首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 808 毫秒
1.
The Priest pluton contact aureole in the Manzano Mountains, central New Mexico preserves evidence for upper amphibolite contact metamorphism and localized retrograde hydrothermal alteration associated with intrusion of the 1.42 Ga Priest pluton. Quartz–garnet and quartz–sillimanite oxygen isotope fractionations in pelitic schist document an increase in the temperatures of metamorphism from 540 °C, at a distance of 1 km from the pluton, to 690 °C at the contact with the pluton. Comparison of calculated temperature estimates with one‐dimensional thermal modelling suggests that background temperatures between 300 and 350 °C existed at the time of intrusion of the Priest pluton. Fibrolite is found within 300 m of the Priest pluton in pelitic and aluminous schist metamorphosed at temperatures >580 °C. Coexisting fibrolite and garnet in pelitic schist are in oxygen isotope equilibrium, suggesting these minerals were stable reaction products during peak metamorphism. The fibrolite‐in isograd is coincident with the staurolite‐out isograd in pelitic schist, and K‐feldspar is not observed with the first occurrence of fibrolite. This suggests that the breakdown of staurolite and not the second sillimanite reaction controls fibrolite growth in staurolite‐bearing pelitic schist. Muscovite‐rich aluminous schist locally preserves the Al2SiO5 polymorph triple‐point assemblage – kyanite, andalusite and fibrolite. Andalusite and fibrolite, but not kyanite, are in isotopic equilibrium in the aluminous schist. Co‐nucleation of fibrolite and andalusite at 580 °C in the presence of muscovite and absence of K‐feldspar suggests that univariant growth of andalusite and fibrolite occurred. Kyanite growth occurred during an earlier regional metamorphic event at a temperature nearly 80 °C lower than andalusite and fibrolite growth. Quartz–muscovite fractionations in hydrothermally altered pelitic schist and quartzite are small or negative, suggesting that late isotopic exchange between externally derived fluids and muscovite, but not quartz, occurred after peak contact metamorphism and that hydrothermal alteration in pelitic schist and quartzite occurred below the closure temperature of oxygen self diffusion in quartz (<500 °C).  相似文献   

2.
During prograde metamorphism of the Connemara pelites, sillimanite first develops in biotite immediately adjacent to, or replacing, garnet. In some rocks, breakdown of garnet+muscovite and staurolite +muscovite+quartz leads to the development of fibrolite pseudomorphs after garnet. The textures indicate a constant volume replacement of garnet with movement of Al from staurolite and muscovite in the matrix towards the few, widely scattered, garnet sites. The complex ionic reaction patterns are the result of the strong preference of sillimanite to grow on biotite that is replacing garnet, and this pattern of preferred nucleations is taken to indicate that the equilibrium conditions for the reaction were only overstepped by the minimum required for initial sillimanite nucleation. Chemical movements were controlled by the heterogeneous nucleation pattern, not by intrinsic properties of the moving species. In order for extensive reaction to occur under near-equilibrium conditions, the rate at which the total thermal reaction proceeded must have been controlled by the supply of heat to the rocks rather than by diffusion or local reaction steps.  相似文献   

3.
Metapelites and intercalated metapegmatites of the Saualpe crystalline basement, which forms part of the Austroalpine nappe complex in the Eastern Alps, display a polyphase tectonometamorphic history. Here, we focus on the evolution that these rocks underwent prior to Cretaceous (eo‐Alpine) high‐pressure metamorphism and related penetrative deformation. Geothermobarometry on coarse‐grained porphyroclastic parageneses (garnet–biotite–muscovite–plagioclase–sillimanite–quartz), which occur as relics in kyanite–garnet, two‐mica gneiss, yielded 600 °C/0.4 GPa. Results from a corundum‐bearing lithology suggest that higher temperatures may have been reached in very restricted areas. The matrix of these rocks displays intense recrystallization during a pressure‐dominated metamorphic overprint. Microstructures and mineral chemistry indicate that this low‐pressure metamorphism was the first significant metamorphic imprint in these rocks. Mineral relics in all metapelitic rock types reflect low‐pressure conditions for this interkinematic crystallization phase. The distribution, macroscopic and microscopic observations and the mineralogical composition of intercalated metapegmatites point to regionally elevated temperature conditions during their emplacement. Therefore, pegmatite formation is correlated with mineral formation in metapelites. Sm–Nd‐dating of magmatic garnet from the pegmatite gneiss yielded 249 ± 3 Ma, which is interpreted to represent the age of pegmatite‐emplacement and low‐pressure metamorphism in the metapelites. Since the pegmatites are overprinted by mylonitisation and high‐pressure metamorphism, this Permo–Triassic age also sets an upper age‐limit to the eclogite facies metamorphic event, which affected considerable parts of the Saualpe crystalline basement.  相似文献   

4.
The Leverburgh Belt and South Harris Igneous Complex in South Harris (northwest Scotland) experienced high-pressure granulite facies metamorphism during the Palaeoproterozoic. The metamorphic history has been determined from the following mineral textures and compositions observed in samples of pelitic, quartzofeldspathic and mafic gneisses, especially in pelitic gneisses from the Leverburgh Belt: (1) some coarse-grained garnet in the pelitic gneiss includes biotite and quartz in the inner core, sillimanite in the outer core, and is overgrown by kyanite at the rims; (2) garnet in the pelitic gneiss shows a progressive increase in grossular content from outer core to rims; (3) the AlVI/AlIV ratio of clinopyroxene from mafic gneiss increases from core to rim; (4) retrograde reaction coronas of cordierite and hercynite+cordierite are formed between garnet and kyanite, and orthopyroxene+cordierite and orthopyroxene+plagioclase reaction coronas develop between garnet and quartz; (5) a P–T path is deduced from inclusion assemblages in garnet and from staurolite breakdown reactions to produce garnet+sillimanite and garnet+sillimanite+hercynite with increasing temperature; and (6) in sheared and foliated rocks, hydrous minerals such as biotite, muscovite and hornblende form a foliation, modifying pre-existing textures. The inferred metamorphic history of the Leverburgh Belt is divided into four stages, as follows: (M1) prograde metamorphism with increasing temperature; (M2) prograde metamorphism with increasing pressure; (M3) retrograde decompressional metamorphism with decreasing pressure and temperature; and (M4) retrograde metamorphism accompanied by shearing. Peak P–T conditions of the M2 stage are 800±30 °C, 13–14 kbar. Pressure increasing from M1 to M2 suggests thrusting of continental crust over the South Harris belt during continent–continent collision. The inferred P–T path and tectonic history of the South Harris belt are different from those of the Lewisian of the mainland.  相似文献   

5.
Petrology and phase equilibria of rocks from two profiles inEastern Nepal from the Lesser Himalayan Sequences, across theMain Central Thrust Zone and into the Greater Himalayan Sequencesreveal a Paired Metamorphic Mountain Belt (PMMB) composed oftwo thrust-bound metamorphic terranes of contrasting metamorphicstyle. At the higher structural level, the Greater HimalayanSequences experienced high-T/moderate-P metamorphism, with ananticlockwise P–T path. Low-P inclusion assemblages ofquartz + hercynitic spinel + sillimanite have been overgrownby peak metamorphic garnet + cordierite + sillimanite assemblagesthat equilibrated at 837 ± 59°C and 6·7 ±1·0 kbar. Matrix minerals are overprinted by numerousmetamorphic reaction textures that document isobaric coolingand re-equilibrated samples preserve evidence of cooling to600 ± 45°C at 5·7 ±1·1 kbar.Below the Main Central Thrust, the Lesser Himalayan Sequencesare a continuous (though inverted) Barrovian sequence of high-P/moderate-Tmetamorphic rocks. Metamorphic zones upwards from the loweststructural levels in the south are: Zone A: albite + chlorite + muscovite ± biotite; Zone B: albite + chlorite + muscovite + biotite + garnet; Zone C: albite + muscovite + biotite + garnet ± chlorite; Zone D: oligoclase + muscovite + biotite + garnet ± kyanite; Zone E: oligoclase + muscovite + biotite + garnet + staurolite+ kyanite; Zone F: bytownite + biotite + garnet + K-feldspar + kyanite± muscovite; Zone G: bytownite + biotite + garnet + K-feldspar + sillimanite+ melt ± kyanite. The Lesser Himalayan Sequences show evidence for a clockwiseP–T path. Peak-P conditions from mineral cores average10·0 ± 1·2 kbar and 557 ± 39°C,and peak-metamorphic conditions from rims average 8·8± 1·1 kbar and 609 ± 42°C in ZonesD–F. Matrix assemblages are overprinted by decompressionreaction textures, and in Zones F and G progress into the sillimanitefield. The two terranes were brought into juxtaposition duringformation of sillimanite–biotite ± gedrite foliationseams (S3) formed at conditions of 674 ± 33°C and5·7 ± 1·1 kbar. The contrasting averagegeothermal gradients and P–T paths of these two metamorphicterranes suggest they make up a PMMB. The upper-plate positionof the Greater Himalayan Sequences produced an anticlockwiseP–T path, with the high average geothermal gradient beingpossibly due to high radiogenic element content in this terrane.In contrast, the lower-plate Lesser Himalayan Sequences weredeeply buried, metamorphosed in a clockwise P–T path anddisplay inverted isograds as a result of progressive ductileoverthrusting of the hot Greater Himalayan Sequences duringprograde metamorphism. KEY WORDS: thermobarometry; P–T paths; Himalaya; metamorphism; inverted isograds; paired metamorphic belts  相似文献   

6.
Metamorphic terranes comprised of blueschist facies and regional metamorphic (Barrovian) rocks in apparent structural continuity may represent subduction complexes that were partially overprinted during syn‐ to post‐subduction heating or may be comprised of unrelated tectonic slices. An excellent example of a composite blueschist‐to‐Barrovian terrane is the southern Sivrihisar Massif, Turkey. Late Cretaceous blueschist facies rocks are dominated by marble characterized by rod‐shaped calcite pseudomorphs after aragonite and interlayered with blueschist that contains eclogite and quartzite pods. Barrovian rocks, which have 40Ar/39Ar white mica ages that are >20 Myr younger than those of the blueschists, are also dominated by marble, but rod‐shaped calcite has been progressively recrystallized into massive marble within a ~200‐m transition zone. Barrovian marble is interlayered with quartzite and schist in which isograds are closely spaced and metamorphic conditions range from chlorite to sillimanite zone over ~1 km present‐day structural thickness. Andalusite, kyanite and prismatic sillimanite are present in muscovite‐rich quartzite; in one location, all three are in the same rock. Andalusite pre‐dates Barrovian metamorphism, kyanite is both pre‐ and syn‐Barrovian and sillimanite is entirely Barrovian. Muscovite with phengitic cores and relict kyanite in quartzite below the staurolite‐in isograd are evidence for pre‐Barrovian subduction metamorphism preserved at the low‐T end of the Barrovian domain; above the staurolite isograd, all evidence for subduction metamorphism has been erased. Some regional metamorphism may have occurred during exhumation, as indicated by syn‐kinematic high‐T minerals defining the fabric of L‐tectonite. Quartz microstructures in lineated quartzite reveal a strong constrictional fabric that may have formed in a transtensional bend in the plate boundary. Transtension accounts for the closely spaced isograds and development of a strong constrictional fabric during exhumation.  相似文献   

7.
A complete Barrovian sequence ranging from unmetamorphosed shales to sillimanite–K-feldspar zone metapelitic gneisses crops out in a region extending from the Hudson River in south-eastern New York state, USA, to the high-grade core of the Taconic range in western Connecticut. NNE-trending subparallel biotite, garnet, staurolite, kyanite, sillimanite and sillimanite–K-feldspar isograds have been identified, although the assignment of Barrovian zones in the high-grade rocks is complicated by the appearance of fibrolitic sillimanite at the kyanite isograd. Thermobarometric results and reaction textures are used to characterize the metamorphic history of the sequence. Pressure–temperature estimates indicate maximum metamorphic conditions of 475 °C, c. 3–4 kbar in the garnet zone to >720 °C, c. 5–6 kbar in the highest grade rocks exposed. Some samples in the kyanite zone record anomalous (low) peak conditions because garnet composition has been modified by fluid-assisted reactions. There is abundant petrographic and mineral chemical information indicating that the sequence (with the possible exception of the granulite facies zone) was infiltrated by a water-rich fluid after garnet growth was nearly completed. The truncation of fluid inclusion trails in garnet by rim growth or recrystallization, however, indicates that metamorphic reactions involving garnet continued subsequent to initial infiltration. The presence of these textures in some zones of a well-constrained Barrovian sequence allows determination of the timing of fluid infiltration relative to the P–T paths. Thermobarometric results obtained using garnet compositions at the boundary between fluid–inclusion-rich and inclusion-free regions of the garnet are interpreted to represent peak metamorphic conditions, whereas rim compositions record slightly lower pressures and temperatures. Assuming that garnet grew during a single metamorphic event, infiltration must have occurred at or slightly after the peak of metamorphism, i.e. 4–5 kbar and a temperature of c. 525–550 °C for staurolite and kyanite zone rocks.  相似文献   

8.
通过对聂拉木高喜马拉雅结晶岩系石榴子石带-十字石带-蓝晶石带-夕线石带倒转变质的研究,认为除夕线石带以外的其它变质带主要由固相变质反应形成。夕线石的出现并非蓝晶石或十字石带递增变质所致。"倒转变质"不应包括所谓的夕线石带。实际上,夕线石化与深熔作用之后的溶液(或熔体)活动更为密切。时间顺序上应是递增变质作用及分带→深熔作用→夕线石化,夕线石的出现不是深熔作用的开始,而是深熔作用的结束。夕线石的形成主要与变形作用过程中黑云母和/或钾长石的分解及碱(土)金属组分的迁移有关,关键在于溶液(或熔体)组分沿裂隙迁移过程中发生的组分逐步沉淀,最早沉凝的Al、Si组分形成夕线石和石英,之后陆续有其它的组分的结晶;细夕线石粗粒化即进一步转化形成柱状夕线石的同时形成蠕英结构和斜长石生长边。夕线石化可能与深熔花岗(片麻)岩的上升过程有关。  相似文献   

9.
Poikiloblastic index minerals in pelitic rocks from the Orrs Island–Harpswell Neck area of coastal Maine contain inclusion textures that indicate sequential growth of progressively higher grade metamorphic minerals during development of a near-vertical crenulation foliation. The sequence of zones in the field is garnet, staurolite, staurolite–andalusite, staurolite–sillimanite and sillimanite. Inclusion fabrics characteristic of different stages in crenulation cleavage development indicate that index minerals nucleated and grew sequentially: biotite began to grow before deformation, garnet began to grow during early stages of crenulation cleavage development, staurolite grew during intermediate stages, and andalusite grew relatively late, when transposition of the foliation was nearly complete. Muscovite pseudomorphs and sillimanite were mainly post-kinematic. The fact that metamorphic index minerals grew sequentially in individual rocks in the same order in which they appear across the field area indicates that the high temperature part of the pressure–temperature path was similar to the metamorphic field gradient. Metamorphism in the Orrs Island–Harpswell Neck area is consistent with the magmatic heating model that has been proposed for western Maine. Sequential development of index minerals in pelitic rocks in the Orrs Island–Harpswell Neck area apparently resulted from sequential nucleation after substantial overstepping of mineral-forming reactions. Once nucleation of an index mineral had taken place, initial growth was rapid and poikiloblasts preserved inclusion trails characteristic of the prevailing stage of crenulation cleavage development. Because nucleation of sillimanite may have required more overstepping of the andalusite–sillimanite reaction than nucleation at dehydration reactions, determination of metamorphic conditions for rapidly heated rocks such as these by comparison with a petrogenetic grid is problematic. Garnet zoning patterns in these rocks should reflect the fact that growth of garnet interiors occurred early during metamorphism in equilibrium with a low-grade assemblage. Only garnet rims would be expected to record the subsequent pressure–temperature path.  相似文献   

10.
Caledonian orogenesis in NE Greenland resulted from the collision of Laurentia and Baltica during the Ordovician–Silurian. Anatectic pelites within the metasedimentary Smallefjord Sequence record a clockwise P – T  path, the result of early crustal thickening at c . 445–440 Ma and subsequent exhumation of the high-grade metamorphic core by a combination of ductile extension and tectonic denudation. The early prograde segment of the path followed a shallow, near-isothermal trajectory and attained a metamorphic peak of c . 9.0–10.0 kbar at >790 and <850 °C. Prograde metamorphism initiated anatexis of pelites in the kyanite stability field and continued with sillimanite stable. Inclusion trails in the garnet cores are textural remnants of early deformation, which occurred either before or during prograde metamorphism. The peak metamorphic conditions are anomalously high in the context of thermal models and P – T  paths for continental collision zones. The additional heat input required to promote migmatization may have been provided by advection as lower crustal high-pressure rocks and the uppermost mantle were uplifted following lithospheric thinning at an early stage in the orogeny. The prograde path was interrupted by the development of retrograde extensional shear fabrics defined by biotite+sillimanite and associated with garnet breakdown. Field observations indicate that ductile extension was accompanied by melt extraction, transport and emplacement of intracrustal granites dated at c . 430 Ma. Regional ductile extension and exhumation probably resulted from the development of gravitational instabilities within the overthickened crust during continental collision.  相似文献   

11.
The Cretaceous Abukuma metamorphic terrane consists of the oceanic Gosaisyo Series overthrust onto the terrigenous Takanuki Series. Although the dominant mineralogy defines one of the classic areas of andalusite–sillimanite type progressive metamorphism, there are several lines of evidence suggesting an earlier higher-pressure (up to c . 12  kbar) history of the Takanuki Series and the nearby Gosaisyo Series. These are: (1) the occurrence of rare although widespread relic kyanite in sillimanite+K-feldspar zone-grade pelitic rocks; (2) the high grossular content of garnet interiors (up to c . 30  mol %) overgrown by Ca-poor rims ( c . 2  mol % grossular) in pelitic rocks containing Al2SiO5 minerals (sillimanite±relic kyanite±retrograde andalusite), plagioclase and quartz; (3) the occurrence of rutile as inclusions in garnet in pelitic rocks; and (4) the occurrence of relic corundum+almandine association in silica-poor and Al–Fe-rich rocks. Garnet in the Takanuki Series pelitic rocks commonly shows textural sector zoning and preserves growth zoning despite the high metamorphic grade, suggesting rapid changes in P–T  conditions and a relatively short duration of high-temperature conditions. Combined with radiometric dating, these observations suggest that the Abukuma sillimanite+K-feldspar zone-grade rocks underwent a clockwise P–T  path with very fast (>4  mm  y−1) average burial and exhumation rates.  相似文献   

12.
ABSTRACT The Darjeeling-Sikkim region provides a classic example of inverted Himalayan metamorphism. The different parageneses of pelitic rocks containing chlorite, biotite, garnet, staurolite, kyanite, sillimanite, plagioclase and K-feldspar are documented by a variety of textures resulting from continuous and discontinuous reactions in the different zones. Microprobe data of coexisting minerals show that XMg varies in the order: garnet < staurolite < biotite < chlorite. White mica is a solid solution between muscovite and phengite. Garnet is mostly almandine-rich and shows normal growth zoning in the lower part of the Main Central Thrust (MCT) zone, and reverse zoning in the upper part of the zone. Chemographical relations and inferred reactions for different zones are portrayed in AFM space. In the low-grade zones oriented chlorites and micas and rolled garnets grew syntectonically, and were succeeded by cross-cutting chlorites and micas and garnet rims. In the upper zones sillimanite, kyanite and staurolite crystallized during a static inter-kinematic phase. P-T contitions of metamorphism, estimated through different models of geothermobarometry, are estimated to have been 580°c for the garnet zone to a maximum of 770°c for the sillimanite zone. The preferred values of pressure range from 5.0 kbar to 7.7 kbar. Models to explain the inverted metamorphism include overthrusting of a hot high Himalayan slab along a c. 5 km wide ductile MCT zone and the syn- or post-metamorphic folding of isograds.  相似文献   

13.
Pegmatoid segregations containing three polymorphous Al2SiO5 modifications have been revealed in metamorphic rocks of the Tsel block localized in the Hercynian belt on the southern flank of Mongolian Altay. Petrographic study showed a successive substitution of polymorphs in the sequence: andalusite–kyanite–fibrolite–sillimanite. Estimated parameters of the host-rock metamorphism indicate that the mineral assemblage of pegmatoid veins formed at two successive stages of metamorphism: andalusite-sillimanite and kyanite-sillimanite. It is suggested that the transformation of Al2SiO5 from one to another polymorphous modification occurs by the ion exchange mechanism with the participation of muscovite.  相似文献   

14.
In the Champawat area, Kumaun Himalaya, greenschist facies regionally metamorphosed rocksviz chlorite-phyllite and schist have been subjected to thermal metamorphism due to emplacement of batholithic granite/granodiorite body. As a consequence, biotite, garnet, andalusite, fibrolite, sillimanite and perthite minerals have formed in the contact rocks. The conspicuous absence of cordierite and staurolite reported from such aureole rocks is due to higher FeO/MgO ratio of the bulk rock composition in the former while the absence of staurolite is due to low Al2O3/FeO+MgO ratio in the schists. AFM diagram demonstrates that in muscovite-bearing schist, the bulk composition of chlorite- and cordierite-bearing rocks are restricted to low FeO/MgO side and thus the restricted occurrence of former and the absence of latter in the contact rocks of the area. This is further evident from the common occurrence of almandine-rich garnet in the rocks.  相似文献   

15.
The Motuo area is located in the east of the Eastern Himalayan Syntaxis. There outcrops a sequence of high-grade metamorphic rocks, such as metapelites. Petrology and mineralogy data suggest that these rocks have experienced three stages of metamorphism. The prograde metamorphic mineral assemblages(M1) are mineral inclusions(biotite + plagioclase + quartz ± sillimanite ± Fe-Ti oxides) preserved in garnet porphyroblasts, and the peak metamorphic assemblages(M2) are represented by garnet with the lowest XSps values and the lowest XFe# ratios and the matrix minerals(plagioclase + quartz ± Kfeldspar + biotite + muscovite + kyanite ± sillimanite), whereas the retrograde assemblages(M3) are composed of biotite + plagioclase + quartz symplectites rimming the garnet porphyroblasts. Thermobarometric computation shows that the metamorphic conditions are 562–714°C at 7.3–7.4 kbar for the M1 stage, 661–800°C at 9.4–11.6 kbar for the M2 stage, and 579–713°C at 5.5–6.6 kbar for the M3 stage. These rocks are deciphered to have undergone metamorphism characterized by clockwise P-T paths involving nearly isothermal decompression(ITD) segments, which is inferred to be related to the collision of the India and Eurasia plates.  相似文献   

16.
Low-pressure, medium- to high-temperature (Buchan-type) regional metamorphism of pelitic rocks in the Mount Lofty Ranges, South Australia, is defined by the development of biotite, staurolite-andalusite, fibrolite, prismatic sillimanite and migmatite zones. K-feldspar makes its first appearance in the prismatic sillimanite zone and here we restrict our discussion to lower grade assemblages containing prograde muscovite, concentrating particularly on well-developed andalusitestaurolite parageneses. In general, the spatial distribution and mineral chemical variation of these assemblages accord with the predictions of petrogenetic grids and P-T and T-X Fe pseudo-sections constructed from the internally consistent data set of Holland and Powell (1990) in the system KFMASH, assuming a(H2O) 1, although analysed white mica compositions are systematically more aluminous than predicted. Importantly, the stability ranges of most critical assemblages predicted by these grids and pseudo-sections coincide closely with P-T estimates calculated using the data set of Holland and Powell (1990) from the Mount Lofty Ranges assemblages. With the exception of Mn in garnet and Zn in one staurolite-cordierite-muscovite assemblage non-KFMASH components do not significantly appear to have affected the stability ranges of the observed assemblages. An apparent local reversal in isograd zonation in which andalusite first appears down-grade of staurolite suggests a metamorphic field gradient concave towards the temperature axis and, together with evidence for essentially isobaric heating of individual rocks, is consistent with the exposures representing an oblique profile through a terrain in which heat was dissipated from intrusive bodies at discrete structural levels.Mineral abbreviations used in figures als Al2SiO5 phase - bi biotite - chl chlorite - ky kyanite - ph phengite - sill sillimanite - and andalusite - cd cordieritc - gt garnet - mu muscovite - q quartz - st staurolite  相似文献   

17.
The timing and thermal effects of granitoid intrusions into accreted sedimentary rocks are important for understanding the growth process of continental crust. In this study, the petrology and geochronology of pelitic gneisses in the Tseel area of the Tseel terrane, SW Mongolia, are examined to understand the relationship between igneous activity and metamorphism during crustal evolution in the Central Asian Orogenic Belt (CAOB). Four mineral zones are recognized on the basis of progressive changes in the mineral assemblages in the pelitic gneisses, namely: the garnet, staurolite, sillimanite and cordierite zones. The gneisses with high metamorphic grades (i.e. sillimanite and cordierite zones) occur in the central part of the Tseel area, where granitoids are abundant. To the north and south of these granitoids, the metamorphic grade shows a gradual decrease. The composition of garnet in the pelitic gneisses varies systematically across the mineral zones, from grossular‐rich garnet in the garnet zone to zoned garnet with grossular‐rich cores and pyrope‐rich rims in the staurolite zone, and pyrope‐rich garnet in the sillimanite and cordierite zones. Thermobarometric analyses of individual garnet crystals reveal two main stages of metamorphism: (i) a high‐P and low‐T stage (as recorded by garnet in the garnet zone and garnet cores in the staurolite zone) at 520–580 °C and 4.5–7 kbar in the kyanite stability field and (ii) a low‐P and high‐T stage (garnet rims in the staurolite zone and garnet in the sillimanite and cordierite zones) at 570–680 °C and 3.0–6.0 kbar in the sillimanite stability field. The earlier high‐P metamorphism resulted in the growth of kyanite in quartz veins within the staurolite and sillimanite zones. The U–Pb zircon ages of pelitic gneisses and granitoids reveal that (i) the protolith (igneous) age of the pelitic gneisses is c. 510 Ma; (ii) the low‐P and high‐T metamorphism occurred at 377 ± 30 Ma; and (iii) this metamorphic stage was coeval with granitoid intrusion at 385 ± 7 Ma. The age of the earlier low‐T and high‐P metamorphism is not clearly recorded in the zircon, but probably corresponds to small age peaks at 450–400 Ma. The low‐P and high‐T metamorphism continued for c. 100 Ma, which is longer than the active period of a single granitoid body. These findings indicate that an elevation of geotherm and a transition from high‐P and low‐T to low‐P and high‐T metamorphism occurred, associated with continuous emplacement of several granitoids, during the crustal evolution in the Devonian CAOB.  相似文献   

18.
Metamorphic zones in the Chinese Altai orogen have previously been separated into the kyanite- and andalusite-types, the andalusite-type being spatially more extensive. The kyanite-type involves a zonal sequence of biotite, garnet, staurolite, kyanite, sillimanite and, locally, garnet–cordierite zones. The andalusite-type zonal sequence is similar: it includes biotite, garnet and staurolite zones at lower-T conditions and sillimanite and garnet–cordierite zones at higher-T conditions, but additionally contains staurolite–andalusite and andalusite–sillimanite zones at intermediate-T conditions. As relic kyanite-bearing assemblages commonly persist in the staurolite–andalusite, andalusite–sillimanite and sillimanite zones, it is not clear that the distinction is valid. On the basis of a reevaluation of phase relations modelled in KMnFMASH and KFMASH pseudosections, kyanite and andalusite-bearing rocks of the Chinese Altai orogen record, respectively, the typical burial and exhumation history of the terrane. Mineral assemblages distributed through the various zones reflect a mix of portions of the ambient PT array and the effects of evolving PT conditions. The comparatively low-T biotite, garnet and staurolite zones mostly preserve kyanite-type peak assemblages that only experienced minor changes during exhumation. Rocks in the comparatively high-T sillimanite and garnet–cordierite zones are dominated by mineral assemblages of a transitional sillimanite type, having formed by the extensive modification of earlier higher pressure assemblages during exhumation. Only rocks in the intermediate-T kyanite and probably some lower sillimanite zones were clearly recrystallized by late stage andalusite metamorphism, producing the staurolite–andalusite and andalusite–sillimanite zones. This andalusite metamorphism could not reach an equilibrium state because of limited fluid availability.  相似文献   

19.
I. A. Tararin 《Petrology》2008,16(2):193-209
Geological, mineralogical, and geothermobarometric data testify that the regional metamorphism of the terrigenous protolith of the Kolpakovskaya Series, which composes the stratigraphic basement of the Kamchatka Median Crystalline Massif, corresponded to the kyanite mineral subfacies of the amphibolite facies at temperatures of 560–660°C and pressures of 5.9–6.9 kbar. This metamorphism predetermined wide kyanite development in high-Al garnet-biotite plagiogneisses. The younger granitization and migmatization of the plagiogneisses took place at a decrease in the pressure (depth), as follows from the textures of kyanite reaction replacement by andalusite in both the metamorphic rocks and the vein synmetamorphic granitoids and pegmatites. The temperature of the granitization and migmatization processes in the plagiogneisses was estimated at 620–650°C, and the pressure was evaluated at 1.9–3.0 kbar. Acid leaching that accompanied the granitization and migmatization processes resulted in the intense replacement of biotite by sillimanite (fibrolite) and, to a lesser degree, muscovite in the metamorphic and vein magmatic rocks. The highest temperature orthopyroxene-cordierite-biotite-orthoclase-plagioclase-quartz mineral assemblages were determined to have been formed in the Kolpakovskaya Series at a temperature of 830–840°C not by the regional metamorphism but in contact aureoles around gabbro-granitoid intrusions of the Lavkinskii intrusive complex of Oligocene-Miocene age in garnet-biotite and kyanite-garnet-biotite plagiogneisses of the amphibolite facies and cannot thus be regarded as evidence of an early granulite stage in the metamorphism of these rocks.  相似文献   

20.
Four Precambrian metamorphic complexes in the vicinity of regional faults in the Transangarian region of the Yenisei Ridge were examined. Based on geothermobarometry and P-T path calculations, our geological and petrological studies showed that the Neoproterozoic medium-pressure metamorphism of the kyanite–sillimanite type overprinted regionally metamorphosed low-pressure andalusite-bearing rocks at about 850 Ma. A positive correlation between rock ages and P-T estimates for the kyanite-sillimanite metamorphism provide evidence of the regional structural and tectonic heterogeneity. The medium-pressure metamorphism was characterized by (1) the development of deformational structures and textures, and kyanite-bearing blastocataclasites (blastomylonites) with sillimanite, garnet, and staurolite after andalusite-bearing regional metamorphic rocks; (2) insignificant apparent thickness of the zone of medium-pressure zonal metamorphism (from 2.5 to 7 km), which was localized in the vicinity of the overthrusts; (3) a low metamorphic field gradient during metamorphism (from 1–7 to 12 °C/km); and (4) a gradual increase in lithostatic pressure towards the thrust faults. These specific features are typical of collisional metamorphism during overthrusting of continental blocks and are evidence for near-isothermal loading. This event was justified within the framework of the crustal tectonic thickening model via rapid overthrusting and subsequent rapid uplifting and erosion. The results obtained allowed us to consider medium-pressure kyanite-bearing metapelites as a product of collision metamorphism, formed either by unidirectional thrusting of rock blocks from Siberian craton onto the Yenisei Ridge in the zones of regional faults (Angara, Mayakon, and Chapa areas) or by opposite movements in the zone of splay faults of higher orders (Garevka area).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号