首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 395 毫秒
1.
The Changba Pb-Zn SEDEX deposit occurs in the Middle Devonian sequence of the Anjiaca Formation of the Western Qinling Hercynian Orogen in the Gansu Province, China. The Changba-II orebody is hosted in biotite quartz schist and is the largest of 143 stratiform orebodies that are hosted either in biotite quartz schist or marble. The Changba-II comprises two types of mineralization: a bedded facies and an underlying breccia lens. The bedded section exhibits three sulfide sub-facies zoned from bottom to top: 1) banded sphalerite intercalated with quartz albitite; 2) interbedded massive pyrite and sphalerite ore; and 3) banded sphalerite ore intercalated with banded baritite. Major metallic minerals are sphalerite, pyrite, galena, with minor arsenopyrite, pyrrhotite, boulangerite, and rare chalcopyrite. The bedded sulfides are underlain by a lens of brecciated and albitized biotite-quartz schists cemented by sulfides and tourmaline.Massive and bedded sulfide 34S values range from 8.1 to 29.3, whereas barite 34S values range from 20.8 to 31.5. Disseminated pyrite in footwall schists has 34S values ranging from 8.1 to 10.6, and increase to values ranging from 11.1 to 14.7 in the hangingwall. The lower 34S values for massive and bedded sulfides are interpreted to be derived from progressive bacterial sulfate reduction (BSR) of Devonian seawater in a sulfate-restricted sub-basin. The higher 34S values for massive and bedded sulfides could be a product of quantitative BSR but this is incompatible with barite being more abundant above the bedded sulfides. Instead, it is more likely that thermochemical sulfate reduction of seawater sulfate or of evaporite was the source of heavy hydrothermal sulfur. Heavy hydrothermal sulfur was injected into a sulfate-restricted sub-basin where it mixed with low 34S BSR sulfide to form the massive and bedded sulfides. The REE patterns of sulfide layers and associated quartz albitite and baritite are similar to those of the host biotite quartz schists, suggesting that the hydrothermal fluids leached REE from the underlying rocks. Pb isotope ratios in galena form an array between the Upper Crust and the Mantle reservoir curves, which indicates that the lead is derived from upper crustal rocks comprising mafic igneous units. The Sr87/Sr86 ratio of 0.7101 for carbonate within the sulfide layers also suggests that Sr is derived from the mixing of Sr leached from upper crustal rocks with Middle Devonian seawater Sr. A Rb-Sr isochron age of 389.4 ± 6.4 Ma for sulfide layers and the interbedded hydrothermal sediments is consistent with the age of host Mid-Devonian strata. Ar39/Ar40 plateau age at 352.8 ± 3.5 Ma and Ar39-Ar40 isochron age of 346.6 ± 6.4 Ma for albite in the quartz albitite intercalated with sulfide layers indicate either albite formation after the sulfides or thermal resetting of the Rb-Sr system at about 350 Ma, the age of collision between the North China and Yangtze cratons.Editorial handling: E. Frimmel  相似文献   

2.
The Kangerdlugssuaq intrusion, East Greenland, consists of quartzsyenites, syenites, pulaskites and foyaites. The age and petrogenesis of the intrusion has been investigated by strontium and oxygen isotope analyses of the major rock types (and some separated minerals) and the surrounding country rocks. Crystallization and rapid cooling of the intrusion close to 50 m.y. ago is indicated by concordance of an Rb-Sr mineral isochron (49.9±1.0 m.y.) and an Rb-Sr whole-rock isochron (50.0±1.9 m.y.) with previously published mineral dates. The feldspathoid-bearing rocks of the intrusion, which were the last to crystallize, have uniformly depleted oxygen (18O = +3.9, SMOW) and homogeneous initial 87Sr/86Sr ratios (0.70450±7). This is ascribed to equilibration of the magma prior to the crystallization of these rocks with about 10% by weight of meteoric ground water. The concommittant increase of to about 1 Kb (the lithostatic load pressure) would depress the liquidus surfaces in the system Ne-Ks-Qz by about 200 ° C, allowing the magma to evolve continuously down temperature from oversatuated to undersaturated compositions. The chemical mechanism responsible for this trend has not been uniquely identified, but probably involved reduction of SiO2 content in an open system. The outer, quartz-normative, rocks of the intrusion have 18O values ranging up to +5.5 and initial 87Sr/86Sr ratios ranging up to 0.7095. This is due to interaction of the solid rocks, down to temperatures approaching 500 ° C, with ground water which had been enriched in 18O and 87Sr by previous exchange with the Precambrian country rocks. Minimum water/rock ratios are lower than in certain other known cases of interaction in the North Atlantic Tertiary Igneous Province.  相似文献   

3.
The Pliocene and Quaternary Patagonian alkali basalts of southernmost South America can be divided into two groups. The cratonic basalts erupted in areas of Cenozoic plateau volcanism and continental sedimentation and show considerable variation in 87Sr/86Sr (0.70316 to 0.70512), 143Nd/144Nd (Nd) and 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios (18.26 to 19.38, 15.53 to 15.68, and 38.30 to 39.23, respectively). These isotopic values are within the range of oceanic island basalts, as are the Ba/La, Ba/Nb, La/Nb, K/Rb, and Cs/Rb ratios of the cratonic basalts. In contrast, the transitional basalts, erupted along the western edge of the outcrop belt of the Pliocene and Quaternary plateau lavas in areas that were the locus of earlier Cenozoic Andean orogenic arc colcanism, have a much more restricted range of isotopic composition which can be approximated by 87Sr/86Sr=0.7039±0.0004, Nd, 206Pb/204Pb=18.60±0.08, 207Pb/204Pb=15.60±0.01, and 208Pb/204Pb=38.50±0.10. These isotopic values are similar to those of Andean orogenic are basalts and, compared to the cratonic basalts, are displaced to higher 87Sr/86Sr at a given 143Nd/144Nd and to higher 207Pb/204Pb at a given 208Pb/204Pb. The transitional basalts also have Ba/La, Ba/Nb, La/Nb, and Cs/Rb ratios higher than the cratonic and oceanic island basalts, although not as high as Andean orogenic are basalts. In contrast to the radiogenic isotopes, 18O values for both groups of the Patagonian alkali basalts are indistinguishable and are more restricted than the range reported for Andean orogenic are basalts. Whole rock 18O values calculated from mineral separates for both groups range from 5.3 to 6.5, while measured whole rock 18O values range from 5.1 to 7.8. The trace element and isotopic data suggest that decreasing degrees of partial melting in association with lessened significance of subducted slabderived components are fundamental factors in the west to east transition from arc to back-arc volcanism in southern South America. The cratonic basalts do not contain the slab-derived components that impart the higher Ba/La, Ba/Nb, La/Nb, Cs/Rb, 87Sr/86Sr at a given 143Nd/144Nd, 207Pb/204Pb at a given 208Pb/204Pb, and 18O to Andean orogenic arc basalts. Instead, these basalts are formed by relatively low degrees of partial melting of heterogeneous lower continental lithosphere and/or asthenosphere, probably due to thermal and mechanical pertubation of the mantle in response to subduction of oceanic lithosphere below the western margin of the continent. The transitional basalts do contain components added to their source region by either (1) active input of slab-derived components in amounts smaller than the contribution to the mantle below the arc and/or with lower Ba/La, Ba/Nb, La/Nb, and Cs/Rb ratios than below the arc due to progressive downdip dehydration of the subducted slab; or (2) subarc source region contamination processes which affected the mantle source of the transitional basalts earlier in the Cenozoic.  相似文献   

4.
Two orthogneiss suites dominate the Silvretta nappe. Primary crystallization of the larger suite (younger orthogneisses) is assumed to be Ordovician in age. The second, adjacent magmatic suite consists of older, alkaline to calc-alkaline, ultrabasic, basic to intermediate and granitic rocks known as older orthogneisses. U-Pb data of multigrain zircon fractions, as well as single zircon stepwise evaporation 207Pb/206Pb results suggest a latest Proterozoic to early Cambrian intrusion age for the protoliths of the older orthogneisses as both dating methods yield early Cambrian crystallization ages of 526±7 and 519±7 Ma for an alkaline granite gneiss; similar results were obtained for two neighbouring calc-alkaline orthogneisses (207Pb/206Pb ages of 533 ± 4 and 568 ± 6 Ma, respectively). The crystal habitus corresponds to P5, S19 and S9 zircons of magmatic origin. Whole-rock initial Sr isotope ratios indicate a primitive source. The igneous protoliths of these older orthogneisses represent a fragment of a Cadomian (Pan-African) crust found in places within the basement of the European Hercynides.  相似文献   

5.
Eight new chemical analyses of rocks of Tutuila Island are given, and 20 new analyses of rocks of the Manu'a Islands will be reported elsewhere. Like the older analyses, all are of alkalic rocks. Tholeiitic rocks have not been found in Samoa, although they may be present in the submerged basal parts of the volcanoes. The differentiation trend of Samoan rocks for the most part closely parallels that of the Hawaiian alkalic suite. In both areas the probable parent magma is oceanitic. Quartz trachytes of Tutuila and rhyolitic obsidians of Easter Island are clearly members of the alkalic suite, although the rhyodacite of Hawaii still appears to be a tholeiitic derivative. Differentiation of alkalic olivine basalt magma to trachyte in some instances and to quartz trachyte or even sodic rhyolite in others may result from differences in the proportion of pyroxene to olivine in the separated material, which may in turn be a function of the depth at which crystallization takes place. In the Samoan Islands caldera formation took place after a considerable period of eruption of alkalic rocks, instead of before the appearance of alkalic rocks as is the case in Hawaii. Thus the details of the Hawaiian pattern cannot be extended to all other oceanic volcanoes.
Zusammenfassung In der vorliegenden Arbeit wird über acht neue chemische Analysen von Gesteinsproben der Insel Tutuila berichtet. In einer weiteren Veröffentlichung werden über 20 neue Gesteinsanalysen der Manu'a-Inseln publiziert. Es handelt sich wie bei früheren Analysen um alkalische Vulkanite. Tholeiitische Gesteine wurden in Samoa nicht gefunden; es ist aber möglich, daß solche in den untermeerischen Teilen der Vulkane vorhanden sind. Der Differentiations-Trend der Samoa-Gesteine verlief größtenteils parallel dem der hawaiianischen alkalischen Sippe. In beiden Gebieten ist das wahrscheinliche Ursprungsmagma ozeanitischer Art. Es ist sicher, daß die Quarztrachyte von Tutuila und die rhyolitischen Obsidiane der Osterinsel der alkalischen Sippe angehören, obwohl der Rhyodazit von Oahu, Hawaii, tholeiitischer Herkunft zu sein scheint. Die Differentiation des alkalischen olivinbasaltischen Magmas zu Trachyt einerseits und zu Quarztrachyt oder sogar zu Natrium-Rhyolith andererseits mag aus Unterschieden im Verhältnis von Pyroxen zu Olivin im getrennten Material herrühren. Dies mag wiederum eine Funktion der Tiefe sein in der die Kristallisation stattfindet. Im Gegensatz zu Hawaii fand auf den Samoainseln die Calderabildung nach einer starken Eruptions-Periode alkalischer Gesteine statt. Das bedeutet, daß die Einzelheiten des hawaiianischen Modells nicht auf alle anderen ozeanischen Vulkane anwendbar sind.

Résumé Huit analyses nouvelles chimiques de roches de l'Île Tutuila sont présentées, et 20 analyses nouvellées de roches des Îles Manu'a sont données ailleurs. Comme les analyses plus anciennes, toutes sont de roches alcalines. Des roches tholeiitiques ne sont pas découvrées à Samoa, quoiqu'il soit possible qu'elles existent dans la partie sous-marine des volcans. La direction de différenciation des roches de Samoa est en majeure partie conforme à celle de la suite alcalique hawaiienne. Dans toutes les régions le magma ancétral est probablement océanitique. Les trachytes à quartz de Tutuila et l'obsidien rhyolitique de l'Île Pâques évidemment sont membres de la suite alcalique, quoique le rhyodacite d'Hawaii semble être encore un dérivé tholeiitique. La différenciation de magma de la composition de basalte à olivine dans quelques circonstances à trachyte et dans d'autres circonstances à trachyte quartzifère ou même rhyolite sodique pourrait résulter des différences dans la proportion de pyroxéne à olivine dans la matière séparée qui à son tour pourrait être une fonction de la profondeur dans laquelle la cristallisation a lieu. Dans les îles Samoa la formation des caldères avait lieu après une période d'éruption des roches alcaliques, au lieu d'avant le début des roches alcaliques, comme dans Hawaii. Donc on ne peut pas appliquer les détails du modèle hawaiien à tous les autres volcans océaniques.

Tutuila ( ). . . , , Tutuila Weihu , , Oahu (), , .


Dedicated to Professor Dr. A.Rittmann on the occasion of his 75. birthday

Hawaii Institute of Geophysics Contribution No. 217.  相似文献   

6.
This paper deals with barite from stratiform, karst, and vein deposits hosted within Lower Paleozoic rocks of the Iglesiente-Sulcis mining district in southwestern Sardinia. For comparison sulfates from mine waters are studied. Stratiform barite displays 34S=28.8–32.1, 18O=12.7–15.6, and 87Sr/86Sr=0.7087, in keeping with an essentially Cambrian marine origin of both sulfate and strontium. Epigenetic barite from post-Hercynian karst and vein deposits is indistinguishable for both sulfur and oxygen isotopes with 34S=15.3–26.4 and 18O=6.6–12.5; 87Sr/86Sr ratios vary 0.7094–0.7140. These results and the microthermometric and salinity data from fluid inclusions concur in suggesting that barite formed at the site of mineralization by oxidation of reduced sulfur from Cambrian-Ordovician sulfide ores in warm, sometimes hot solutions consisting of dilute water and saline brine with different 18O values. The relative proportion of the two types of water may have largely varied within a given deposit during the mineralization. In the karst barite Sr was essentially provided by carbonate host rocks, whereas both carbonate and Lower Paleozoic shale host rocks should have been important sources for Sr of the vein barite. Finally, 34S data of dissolved sulfate provide further support for the mixed seawater-meteoric water composition of mine waters from the Iglesiente area.  相似文献   

7.
Strong compositional zonation of the 34 Ma Grizzly Peak Tuff in west-central Colorado is attended by non-monotonic trends in O, Sr, Nd, and Pb isotope ratios. Fiamme from the tuff cluster in chemical compositions and petrographic characteristics, indicating the magma chamber was not continuously zoned but consisted of at least seven compositional layers. The most mafic magma erupted (57 wt% SiO2, fiamme group 7) had 18O= +8.5, initial 87Sr/86Sr=0.7099, Nd, and 206Pb/204Pb=17.80, suggesting that the magma was produced by 50% fractional crystallization of basaltic magma that assimilated 20 to 40 wt% Proterozoic crust. Isotopic compositions of more evolved parts of the chamber (up to 77 wt% SiO2, fiamme group 1) depart from the mafic base-level composition of fiamme group 7, and reflect late-stage assimilation that occurred largely after compositional layering was established. 18O values decrease by as much as 1.5 from fiamme groups 7 through 4, indicating assimilation of hydrothermally altered roof rocks. 18O values abruptly inerease by up to 1.5 between fiamme groups 4 and 3. This discontinuity is interpreted to reflect evolution in an asymmetric chamber that had a split-level roof, allowing assimilation of wall rocks that varied vertically in degree of hydrothermal alteration. This chamber geometry is also supported by collapse structures in the caldera. Late-stage assimilation of heterogeneous wall rocks is also indicated by variations in Sr, Nd, and Pb isotope ratios. Large Sr isotope disequilibrium exists between some phenocrysts and whole-rock fiamme, and initial 87Sr/86Sr ratios in phenocrysts are as high as 0.7170. values regularly increase from-13.0 in fiamme group 7 to-11.3 in fiamme group 3, and then decrease to-12.2 in fiamme group 1. 206Pb/204Pb ratios generally increase from 17.80 to 17.94 for fiamme groups 7 through 1. The rhyolitic parts of the Grizzly Peak Tuff have isotopic compositions that could be attributed to a purely crustal melt. It is unlikely, however, that the mafic parts of the tuff were generated by crustal melting, and the compositional and isotopic variations across the entire zonation of the tuff are best explained by fractional crystallization of mantle-derived magmas, accompanied by extensive assimilation of Proterozoic crust.  相似文献   

8.
The Erquy series (Côtes du Nord, France) consists, in its upper part, of spilitic pillow lavas with some interbedded volcano-sedimentary horizons.The Rb-Sr system of the pillows allowed the construction of a whole-rock isochron at 482±10 M.a. with an initial87Sr/86Sr ratio of 0.7055±0.0002. These rocks and the associated keratophyres give, on the other hand, K-Ar ages of 285±16 M.a. interpreted as the consequence of late-hercynian tectonism.A volcano-sedimentary horizon interbedded with such pillow flows has been studied from petrographic, mineralogical, geochemical and isotopic (Rb-Sr and K-Ar) points of view. The sequence keeps a sedimentary memory. Its clay fractions <2 m and corresponding whole-rocks fit an isochron which is identical to that of the volcanic rocks: 494±11 M.a. with an initial87Sr/86Sr ratio of 0.7052±0.0005. The clay fractions give K-Ar data at about 450 M.a., but those which contain important amounts of volcanic glass, at the top of the horizon, have K-Ar values as low as 400 M.a., and those which contain almost no glass have a K-Ar age close to the Rb-Sr age at 480 M.a.This study emphasizes the possibility of a complete reset of the K-Ar system of spilitic rocks by a tectonic event without notice-able temperature increase. This result may have important implications on combined paleomagnetic and K-Ar studies: it seems that a least for spilites and keratophyres, the Curie point and Ar blocking temperature can be very different.  相似文献   

9.
H. Holail  R. Tony 《GeoJournal》1995,35(4):481-486
The stable isotopic composition (13C and 18O) and elemental (Sr and Mg) of marine molluscs are presented for Carditacea and Solenacea shells collected off the Mediterranean coast of Egypt. Based on shell microstructures and mineralogy, the bivalve shells are preserved in their original mineralogy and chemistry.The Sr and Mg concentrations of the bivalve shells have mean values of 1960 ppm and 226 ppm respectively. The stable isotopic composition generally show high values of 18O and 13C. The 18O values range from +0.1 to –1.8 PDB and most shells are highly enriched in13C; averaging +2.5 PDB. These elemental and isotopic signatures are analogous to modern marine bivalves from other localities.The oxygen and carbon isotopes, together with the calculated temperatures, suggest that the aragonitic bivalve shells were precipitated in isotopic equilibrium from warm marine waters.  相似文献   

10.
Major structural discontinuities in the Abitibi greenstone belt acted as conduits for outgassing of the Archean crust, as reflected in fixation of a select group of lithophile elements including Si, C, K, Rb, Ba, Li, Cs, B and Pb, in metasomatized faults. For two of the largest structures, the Destor-Porcupine (DP) and Kirkland Lake — Cadillac (KC) fault zones 6×1015 g Si, 3×1015 g CO2 and 1015 g K were introduced into the faults during expulsion of an estimated 6×1018 g aqueous fluids. Strontium isotope ratios of tourmaline, piemontite, actinolite and scheelite mineral separates, characterized by Rb/Sr0.02, are concordant with respect to 87Sr/86Sr initial ratios over local sectors of the faults. The Sr isotope data record geographic variations which, from east to west on the KC fault is 0.7031–0.7041 (Val d'Or), 0.7008–0.7022 (Bourlemaque), 0.7017–0.7019 (Bousquet), 0.7029–0.7031 (Noranda), and 0.7013 to 0.7015 (Kirkland Lake). At Timmins, on the PD fault, 87Sr/86Sr initial ratios cluster at 0.7010 to 0.7020. Metasomatised fault zones are systematically more radiogenic than contiguous host lithologies, and imply a source reservoir (0.7010 to 0.7041) generally more radiogenic than the upper mantle at 2690 Ma (0.700±0.001), or contemporaneous volcanic rocks of mafic to ultramafic composition (0.700 to 0.7012). Whereas certain minerals are concordant and retentive, Rb-Sr isochrons based on suites of rocks at progressive intensities of metasomatism, have been systematically reset over an elpased time of 200 Ma after termination of outgassing, due to disturbance accompanying incremental displacements on structures.Carbon isotope compositions of ferroan dolomites in faults are tightly clustered along local fault sectors, but also display a marked provinciality: from east to west 13C=–6.0 to –8.5 (Malartic), –8.0 to –9.0 (Cadillac), –2.0 to –4.5 (Kirkland Lake), and –0.5 to –3.5 (Timmins). The observed provinciality of both 13C values and 87Sr/86Sr initial ratios is interpreted to reflect compositional heterogeneities in a radiogenic sialic crust and the green-stone belt supracrustal sequence, both of which supplied volatiles, magmas and lithophile elements to the fault structures during late stage transpressive tectonics.  相似文献   

11.
Nd, Sr and O isotopic data were obtained from silicic ash-flow tuffs and lavas at the Tertiary age (16–9 Ma) Timber (Mountain/Oasis Valley volcanic center (TMOV) in southern Nevada, to assess models for the origin and evolution of the large-volume silicic magma bodies generated in this region. The large-volume (>900 km3), chemically-zoned, Topopah Spring (TS) and Tiva Canyon (TC) members of the Paintbrush Tuff, and the Rainier Mesa (RM) and Ammonia Tanks (AT) members of the younger Timber Mountain Tuff all have internal Nd and Sr isotopic zonations. In each tuff, high-silica rhyolites have lower initial Nd values (1 Nd unit), higher87Sr/86Sr, and lower Nd and Sr contents, than cocrupted trachytes. The TS, TC, and RM members have similar Nd values for high-silica rhyolites (-11.7 to -11.2) and trachytes (-10.5 to -10.7), but the younger AT member has a higher Nd for both compositional types (-10.3 and -9.4). Oxygen isotope data confirm that the TC and AT members were derived from low Nd magmas. The internal Sr and Nd isotopic variations in each tuff are interpreted to be the result of the incorporation of 20–40% (by mass) wall-rock into magmas that were injected into the upper crust. The low Nd magmas most likely formed via the incorporation of low 18O, hydrothermally-altered, wall-rock. Small-volume rhyolite lavas and ash-flow tuffs have similar isotopic characteristics to the large-volume ash-flow tuffs, but lavas erupted from extracaldera vents may have interacted with higher 18O crustal rocks peripheral to the main magma chamber(s). Andesitic lavas from the 13–14 Ma Wahmonie/Salyer volcanic center southeast of the TMOV have low Nd (-13.2 to -13.8) and are considered on the basis of textural evidence to be mixtures of basaltic composition magmas and large proportions (70–80%) of anatectic crustal melts. A similar process may have occurred early in the magmatic history of the TMOV. The large-volume rhyolites may represent a mature stage of magmatism after repeated injection of basaltic magmas, crustal melting, and volcanism cleared sufficient space in the upper crust for large magma bodies to accumulate and differentiate. The TMOV rhyolites and 0–10 Ma old basalts that erupted in southern Nevada all have similar Nd and Sr isotopic compositions, which suggests that silicic and mafic magmatism at the TMOV were genetically related. The distinctive isotopic compositions of the AT member may reflect temporal changes in the isotopic compositions of basaltic magmas entering the upper crust, possibly as a result of increasing basification of a lower crustal magma source by repeated injection of mantle-derived mafic magmas.  相似文献   

12.
Sm-Nd and Rb-Sr isotopic analyses are reported for granulite facies orthogneisses from Fiordland southwest New Zealand. Whole-rock samples define a Rb-Sr isochron age of 120±15 Ma and an initial 87Sr/86Sr ratio of 0.70391±4. Nd values (at 120 Ma) show a relatively wide range of from –0.4 to 2.7 indicating decoupling of Sr-Nd isotope systems. Associated ultramafic rocks have initial 87Sr/86Sr ratios of from 0.70380 to 0.70430 and Nd values of from 0.1 to 3.0. The different initial ratios suggest that the various intrusions, although contemporaneous, were not derived through fractionation of a single parent magma. A metasedimentary enclave incorporated during emplacement of the granulitic rocks preserves a Proterozoic isotopic signature with a measured Nd(0) value of –10.2, 87Sr/86Sr ratio of 0.73679 and a T Nd provenance age of 1490 Ma. The Rb-Sr whole rock age of the granulites is the same as obtained from recent U-Pb zircon dating (Mattinson et al. 1986) and is interpreted as the time of magmatic emplacement and essentially contemporaneous granulite facies metamorphism. Rb-Sr and Sm-Nd analyses of mineral systems indicate that the terrain had cooled below 300° C by 100 Ma providing further evidence that high grade metamorphism was of exceptionally short duration.Unmetamorphosed leucogabbros from the Early Cretaceous Darran Complex of eastern Fiordland have significantly higher Nd values (3.9 to 4.6) and slightly lower 87Sr/ 86Sr (0.70373 to 0.70386) than the western Fiordland granulites. This indicates that the western and eastern Fiordland complexes are not correlative although both have geochemical similarities to Phanerozoic calc-alkaline island-arc suites. The Fiordland granulites are LREE enriched (LaN/ YbN=12 to 40) and have trace element characteristics (e.g. high K/Rb and low Rb/Sr ratios) typical of many Rb-depleted Precambrian granulite terrains. The Fiordland trace element trends, however are attributed to magmatic, not metamorphic processes, reflecting the character of the Early Cretaceous magma sources. The range of Nd values, but uniform initial 87Sr/86Sr of the western Fiordland granulites is consistent with derivation of the parent Early Cretaceous magmas at least in part from a LREE enriched, low Rb/Sr protoliths of mid-to late-Paleozoic age. Partial melting of this protolith occurred during or immediately preceding a period of great crustal thickening culminating in rapid thickening of existing crust by 20 km following emplacement of the granulitic rocks. The rapid crustal thickening was probably a consequence of a collisional event in which an Early Cretaceous magmatic arc was over-ridden by one or more thrust sheets.  相似文献   

13.
The Ascutney Mountain complex of eastern Vermont, USA, is a composite epizonal pluton of genetically related gabbro to granite intrusives. Nd isotopic data are reported for mafic rocks, granites, and nearby country rock. The parental mafic magma producing the complex 122 m.y. ago had 87Sr/86Sr=0.7039, 143Nd/144Nd=0.512678 ( Nd=+3.8) and 18O=6.1, indicating a mantle source with time-integrated lithophile element depletion. Uniform initial radiogenic isotope ratios for granites, which are undistinguishable from those for the most primitive gabbro, suggest that the granite magma evolved from the mafic magma without crustal contamination and that the increase in 18O, to about 7.8, is the result of fractional crystallization. Mafic rocks show a large range in initial 143Nd/144Nd ratio, from about 0.51267 to 0.51236 ( Nd= +3.7 to –2.5), which is correlated with elevated 87Sr/86Sr ratios and 18O. These data substantiate the production of mafic lithologies by fractional crystallization of the parental magma accompanied by assimilation of up to about 50% crust. The local country rocks include gneiss and schist and assimilation involved representatives of both rock types. The isotopic and chemical relationships preclude derivation from a single batch of magma undergoing contamination and indicate that a large magma body at depth evolved largely by fractionation with batches of melt issued from this chamber being variably contaminated at higher levels or at the level of emplacement.The Precambrian gneisses of the Chester dome and overlying lower Paleozoic schists have essentially identical Nd isotope systematics which suggest a crustal formation age of about 1.6. b.y. The parental sediments for the schists were apparently derived from a protolith similar to the gneissic basement without appreciable Sm/Nd fractionation.  相似文献   

14.
Over 200 H, O, Sr, Nd, and Pb isotope analyses, in addition to geologic and petrologic constraints, document the magmatic evolution of the 28.5–19 Ma Latir volcanic field and associated intrusive rocks, which includes multiple stages of crustal assimilation, magma mixing, protracted crystallization, and open- and closed-system evolution in the upper crust. In contrast to data from younger volcanic centers in northern New Mexico, relatively low and restricted primary 18O values (+6.4 to +7.4) rule out assimilation of supracrustal rocks enriched in 18O. Initial 87Sr/86Sr ratios (0.705 to 0.708), 18O values (-2 to-7), and 206Pb/204Pb ratios (17.5 to 18.4) of metaluminous precaldera volcanic rocks and postcaldera plutonic rocks suggest that most Latir rocks were generated by fractional crystallization of substantial volumes of mantle-derived basaltic magma that had near-chondritic Nd isotope ratios, accompanied by assimilation of crustal material in two main stages: 1) assimilation of non-radiogenic lower crust, followed by 2) assimilation of middle and upper crust by inter-mediate-composition magmas that had been contaminated during the first stage. Magmatic evolution in the upper crust peaked with eruption of the peralkaline Amalia Tuff (26 Ma), which evolved from metaluminous parental magmas. A third stage of late, roofward assimilation of Proterozoic rocks in the Amalia Tuff magma is indicated by trends in initial 87Sr/86Sr and 206Pb/204Pb ratios from 0.7057 to 0.7098 and 19.5 to 18.8, respectively, toward the top of the pre-eruptive magma chamber. Highly evolved postcaldera plutons are generally fine grained and are zoned in initial 87Sr/86Sr and 206Pb/204Pb ratios, varying from 0.705 to 0.709 and 17.8 to 18.6, respectively. In contrast, the coarser-grained Cabresto Lake (25 Ma) and Rio Hondo (21 Ma) plutons have relatively homogeneous initial 87Sr/86Sr and 206Pb/204Pb ratios of approximately 0.7053 and 17.94 and 17.55, respectively. 18O values for all the postcaldera plutons overlap those of the precaldera rocks and Amalia Tuff, except for those for two late-stage rhyolite dikes associated with the Rio Hondo pluton that have 18O values of-8.6 and-9.5; these dikes are the only Latir rocks which may be largely crustal melts.Chemical and isotopic data from the Latir field suggest that large fluxes of mantle-derived basaltic magma are necessary for developing and sustaining large-volume volcanic centers. Development of a detailed model suggests that 6–15 km of new crust may have been added beneath the volcanic center; such an addition may result in significant changes in the chemical and Sr and Nd isotopic compositions of the crust, although Pb isotope ratios will remain relatively unchanged. If accompanied by assimilation, crystallization of pooled basaltic magma near the MOHO may produce substantial cumulates beneath the MOHO that generate large changes in the isotopic composition of the upper mantle. The Latir field may be similar to other large-volume, long-lived intracratonal volcanic fields that fundamentally owe their origins to extensive injection of basaltic magma into the lower parts of their magmatic systems. Such fields may overlie areas of significant crustal growth and hybridization.  相似文献   

15.
The Ivrea zone represents a tilted cross section through deep continental crust. Sm-Nd isotopic data for peridotites from Baldissero and Balmuccia and for a suite of gabbros from the mafic formation adjacent to the Balmuccia peridotite provide evidence for an event of partial melting 607±19 Ma ago in an extended mantle source with 607 Nd =+0.4±0.3. The peridotites are interpreted as the corresponding melt residue, the lower part of the mafic formation as the complementary melts which underwent further differentiation immediately after extraction. The Finero body represents a complex with layers of phlogopite peridotite, hornblende peridotite, and amphibole-rich gabbro. The isotopic signatures fall into two groups: (1) highly radiogenic Nd and low-radiogenic Sr characterize the phlogopite-free, amphibole-rich rocks, whereas (2) low-radiogenic Nd and highly radiogenic Sr is found in ultramafics affected by phlogopite metasomatism. Phlogopite metasomatism in the Ivrea zone is dated by a Rb-Sr whole rock isochron yielding 293±13 Ma. It was fed by K-rich fluids which were probably derived from metasediments. The high initial 293 Nd value of about +7.5 for phlogopite-free samples indicates a high time-integrated Sm/Nd ratio in the Finero protolith 293 Ma ago. Sm-Nd analyses of metapelites from the paragneiss series yield Proterozoic crustal residence ages of 1.2 to 1.8 Ga. Internal Sm-Nd isochrons for three garnetiferous rocks show that closure of garnet at temperatures around 600° C or even lower occurred about 250 Ma ago.  相似文献   

16.
Oxygen isotope analyses of 101 samples from the Marcy Anorthosite Massif (61 from this study, 40 from Taylor 1969), indicate that two major and distinct processes of crustal contamination have affected the massif. Ninety percent of the 93 samples with over 65% plagioclase are enriched in 18O by 2.6 relative to normal anorthosites or gabbros: the average 18O for 83 enriched samples is 9.5 Depletions in 18O occur in 8% of the samples which have values ranging from 3.0 to 5.8 Only 2 of the samples fall within the normal magmatic range for anorthosites.Low 18O values of 3.0 to 5.8 in the anorthosite occur only near contacts, and a gradient in 18O occurs near the contact within the border zone of the massif. Low 18O values in both the anorthosite and adjacent wollastonite skarns (with 18O down to –1.3) were probably caused by isotopic exchange with heated meteoric water when the anorthosite intruded at shallow levels, prior to Grenvilleage ( 1.1 by) granulite facies metamorphism.The 18O-enrichment was ascribed to exchange between anorthosite and 18O-rich marble by means of a pervasive, H2O-CO2 fluid during the regional metamorphism by Taylor (1969). However, a number of lines of evidence argue against this hypothesis: 1) the preservation of premetamorphic low 18O values in anorthosite from the border zone as well as preserved gradients in 18O from a number of localities, 2) mass balance calculations of the amount of marble necessary to produce the 18O enrichment 3) metamorphic phase equilibria which buffer and to low values, and, 4) recent oxygen isotope analyses show homogeneity which indicates that magmatic oxygen isotope compositions have been preserved. We evaluated the importance of magmatic assimilation of country rock at the present level of intrusion as an alternative cause of the 18Oenrichment. Samples from 2 distinct lobes of the massif were analyzed: the NE lobe where xenoliths of metasedimentary country rock are common, and the NW lobe, where xenoliths are scarce and the country rock is dominantly granitic. The mean values of 18O for these two lobes are 9.6 in the NE and 9.3 in the NW. Thus, magmatic assimilation at the present level of exposure probably had only localized and relatively minor effects on the oxygen isotope composition of the massif. This conclusion is supported by Rb/Sr data: variations in Rb content and (87Sr/ 86Sr)i show that such crustal contamination is localized, generally occurring only in samples near the border zone. All of the available results suggest that the 18O-enrichment is a magmatic feature, acquired prior to intrusion at the present level of exposure.  相似文献   

17.
The magma sources for granitic intrusions related to the Mesozoic White Mountain magma series in northern New England, USA, are addressed relying principally upon Nd isotopes. Many of these anorogenic complexes lack significant volumes of exposed mafic lithologies and have been suspected of representing crustal melts. Sm–Nd and Rb–Sr isotope systematics are used to evaluate magma sources for 18 felsic plutons with ages ranging from about 120 to 230 Ma. The possibility of crustal sources is further examined with analyses of representative older crust including Paleozoic granitoids which serve as probes of the lower crust in the region. Multiple samples from two representative intrusions are used to address intrapluton initial isotopic heterogeneities and document significant yet restricted variations (<1 in Nd). Overall, Mesozoic granite plutons range in Nd [T] from +4.2 to -2.3, with most +2 to 0, and in initial 87Sr/86Sr from 0.7031 to 0.709. The isotopic variations are roughly inversely correlated but are not obviously related to geologic, geographic, or age differences. Older igneous and metamorphic crust of the region has much lower Nd isotope ratios with the most radiogenic Paleozoic granitoid at Nd [180 Ma] of -2.8. These data suggest mid-Proterozoic separation of the crust in central northern New England. Moreover, the bulk of the Mesozoic granites cannot be explained as crustal melts but must have large mantle components. The ranges of Nd and Sr isotopes are attributed to incorporation of crust by magmas derived from midly depleted mantle sources. Crustal input may reflect either magma mixing of crustal and mantle melts or crustal assimilation which is the favored interpretation. The results indicate production of anorogenic granites from mantle-derived mafic magmas.  相似文献   

18.
The Nicolaysen-diagram is a means to present mineral or whole rock isochrons. The age values derived from mineral isochrons are normally interpreted as cooling ages, those given by whole rock isochrons as the age of an intrusion or a metamorphic event. Mineral isochrons reflect samples in the order of few mm to cm, whole rock isochrons those of a few decimeter to meter.The investigation presented here deals with samples representing regions of about 100 m to some kilometers in diameter. These regions we are going to name areals.Five areals of the Moldanubicum of Eastern Bavaria (West Germany) consisting of similar paragneisses are yielding mineral ages of about 315 Ma and whole rock ages of about 450 Ma. We calculated mean 87Sr/ 86Sr- and 87Rb/86Sr-values of these areals and displayed them in a Nicolaysen-diagram. The areal values define a straight line, yielding an age of 544±29 Ma with a 87Sr/86Sr-intercept at 0.7048±0.0014.Discussion arises whether or not this line can be interpreted as an isochron. We favour the interpretation of it as an isochron reflecting the possible age of sedimentation or of a metamorphic event which the paragneiss series has undergone. At present it can not be unequivocally decided which of the two possibilities will prove right. The areal isochron, however, appears to indicate a petrogenetic event which is older than the last Sr-isotope equilibration in the whole rocks within an individual areal of this Moldanuvian polymetamorphic region.  相似文献   

19.
The S-isotopic compositions of sulfide deposits from Steinmann, granitoid and felsic volcanic associations have been examined. Ores of Steinmann association have 34S values close to zero per mil (34S=+0.3±3.1) it appears they are of mantle origin. Isotopically, ores of granitoid association regularly show a variable enrichment in 32S relative to meteoritic (34S=–2.7±3.3). The composition is in accord with an upper mantle/lower crustal source. Two stratiform accumulations of felsic volcanic association show a narrow spread of 34S values (+0.2 to 2.4); a mantle origin for the sulfur in these deposits is favored. In contrast, vein, stockwork and cement ores are moderately enriched in 32S relative to meteoritic (34S=–4.0±6.4). These ores are polygenetic; sulfur and metals appear to have been leached from local country rocks where volcanogenic and biogenic sulfur predominate.  相似文献   

20.
A comprehensive Sr–Nd–Pb–O isotopic study is reported for rhyolites from the Maroa Volcanic Centre in the Taupo Volcanic Zone (TVZ) of New Zealand. The Sr–Nd isotopic compositions of the rhyolites (87Sr/86Sr=0.705236 to 0.705660 and Nd = 2.0 to 0.2) are intermediate between those of primitive basalts (87Sr/86Sr=0.70387 and Nd = 5.3) and the Torlesse basement (87Sr/86Sr=0.709 and Nd = -4.5). The relatively low mantle-like oxygen isotopic compositions of 18 O = 7 ± 0.5 are consistent with the Nd-Sr isotopic constraints in that they can be accounted for by 15% to 25% crustal contamination of a basaltic parent by relatively 18 O-rich Torlesse metasediment. High precision Pb isotopic analyses of plagioclase separates from the Maroa rhyolites show that they have essentially the same compositions as the Torlesse metasedimentary terrane which is itself distinctive from the Western or Waipapa metasediments. Due to the high concentration of Pb in the Torlesse metasediments (>20 ppm) compared to the basalts (<2 ppm), the Pb isotopic composition of the volcanics may be controlled by relatively small amounts (>10%) of crustal contamination. All these results are shown to be consistent with derivation of the rhyolites by 15% to 25% contamination of relatively primitive basaltic magmas with Torlesse metasedimentary crust, followed by extensive, essentially closed system fractionation of the basalt to a magma of rhyolite composition. It is argued that the processes of assimilation and fractionation are separated in both space and time. The voluminous high silica rhyolites, which make up >97% of the exposed volcanism in the continental margin back-are basin environment of the TVZ, therefore appear to be a product of predominantly new additions to the crust with assimilation-recycling of pre-existing crust being of secondary importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号