditions were abruptly interrupted by a significant drop in winter sea surface-water temperature and salinity occurring around 9700 BP. From c. 9500 to 7000 BP the influence of temperate normal saline water masses increased stepwise until full interglacial conditions were established around c. 7000 BP. The change in the dinocyst assemblage around 7000 BP in Voldafjorden was probably related to the onset of the modern Norwegian Coastal Current, previously documented in cores from the Skagerrak and the Mid-Norwegian Continental Shelf. The last c. 7000 BP is characterized by relatively stable surface-water conditions, possibly interrupted by periods of cooling or decreased inflow of temperate normal saline water. Like several other dinoflagellate cyst records from the Norwegian-Greenland Sea, O. centrocarpum peak values are between 4000 and 5000 BP, suggesting a regional-scale oceanographic change.  相似文献   

16.
Salinity is a critical factor in understanding and predicting physical and biogeochemical processes in the coastal ocean where it varies considerably in time and space. In this paper, we introduce a Chesapeake Bay community implementation of the Regional Ocean Modeling System (ChesROMS) and use it to investigate the interannual variability of salinity in Chesapeake Bay. The ChesROMS implementation was evaluated by quantitatively comparing the model solutions with the observed variations in the Bay for a 15-year period (1991 to 2005). Temperature fields were most consistently well predicted, with a correlation of 0.99 and a root mean square error (RMSE) of 1.5°C for the period, with modeled salinity following closely with a correlation of 0.94 and RMSE of 2.5. Variability of salinity anomalies from climatology based on modeled salinity was examined using empirical orthogonal function analysis, which indicates the salinity distribution in the Bay is principally driven by river forcing. Wind forcing and tidal mixing were also important factors in determining the salinity stratification in the water column, especially during low flow conditions. The fairly strong correlation between river discharge anomaly in this region and the Pacific Decadal Oscillation suggests that the long-term salinity variability in the Bay is affected by large-scale climate patterns. The detailed analyses of the role and importance of different forcing, including river runoff, atmospheric fluxes, and open ocean boundary conditions, are discussed in the context of the observed and modeled interannual variability.  相似文献   

17.
The devastation due to storm surge flooding caused by extreme wind waves generated by the cyclones is a severe apprehension along the coastal regions of India. In order to coexist with nature’s destructive forces in any vulnerable coastal areas, numerical ocean models are considered today as an essential tool to predict the sea level rise and associated inland extent of flooding that could be generated by a cyclonic storm crossing any coastal stretch. For this purpose, the advanced 2D depth-integrated (ADCIRC-2DDI) circulation model based on finite-element formulation is configured for the simulation of surges and water levels along the east coast of India. The model is integrated using wind stress forcing, representative of 1989, 1996, and 2000 cyclones, which crossed different parts of the east coast of India. Using the long-term inventory of cyclone database, synthesized tracks are deduced for vulnerable coastal districts of Tamil Nadu. Return periods are also computed for the intensity and frequency of cyclones for each coastal district. Considering the importance of Kalpakkam region, extreme water levels are computed based on a 50-year return period data, for the generation of storm surges, induced water levels, and extent of inland inundation. Based on experimental evidence, it is advocated that this region could be inundated/affected by a storm with a threshold pressure drop of 66 hpa. Also it is noticed that the horizontal extent of inland inundation ranges between 1 and 1.5 km associated with the peak surge. Another severe cyclonic storm in Tamil Nadu (November 2000 cyclone), which made landfall approximately 20 km south of Cuddalore, has been chosen to simulate surges and water levels. Two severe cyclonic storms that hit Andhra coast during 1989 and 1996, which made landfall near Kavali and Kakinada, respectively, are also considered and computed run-up heights and associated water levels. The simulations exhibit a good agreement with available observations from the different sources on storm surges and associated inundation caused by these respective storms. It is believed that this study would help the coastal authorities to develop a short- and long-term disaster management, mitigation plan, and emergency response in the event of storm surge flooding.  相似文献   

18.
《Applied Geochemistry》1999,14(6):735-745
In the Lower Andarax river basin 3 aquifer units have been defined, namely the Carbonate Aquifer, the Deep Aquifer and the Detrital Aquifer, which between them contain a wide variety of water types. Identification of hydrogeochemical processes has been performed by studying a series of ionic ratios, comprising the principal constituents together with B and Li (Cl vs SO4, Cl vs Mg, Cl vs Li, B vs Li). Among the processes detected, the circulation of groundwaters with high concentrations of SO4 was found to have significant effects. Moreover, in the coastal region, naturally occurring processes related to the flushing of saline waters from sediments of marine origin occur in conjunction with others, clearly of human origin, that are related to saltwater intrusion. A further factor is the entry, from overlying deposits, of waters with a high saline content; this salinity is related to the flushing of sediments of marine origin. The use of B and Li together enables waters in which salinity is related to seawater to be distinguished from others in which salinity is related to evaporitic layers or to thermal areas. The concentration of Li is directly related to water temperature, while that of B is greater in the most saline sectors, of gypsiferous and/or seawater origin.  相似文献   

19.
抚仙湖内波数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
根据抚仙湖的特点,提出了一个二维分层积分数值模式.应用该模式探讨了抚仙湖内波及上、下层流场特征.计算结果表明:在无旋风场作用下,内波在空间上作42.5h周期性旋转;在有旋风场作用下,抚仙湖北部湖区存在转向相反的双层水平环流,并且上层的反时针环流主要是由湖区正旋度附加风场作用而形成的.模拟结果与观测事实吻合较好.  相似文献   

20.
To quantify the effect of salinity stratification on phytoplankton density (denoted as P) patterns, experiments were conducted with an idealised model that couples physical and biological processes. Results show that the idealised model is capable of capturing the main features of observed P patterns in the Columbia River estuary during the spring season: during weak stratification, P is almost vertically uniform with values decreasing towards the estuary mouth, whereas during strong stratification, high values of P extend further seawards but are confined to the upper layer. Sensitivity studies reveal that the strong vertical gradients of P can only occur if the intensity of turbulence (measured by depth-averaged values of vertical eddy viscosity and eddy diffusivity) is weak. The advection of P by subtidal currents is important in obtaining a smaller along-estuary gradient of P during weak stratification and in obtaining a smaller horizontal gradient and a larger vertical gradient of P during strong stratification. Accounting for stratification controlled vertical distribution of vertical eddy viscosity and eddy diffusivity is necessary for obtaining realistic P patterns if stratification is strong, but not if stratification is weak. A higher osmotic stress, which leads to faster loss of phytoplankton in salt water, results in a larger along-estuary gradient of P if stratification is weak and in a larger vertical gradient of P if stratification is strong.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号