首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
广西南部晚古生代放射虫组合及其地质意义   总被引:46,自引:4,他引:46       下载免费PDF全文
吴浩若  邝国敦 《地质科学》1994,29(4):339-345
广西南部钦州、玉林一带硅质岩系中丰富的放射虫化石,可区分出晚泥盆世、早石炭世和二叠纪的11个放射虫组合。晚泥盆世-早石炭世的组合可与北美和西欧对比。二叠纪组合与以日本为代表的环太平洋放射虫组合和西西里、滇西等地的古特提斯放射虫组合一致,表明了古特提斯与原太平洋之间的联系。  相似文献   

2.
滇西南晚二叠世和早-中三叠世放射虫研究   总被引:11,自引:2,他引:11       下载免费PDF全文
冯庆来  刘本培 《地球科学》1993,18(5):540-552
  相似文献   

3.
报道了采自恩格尔乌苏缝合带的蛇绿混杂岩硅质外来岩块中的二叠纪阿尔拜虫目放射虫化石,包括3属7种,可以划分为2个放射虫化石组合,能够与日本、美国的放射虫化石带进行对比,其地质时代分别为早二叠世和中二叠世晚期-晚二叠世早期。恩格尔乌苏缝合带位于华北板块和塔里木板块之间,这些放射虫化石的发现为研究恩格尔乌苏缝合带的构造演化提供了新的证据。鉴于其中最新的放射虫组合的地质时代为中二叠世晚期-晚二叠世早期,认为华北板块与塔里木板块之间自中二叠世晚期-晚二叠世早期曾经存在古海洋,即华北板块和塔里木板块的拼合时间是晚二叠世晚期。  相似文献   

4.
聂小妹  雷勇  冯庆来  向宇 《地质论评》2012,58(5):809-815
对四川广元上寺剖面大隆组的放射虫动物群进行了详细的鉴定和丰度、分异度的统计。发现该放射虫动物群丰度和分异度均较低,以泡沫虫和内射虫为主,含少量十字多囊虫的分子;其丰度和分异度与长兴期海平面变化具有很好的耦合关系:放射虫丰度、分异度较大的层位对应于长兴早期和长兴晚期两次最大海侵事件发生的层位。相对长兴晚期而言,长兴早期放射虫的丰度和分异度较大,这与长兴早期水体相对较深有关。此外,有孔虫与放射虫丰度变化呈现很好的负相关性,这与它们不同的生活习性和水深的变化有关。分析表明:水深的变化是上寺剖面放射虫动物群演变的主要控制因素。  相似文献   

5.
The study area, Nan Province, northern Thailand is geotectonically situated within the Nan-Uttaradit Suture, the once back-arc basin between the Sukhothai Zone and Indochina Block. Permian Fusulinacean fauna from limestone blocks within the suture has been investigated and the Nan area has been mapped in detail. These may provide the useful information for understanding the faunal assemblage and overall ge-ometry of stratigraphic successions in the basin. The strata were intensely folded and thrust. Scattered Per-mian limestones found in Nan area are blocks within shale interbedded with tuffaceous rock. The contact between this unit and the adjacent units, the strongly foliated shale and tuffaceous sedimentary strata that are mildly metamorphosed and giving phyllitic tex-tures, has been interpreted as a west-dipping normal fault, namely the Pha Sing Fault. This fault runs par-allel to the Highway no.1080 (Nan-Tha Wang Pha). Middle and early Late Permian fusulinacean fauna found in the Nan area contains Neoschwagerina, Pseudodoliolina, Colania, Lepidolina, and Colaniella. Additionally, late Early Permian fusulinacean and Middle Triassic radiolarian fauna have been reported in this area (e.g., Fontaine, 2002; Saesaengseerung et al. 2008). These paleontological data show the existence of Nan Back-arc Basin during late Early Permian (Artin-skian) to Middle Triassic. Moreover, the similarity of fusulinacean assemblage yielding Permian limestone blocks of the Nan Back-arc Basin and the ones of the Indochina Block has been interpreted that the Permian limestone blocks in the Nan Back-arc Basin were part of the continental shelf within the Indochina Block.  相似文献   

6.
报道了采自恩格尔乌苏缝合带的蛇绿混杂岩硅质外来岩块中的二叠纪阿尔拜虫目放射虫化石,包括3属7种,可以划分为2个放射虫化石组合,能够与日本、美国的放射虫化石带进行对比,其地质时代分别为早二叠世和中二叠世晚期—晚二叠世早期。恩格尔乌苏缝合带位于华北板块和塔里木板块之间,这些放射虫化石的发现为研究恩格尔乌苏缝合带的构造演化提供了新的证据。鉴于其中最新的放射虫组合的地质时代为中二叠世晚期—晚二叠世早期,认为华北板块与塔里木板块之间自中二叠世晚期—晚二叠世早期曾经存在古海洋,即华北板块和塔里木板块的拼合时间是晚二叠世晚期。  相似文献   

7.
Recent collecting in exposures of the lowermost Burgersdorp Formation (Beaufort Group), of the Karoo Basin of South Africa, has revealed a previously unknown fish fauna from the Early Triassic (Scythian), lowermost Cynognathus Assemblage Zone (CAZ), which forms an important component of the total vertebrate assemblage. The newly discovered fish material includes lungfish, saurichthyids, and a large microfauna that includes numerous isolated chondrichthyan teeth, two fin spine fragments, and actinopterygian scales and teeth. The latest fish finds, together with the lowermost Cynognathus Assemblage Zone vertebrate faunas, make this Karoo Basin Assemblage Zone one of the most diverse Early Triassic faunal assemblages, comparable in faunal diversity to those from the Czatkowice Formation (Poland) and the Arcadia Formation (Australia). The presence of the lungfish Ptychoceratodus phillipsi in the early Middle Triassic Cynognathus Assemblage Zone (Subzone B), and in the underlying latest Early Triassic Cynognathus Assemblage Zone (Subzone A), indicates that these lungfish could serve as range index fossils within the CAZ, and thus are potentially useful biostratigraphic markers across the Early-Middle Triassic boundary. Furthermore the ‘new’ fish fauna provides a vital marine realm link in particular with the faunas of Madagascar and Australia, that is unavailable using the tetrapod faunal elements of the lower CAZ.  相似文献   

8.
综述了二叠 -三叠纪转折期放射虫动物群的研究进展 ,长兴阶晚期放射虫动物群 90 %以上的种在二叠纪末期灭绝 ,只有少数在浅海灰岩和远洋硅质岩中均能够发现的属种才成功残存到三叠纪 ;三叠纪放射虫的复苏和辐射经历了较长的过程 ,Griesbachian至 Smithian为放射虫残存期 ,Spathian 为放射虫的复苏期 ,Anisian是放射虫的辐射期。Anisian放射虫的辐射受到强缺氧事件的影响。  相似文献   

9.
Strontium isotope evolution of Late Permian and Triassic seawater   总被引:7,自引:0,他引:7  
The 87Sr/86Sr values based on brachiopods and conodonts define a nearly continuous record for the Late Permian and Triassic intervals. Minor gaps in measurements exist only for the uppermost Brahmanian, lower part of the Upper Olenekian, and Middle Norian, and only sparse data are available for the Late Permian. These 219 measurements include 67 brachiopods and 114 conodont samples from the Tethyan realm as well as 37 brachiopods and one conodont sample from the mid-European Middle Triassic Muschelkalk Sea. The Late Permian/Lower Triassic interval is characterized by a steep 1.3 × 10−3 rise, from 0.7070 at the base of the Dzhulfian to 0.7082 in the late Olenekian, a rate of change comparable to that in the Cenozoic. In the mid-Triassic (Anisian and Ladinian), the isotope values fall to 0.7075, followed again by a rise to 0.7081 in the Middle/Late Norian. The 87Sr/86Sr values decline again in the Late Norian (Sevatian) and Rhaetian to 0.7076.The sharp rise in the 87Sr/86Sr values during the Late Permian/Early Triassic was coincident with widespread clastic sedimentation. Because of the paucity of tectonic uplifts, the enhanced erosion may have been due to intermittent humid phases, during mainly an arid interval, coupled with the absence of a dense protective land plant cover following the mass extinction during the latest Permian. The apex of the 87Sr/86Sr curve at the Olenekian/Anisian boundary coincides with cessation of the large-scale clastic sedimentation and also marks the final recovery of land vegetation, as indicated by the renewed onset of coal formation in the Middle Triassic. The rising 87Sr/86Sr values from the Middle Carnian to the Late Norian coincide with the uplift and erosion of the Cimmeride-Indosinian orogens marking the closure of the Palaeotethys. The subsequent Rhaetian decline that continues into Jurassic (Pliensbachian/Toarcian boundary), on the other hand, coincides with the opening of the Vardar Ocean and its eastern continuation in the Izmir-Ankara Ophiolitic Belt.Samples from the Upper Muschelkalk are more radiogenic than the global trend. This may reflect separation of the basin from the open ocean. Due to strong meteoric influx from a large land mass in the north, the Germanic Basin became increasing brackish up section in the north and east, but because of the high evaporation rates, the salt content was not much reduced in the southern and central basin where a rich, but increasingly endemic, marine fauna survived.  相似文献   

10.
西藏西部阿里狮泉河地区的昂杰组、下拉组和左左组中发现牙形石化石。昂杰组的牙形石组合大致对比于中二叠世空谷期早中期Mesogondolella idahoensis-Vjalovognathus shindyensis组合带。下拉组顶部的牙形石组合大致对比于晚二叠世长兴期晚期Clarkina changxingensis带。左左组中含有早三叠世的Neospathodus sp.和Gladigondolella sp.,左左组和下拉组整合接触,左左组主体时代为三叠纪。狮泉河地区在早二叠世末期就开始由冈瓦纳相碎屑岩沉积转变为特提斯相碳酸盐岩沉积,在晚二叠世长兴期和早三叠世依然维持在海相沉积环境中。冈底斯西部在晚二叠世和三叠纪为古陆的观点有待于重新审视。  相似文献   

11.
《Earth》2009,96(3-4):119-157
Anomodont synapsids represent the dominant herbivores of Permian and Triassic terrestrial vertebrate ecosystems. Their taxonomic diversity and morphological disparity in combination with their cosmopolitan distribution makes them an ideal study object for macroevolutionary patterns across the most devastating extinction event in earth history. This study provides a thorough review of anomodont-bearing tetrapod faunas to form the basis for a faunal similarity analysis and future studies of anomodont diversity. The stratigraphic correlation and composition of all known anomodont assemblages is revisited, including a discussion of the validity of the globally distributed anomodont species. The similarity analysis of anomodont faunas is performed on the basis of presence–absence data of anomodont taxa, using explorative methods such as cluster analysis (UPGMA) and non-metric multidimensional scaling (NMDS). The recovered faunal groupings indicate a common biostratigraphic age and furthermore reflect biogeographic patterns. Even though endemism and faunal provinciality was a constant element in anomodont faunas of the Permian and Triassic, the available evidence indicates that the end-Permian extinction resulted in a distinct uniformity that was unique to Early Triassic anomodont faunas. This is in particular characterized by the global distribution and overwhelming abundance of the disaster taxon Lystrosaurus. In contrast, cosmopolitan anomodonts also existed in the Late Permian (e.g., Diictodon) and Middle Triassic (e.g., Shansiodon), but those taxa coexisted with endemic faunal elements rather than dominated the fauna as Lystrosaurus did.  相似文献   

12.
Early Triassic paleobiogeography is characterised by the stable supercontinental assembly of Pangea. However, at that time, several terranes such as the South Kitakami Massif (SK), South Primorye (SP) and Chulitna (respectively, and presently located in Japan, eastern Russia and Alaska) straddled the vast oceans surrounding Pangea. By means of quantitative biogeographical methods including Cluster Analysis, Non-metric Multidimensional Scaling and Bootstrapped Spanning Network applied to Smithian and Spathian (Early Triassic) ammonoid assemblages; we analyze similarity relationships between faunas and suggest paleopositions for the above-cited terranes.Taxonomic similarities between faunas indicate that primary drivers of the ammonoid distribution were Sea Surface Temperature and currents. Possible connections due to current-controlled faunal exchanges between both sides of the Panthalassa are shown and terranes such as SK, SP and Chulitna played an important role as stepping stones in the dispersal of ammonoids. SK and SP terranes show strong sub-equatorial affinities during the Smithian, thus suggesting a location close to South China. At the same time, the Chulitna terrane shows strong affinities with equatorial faunas of the eastern Panthalassa. This paleoceanographic pattern was markedly altered during the Spathian, possibly indicating significant modifications of oceanic circulation at that time, as illustrated by the development of a marked intertropical faunal belt across Tethys and Panthalassa.  相似文献   

13.
The Late Permian–early Middle Triassic strata of the northern West Qinling area, northeastern Tibetan Plateau, are composed of sediment gravity flow deposits. Detailed sedimentary facies analysis indicates these strata were deposited in three successive deep-marine environments. The Late Permian–early Early Triassic strata of the Maomaolong Formation and the lowest part of the Longwuhe Formation define a NW–SE trending proximal slope environment. Facies of the Early Triassic strata composing the middle and upper Longwuhe Formation are consistent with deposition in a base-of-slope apron environment, whereas facies of the Middle Triassic Anisian age Gulangdi Formation are more closely associated with a base-of-slope fan depositional environment. The lithofacies and the spatial–temporal changes in paleocurrent data from these strata suggest the opening of a continental margin back-arc basin system during Late Permian to early Middle Triassic time in the northern West Qinling. U–Pb zircon ages for geochemically varied igneous rocks with diabasic through granitic compositions intruded into these deep-marine strata range from 250 to 234 Ma. These observations are consistent with extensional back-arc basin development and rifting between the Permian–Triassic Eastern Kunlun arc and North China block during the continent–continent collision and underthrusting of the South China block northward beneath the Qinling terrane of the North China block. Deep-marine sedimentation ended in the northern West Qinling by the Middle Triassic Ladinian age, but started in the southern West Qinling and Songpan-Ganzi to the south. We attribute these observations to southward directed rollback of Paleo-Tethys oceanic lithosphere, continued attenuation of the West Qinling on the upper plate, local post-rift isostatic compensation in the northern West Qinling area, and continued opening of a back-arc basin in the southern West Qinling and Songpan-Ganzi. Rollback and back-arc basin development during Late Permian to early Middle Triassic time in the West Qinling area explains: the truncated map pattern of the Eastern Kunlun arc, the age difference of deep-marine sediment gravity flow deposits between the Late Permian–early Middle Triassic northern West Qinling and the late Middle Triassic–Late Triassic southern West Qinling and Songpan-Ganzi, and the discontinuous trace of ophiolitic rocks associated with the Anyemaqen-Kunlun suture.  相似文献   

14.
It is proposed that the Bentong–Raub Suture Zone represents a segment of the main Devonian to Middle Triassic Palaeo-Tethys ocean, and forms the boundary between the Gondwana-derived Sibumasu and Indochina terranes. Palaeo-Tethyan oceanic ribbon-bedded cherts preserved in the suture zone range in age from Middle Devonian to Middle Permian, and mélange includes chert and limestone clasts that range in age from Lower Carboniferous to Lower Permian. This indicates that the Palaeo-Tethys opened in the Devonian, when Indochina and other Chinese blocks separated from Gondwana, and closed in the Late Triassic (Peninsular Malaysia segment). The suture zone is the result of northwards subduction of the Palaeo-Tethys ocean beneath Indochina in the Late Palaeozoic and the Triassic collision of the Sibumasu terrane with, and the underthrusting of, Indochina. Tectonostratigraphic, palaeobiogeographic and palaeomagnetic data indicate that the Sibumasu Terrane separated from Gondwana in the late Sakmarian, and then drifted rapidly northwards during the Permian–Triassic. During the Permian subduction phase, the East Malaya volcano-plutonic arc, with I-Type granitoids and intermediate to acidic volcanism, was developed on the margin of Indochina. The main structural discontinuity in Peninsular Malaysia occurs between Palaeozoic and Triassic rocks, and orogenic deformation appears to have been initiated in the Upper Permian to Lower Triassic, when Sibumasu began to collide with Indochina. During the Early to Middle Triassic, A-Type subduction and crustal thickening generated the Main Range syn- to post-orogenic granites, which were emplaced in the Late Triassic–Early Jurassic. A foredeep basin developed on the depressed margin of Sibumasu in front of the uplifted accretionary complex in which the Semanggol “Formation” rocks accumulated. The suture zone is covered by a latest Triassic, Jurassic and Cretaceous, mainly continental, red bed overlap sequence.  相似文献   

15.
浙江长兴煤山地区晚二叠世末、早三叠世初的火山活动   总被引:14,自引:2,他引:14  
<正> 近年来,不少学者分别从生物地层(赵金科等,1981;盛金章等,1983;王义刚,1984;Sheng Jinzhang et al.,1984),事件地层(孙亦因等,1984;何锦文,1985),岩相、生物相(杨万容等,1981;芮琳等,1984),粘土矿物(何锦文,1981),元素地球化学特征(柴之芳等,1986),构造岩浆活动(周瑶琪,1986)以及碳同位素(陈锦石等,1984)等方面对浙江  相似文献   

16.
华南印支期碰撞造山--十万大山盆地构造和沉积学证据   总被引:27,自引:9,他引:18  
十万大山盆地是云开造山带前陆地区的一个窄长的晚二叠世—中三叠世沉积盆地,位于扬子与华夏陆块拼接位置的西南端。十万大山盆地晚二叠世—中三叠世沉积由巨厚的磨拉石建造组成,并构成多个向上变粗和向上变细的构造-地层层序。云开造山带及前陆冲断带上泥盆统至下二叠统中发育了大量的印支期形成的薄皮褶皱和冲断构造。这些指示扬子和华夏陆块在印支期发生了强烈陆内碰撞与会聚及前陆盆地的沉积作用。P2 /P1 之间的不整合面是伸展构造向挤压构造转换的转换面,为华南印支期碰撞挤压造山或活化造山的序幕。T3 /T2 之间不整合面是挤压构造向伸展构造转换的转换面,是印支期活化挤压造山结束的界面,标志着晚二叠世开始的碰撞造山作用的结束。华南内部晚二叠世—中三叠世构造运动性质及转换与当时华南南缘存在的古特提斯洋的闭合及印支板块与华南陆块的碰撞作用有关。  相似文献   

17.
The identification and correlation of the Carboniferous-Permian (Gzhelian-Asselian) boundary within the sedimentary sequences of Gondwana has always been a topic of debate. Type latest Carboniferous and earliest Permian marine sequences are characterised by warm tropical faunas and come from the Uralian Region of Russia and Kazakhstan. Faunas include conodonts and fusulinid foraminiferids which are prime tools for correlation. Such faunal groups are absent from most Gondwanan sequences where reliance for correlations must be placed primarily on brachiopods, bivalve molluscs and palynology. The Western Australian marine sequences, with their contained ammonoids, provide a pivotal link for the dating and correlating of Early Permian Gondwanan sequences with those of the type regions and their palynostratigraphical record is essential for trans-Australian correlations and correlations elsewhere throughout Gondwanaland.New data from the fully cored DM Tangorin DDHl bore hole, drilled in the Cranky Corner Basin, New South Wales, Australia, reveals a sequence of descending faunal zones. The stratigraphically highest zone with Eurydesrna cordaturn, encompasses the Late Sakmarian (Sterlitamakian). The middle zone with Torniopsis elongata, Sulciplica c r a m and Trigonotreta tangorini straddles the Sterlitamakian-Tastubian boundary, with the palynomorphs Pseudoreticulatispora pseudoreticulata high in the zone and Granulatisporites confluens low in the zone. An impoverished fauna with Trigonotreta nov., low in the Granulatisporites confluens Zone, is probably of latest Asselian or Tastubian age.Significant new data from Argentina has revealed marine faunas from below the occurrence of Granulatisporites confluens. These are considered to be of Asselian age. Outcrops of the Tupe Formation, with a marine fauna, at La Herradura Creek in the western Paganzo Basin, San Juan Province, are best regarded as being of mid to late Asselian age. The Tupe Fauna has been recognised as the Tivertonia jachalensis-Streptorhynchus inaequiornatus Zone. Previously, this fauna was considered to be of Late Carboniferous or Stephanian age. Three faunal associations are known from the Rio del Peii6n Formation, Rio Blanco Basin, La Rioja Province. The middle assemblage with Tivertonia, Costaturnulus, Kochiproductus and Trigonotreta, appears to correlate well with the Tupe Formation fauna. The lower assemblage, with Streptorhynchus, Etherilosia, Costaturnulus, Trigonotreta and a punctate spiriferid, as well as indeterminate productids, probably of Early Asselian age. The youngest assemblage includes a species ofRhynchopora that is close to Rhynchopora australasica from the latest Asselian-early Tastubian of Western Australia. The marine biostratigraphical data from Argentina has enabled a much greater understanding of the earliest Permian marine faunas to be achieved - a story that is apparently absent from the other cold and cool temperate regions of Gondwana.  相似文献   

18.
对滇西保山地块、泰国西部和南部及澳大利亚悉尼盆地的冈瓦纳相二叠纪地层进行了对比。前两者的二叠纪地层岩性和所含生物群面貌基本可以对比 ,皆反映出由冈瓦纳相向特提斯相的转变 ,后者是典型的冈瓦纳相 ,仅早二叠世地层的岩性和所含化石与前两者相似。  相似文献   

19.
This study provides a reconstruction of the Late Permian and Triassic depositional history of the Arabian shelf in the northern United Arab Emirates based on facies analysis and foraminiferal biostratigraphy. The presented data show that sedimentation occurred in three major sequences. From the Late Permian to Olenekian carbonates and evaporites were deposited in restricted lagoons and tidal flats. After a hiatus, sedimentation resumed and continued until the Late Ladinian/Carnian, leading to the deposition of a carbonate platform dominated by peritidal dolostones. A period of shelf exposure and erosion, spanning from the Carnian to Norian, was followed by the third major sequence with sedimentation into the Early Jurassic. During this third depositional sequence sedimentation changed from pure carbonate into mixed carbonate–siliciclastic deposits. This transition reflects the global regression of the sea in the Late Triassic (Triasina hantkeni Zone) and the increased erosion of large parts of the Arabian hinterland. A comparison of the evolution of the Arabian shelf in the study area with chronostratigraphic reference schemes for the Arabian Plate reveals remarkable differences in the distribution of Middle and Upper Triassic sequences. These are most likely the result of poor biostratigraphic control on previously studied formations in the region.  相似文献   

20.
根据康马地区三叠系吕村组和涅如组新发现的化石及区域地质背景 ,把该区的地层时代分别厘定为中三叠世中晚期至晚三叠世早期和晚三叠世中晚期 ,并认为缺失早三叠世至中三叠世早期的沉积。研究表明康马地区三叠系与二叠系之间为微角度不整合接触 ,是“藏南运动”和“印支伸展运动”共同影响形成的。晚二叠世末至中三叠世早期 ,康马地区露出海面 ,接受剥蚀并形成喀斯特化风化壳。中三叠世末至晚三叠世 ,这一地区发生强烈伸展—裂陷 ,地壳迅速沉降 ,形成被动大陆边缘裂谷盆地 ,发育巨厚的半深海—深海复理石沉积 ,并伴随大量基性岩浆贯入。涅如组下部有两期基性岩侵入 ,早期基性岩床形成于印支晚期 ,晚期穿层侵入形成于燕山早期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号