首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Emarat deposit, with a total proved reserve of 10 Mt ore grading 6% Zn and 2.26% Pb, is one of the largest Zn–Pb deposits in the Malayer–Esfahan belt. The mineralization is stratabound and restricted to Early Cretaceous limestones and dolomites. The ore consists mainly of sphalerite and galena with small amounts of pyrite, chalcopyrite, calcite, quartz, and dolomite. Textural evidence shows that the ore has replaced the host rocks and thus is epigenetic.Sulfur isotopes indicate that the sulfur in sphalerite and galena has been derived from Cretaceous seawater through thermochemical sulfate reduction. Sulfur isotope compositions of four apparently coprecipitated sphalerite–galena pairs suggest their precipitation was under equilibrium conditions. The sulfur isotopic fractionation observed for the sphalerite–galena pairs corresponds to formation temperatures between 77 °C and 168 °C, which agree with homogenization temperatures of fluid inclusions.Lead-isotope studies indicate that the lead in galena has been derived from heterogeneous sources including orogenic and crustal reservoirs with high 238U/204Pb and 232Th/204Pb ratios. Ages derived from the Pb-isotope model give meaningless ages, ranging from Early Carboniferous to future. It is probable that the Pb-isotope model ages that point to an earlier origin than the Early Cretaceous host rocks are derived from older reservoirs in the underlying Carboniferous or Jurassic units, either from the host rocks or from earlier-formed ore deposits within these units.This research and other available data show that the Emarat Zn–Pb deposit has many important features of Mississippi Valley-type (MVT) lead–zinc deposits and thus we argue that it is an MVT-type ore deposit.  相似文献   

2.
The El Valle-Boinás copper–gold deposit is located in the southern part of the Rio Narcea Gold Belt 65 km west of Oviedo (NW Spain), within the Cantabrian Zone (Iberian Hercynian Massif). The deposit is related to the Boinás stock, which ranges from quartz-monzonite to monzogranite and intruded (303 Ma) the carbonated Láncara Formation (early Cambrian) and the siliciclastic Oville Formation (middle-late Cambrian).A copper–gold skarn was developed along the contact between the igneous rock and the carbonated sedimentary rocks. The skarn distribution and mineralogy reflects both structural and lithologic controls. Two types of skarn exists: a calcic skarn mainly developed in the upper calcic member of the Láncara Formation, and a magnesian skarn developed in the lower dolomitic and organic-rich member. The former mainly consists of garnet, pyroxene and wollastonite. Retrograde alteration consists of K-feldspar, epidote, quartz, calcite, magnetite, ferroactinolite, titanite, apatite, chlorite and sulfides. Magnesian skarn mainly consists of diopside with interbedded forsterite zones. Pyroxene skarn is mainly altered to tremolite, with minor phlogopite and serpentine. Olivine skarn is pervasively altered to serpentine and magnetite, and is commonly accompanied by high sulfide and gold concentrations. This altered skarn results in a very dark rock, referred to as “black skarn”, which has great importance in gold reserves. Sulfide mineralization mainly consists of chalcopyrite, bornite, arsenopyrite, pyrrhotite and pyrite, while wittichenite, sphalerite, digenite, bismuthinite, native bismuth and electrum occur as accessory minerals.After extensive erosion, reactivation of the northeast-trending fracture zone provided conduits for the subsequent emplacement of porphyritic dikes (285±4 Ma) and diabasic dikes (255±5 Ma). Alteration, characterized by sericitization, silicification, carbonatization and hypogene oxidation took place, as did sulfide mineralization (pyrite, arsenopyrite, sphalerite, chalcopyrite, galena, bournonite, and Fe–Pb–Sb sulfosalts). Veins with quartz, carbonate, adularia and sulfide minerals crosscut all previous lithologies. Jasper and jasperoid breccias developed at the upper parts of the deposits.The fluid inclusion and stable isotope studies suggest a predominantly magmatic prograde-skarn fluid characterized by high-salinity (26–28 wt.% KCl and 32–36 wt.% NaCl) and high temperature, above 580°C. This fluid evolved into two immiscible fluids: a CO2- and/or CH4-rich, high-salinity aqueous fluid. Temperatures for the first retrograde-stage are between 350 and 425°C. A second stage is related to a more diluted aqueous fluid (3–6.2 wt.% NaCl eq.) and temperatures from 280 to 325°C. The fluid inclusion study performed on quartz from low-temperature mineralization indicates a very low salinity (0.2–6.2 wt.% NaCl eq.), low-temperature aqueous fluid (from 150 to 250°C), and trapping pressure conditions less than 0.2 kbar. In addition, the stable isotope study suggests that an influx of metamorphic waters derived from the country rocks produced these lower temperature fluids. The last control for the Au mineralization is the Alpine tectonism, which developed fault breccias (cataclasites to, locally, protomylonites) and gold remobilization from previous mineralization.  相似文献   

3.
With a reserve of  200 Mt ore grading 6.08% Zn and 1.29% Pb (i.e., a metal reserve of  15 Mt) hosted in Cretaceous and Tertiary terrestrial rocks, the Jinding deposit is the largest Zn–Pb deposit in China, and also the youngest sediment-hosted super giant Zn–Pb deposit in the world. The deposit mainly occurs in the Jinding dome structure as tabular orebodies within breccia-bearing sandstones of the Palaeocene Yunlong Formation (autochthonous) and in the overlying sandstones of the Early Cretaceous Jingxing Formation (allochthonous). The deposit is not stratiform and no exhalative sedimentary rocks have been observed. The occurrence of the orebodies, presence of hangingwall alteration, and replacement and open-space filling textures all indicate an epigenetic origin. Formation of the Jinding Zn–Pb deposit is related to a period of major continental crust movement during the collision of the Indian and Eurasian Plates. The westward thrusts and dome structure were successively developed in the Palaeocene sedimentary rocks in the ore district, and Zn–Pb mineralisation appears to have taken place in the early stage of the doming processes.The study of fluid inclusions in sphalerite and associated gangue minerals (quartz, celestine, calcite and gypsum) shows that homogenisation temperatures ranged from 54 to 309 °C and cluster around 110 to 150 °C, with salinities of 1.6 to 18.0 wt.% NaCl equiv. Inert gas isotope studies from inclusions in ore- and gangue-minerals reveal 2.0 to 15.6% mantle He, 53% mantle Ne and a considerable amount of mantle Xe in the ore-forming fluids. The Pb-isotope composition of ores shows that the metal is mainly of mantle origin, mixed with a lesser amount of crustal lead. The widely variable and negative δ34S values of Jinding sulphides suggest that thermo-chemical or bacterial sulphate reduction produced reduced sulphur for deposition of the Zn–Pb sulphides. The mixing of a mantle-sourced fluid enriched in metals and CO2 with reduced sulphide-bearing saline formation water in a structural–lithologic trap may have been the key mechanism for the formation of the Jinding deposit.The Jinding deposit differs from known major types of sediment-hosted Zn–Pb deposits in the world, including sandstone-type (SST), Mississippi Valley type (MVT) and sedimentary-exhalative (SEDEX). Although the fine-grained ore texture and high Zn/Pb ratios are similar to those in SEDEX deposits, the Jinding deposit lacks any exhalative sedimentary rocks. Like MVT deposits, Jinding is characterised by simple mineralogy, epigenetic features and involvement of basinal brines in mineralisation, but its host rocks are mainly sandstones and breccia-bearing sandstones. The Jinding deposit is also different from SST deposits with its high Zn/Pb ratios, among other characteristics. Most importantly, the Jinding deposit was formed in an intracontinental terrestrial basin with an active tectonic history in relation to plate collision, and mantle-sourced fluids and metals played a major role in ore formation, which is not the case for SEDEX, MVT, and SST. We propose that Jinding represents a new type of sediment-hosted Zn–Pb deposit, named the ‘Jinding type’.  相似文献   

4.
The Ortosa deposit (NW Spain) in the northern part of the Rio Narcea Gold Belt (RNGB) is located in the Cantabrian Zone of the Iberian Massif. This zone corresponds to the westernmost exposure of the European Hercynides. The deposit is hosted by marine shales, siltstones, calcareous siltstones and interbedded sandy limestones of the upper part of the Silurian Furada Formation. These rocks are intruded by a main stock and numerous sills and dikes consisting of a reduced, ilmenite-bearing quartz-monzodiorite (Ortosa intrusion). Skarn metasomatism and associated gold mineralization overprinted these sedimentary and igneous rocks, forming endo- and exoskarns.The earliest stage of alteration involved potassium metasomatism from which metasomatic biotite developed in the hornfels around the intrusion. In the endoskarn, the first metasomatic mineral to form is actinolite. Subsequently, quartz, pyroxene (Hd30–45), and sulfides (mainly arsenopyrite and pyrrhotite) formed, followed by a second generation of amphibole (ferroactinolite and ferrohornblende). The exoskarn is a pyroxene-garnet skarn, which is often banded. The prograde minerals are pyroxene (Hd10–30) and grossular garnet. The retrograde mineralogy consists of hedenbergite-rich pyroxene (Hd50–87), amphibole (ferroactinolite–ferrohornblende), and the metallic minerals with minor fluorapatite, K-feldspar, albite, epidote–clinozoisite, vesuvianite and calcite. A final stage of retrograde alteration is characterized by calcite, quartz, and chlorite.Pyrrhotite and arsenopyrite are the more abundant metallic minerals, and löllingite, chalcopyrite, pyrite and sphalerite are present in smaller amounts. The gold occurs as native gold and maldonite, and is accompanied by hedleyite, native bismuth, and bismuthinite. These Au–Bi–Te mineral assemblages occupy cavities and fractures in the arsenopyrite or in the pyrrhotite.Estimated physiochemical conditions of formation based on the composition and stability fields of major calc-silicate and sulfide minerals indicate that the hedenbergite-rich pyroxene and the earliest sulfides (löllingite–pyrrhotite–arsenopyrite) crystallized at temperatures between 470 and 535°C at low log fS2 between −10 and −6.5 and low log fO2 of −22. The Ortosa skarns can be included in the reduced gold skarn subtype defined by Meinert (Mineralogical Association of Canada, Quebec city, Que., Canada, 1998, 26,359–414 ).  相似文献   

5.
The Late Miocene San Cristobal Ag–Zn–Pb deposit represents syngenetic and epigenetic mineralization with low- and high-sulfidation characteristics. Rocks in the deposit are characterized by barren dacitic ring fracture domes, mineralized resurgent rhyodacite domes, strongly altered and mineralized tuffaceous lacustrine sedimentary rocks, and an extensive crystal-lithic tuff debris apron. The ore body is hosted by intracauldron sedimentary and volcanic rocks and genetically associated breccias. Fluid inclusion data suggest that silver, lead, and zinc were transported as chloride complexes and precipitated by cooling in veins from <5 wt.% NaCl eq. fluids at 170–215 °C. Silver that was spatially, and perhaps temporally, associated with an episode of rhyodacite resurgence may have been transported as a chloride complex and precipitated by increased H2S activity or increased fluid pH. Although San Cristobal represents a major silver resource, the occurrence of stratiform wurtzite and sphalerite in cauldron-hosted sedimentary rocks represents a syngenetic component of mineralization that is very rare in continental caldera-associated epithermal deposits, which contributes to San Cristobal's significance as a zinc resource.  相似文献   

6.
The Qingchengzi orefield in northeastern China, is a concentration of several Pb–Zn, Ag, and Au ore deposits. A combination of geochronological and Pb, Sr isotopic investigations was conducted. Zircon SHRIMP U–Pb ages of 225.3 ± 1.8 Ma and 184.5 ± 1.6 Ma were obtained for the Xinling and Yaojiagou granites, respectively. By step-dissolution Rb–Sr dating, ages of 221 ± 12 Ma and 138.7 ± 4.1 Ma were obtained for the sphalerite of the Zhenzigou Zn–Pb deposit and pyrargyrite of the Ag ore in the Gaojiabaozi Ag deposit, respectively. Pb isotopic ratios of the Ag ore at Gaojiabaozi (206Pb/204Pb = 18.38 to 18.53) are higher than those of the Pb–Zn ores (206Pb/204Pb = 17.66 to 17.96; Chen et al. [Chen, J.F., Yu, G., Xue, C.J., Qian, H., He, J.F., Xing, Z., Zhang, X., 2005. Pb isotope geochemistry of lead, zinc, gold and silver deposit clustered region, Liaodong rift zone, northeastern China. Science in China Series D 48, 467–476.]). Triassic granites show low Pb isotopic ratios (206Pb/204Pb = 17.12 to 17.41, 207Pb/204Pb = 15.47 to 15.54, 208Pb/204Pb = 37.51 to 37.89) and metamorphic rocks of the Liaohe Group have high ratios (206Pb/204Pb = 18.20 to 24.28 and 18.32 to 20.06, 207Pb/204Pb = 15.69 to 16.44 and 15.66 to 15.98, 208Pb/204Pb = 37.29 to 38.61 and 38.69 to 40.00 for the marble of the Dashiqiao Formation and schist of the Gaixian Formation, respectively).Magmatic activities at Qingchengzi and in adjacent regions took place in three stages, and each contained several magmatic pulses: ca. 220 to 225 Ma and 211 to 216 Ma in the Triassic; 179 to 185 Ma, 163 to 168 Ma, 155 Ma and 149 Ma in the Jurassic, as well as ca. 140 to 130 Ma in the Early Cretaceous. The Triassic magmatism was part of the Triassic magmatic belt along the northern margin of the North China Craton produced in a post-collisional extensional setting, and granites in it formed by crustal melting induced by mantle magma. The Jurassic and Early Cretaceous magmatism was related to the lithospheric delamination in eastern China. The Triassic is the most important metallogenic stage at Qingchengzi. The Pb–Zn deposits, the Pb–Zn–Ag ore at Gaojiabaozi, and the gold deposits were all formed in this stage. They are temporally and spatially associated with the Triassic magmatic activity. Mineralization is very weak in the Jurassic. Ag ore at Gaojiabaozi was formed in the Early Cretaceous, which is suggested by the young Rb–Sr isochron age, field relations, and significantly different Pb isotopic ratios between the Pb–Zn–Ag and Ag ores. Pb isotopic compositions of the Pb–Zn ores suggest binary mixing for the source of the deposits. The magmatic end-member is the Triassic granites and the other metamorphic rocks of the Liaohe Group. Slightly different proportions of the two end-members, or an involvement of materials from hidden Cretaceous granites with slightly different Pb isotopic ratios, is postulated to interpret the difference of Pb isotopic compositions between the Pb–Zn–(Ag) and Ag ores. Sr isotopic ratios support this conclusion. At the western part of the Qingchengzi orefield, hydrothermal fluid driven by the heat provided by the now exposed Triassic granites deposited ore-forming materials in the low and middle horizons of the marbles of the Dashiqiao Formation near the intrusions to form mesothermal Zn–Pb deposits. In the eastern part, hydrothermal fluids associated with deep, hidden Triassic intrusions moved upward along a regional fault over a long distance and then deposited the ore-forming materials to form epithermal Au and Pb–Zn–Ag ores. Young magmatic activities are all represented by dykes across the entire orefield, suggesting that the corresponding main intrusion bodies are situated in the deep part of the crust. Among these, only intrusions with age of ca. 140 Ma might have released sufficient amounts of fluid to be responsible for the formation of the Ag ore at Gaojiabaozi.Our age results support previous conclusions that sphalerite can provide a reliable Rb–Sr age as long as the fluid inclusion phase is effectively separated from the “sulfide” phase. Our work suggests that the separation can be achieved by a step-resolution technique. Moreover, we suggest that pyrargyrite is a promising mineral for Rb–Sr isochron dating.  相似文献   

7.
The carbonate-hosted Kabwe Pb–Zn deposit, Central Zambia, has produced at least 2.6 Mt of Zn and Pb metal as well as minor amounts of V, Cd, Ag and Cu. The deposit consists of four main epigenetic, pipe-like orebodies, structurally controlled along NE–SW faults. Sphalerite, galena, pyrite, minor chalcopyrite, and accessory Ge-sulphides of briartite and renierite constitute the primary ore mineral assemblage. Cores of massive sulphide orebodies are surrounded by oxide zones of silicate ore (willemite) and mineralized jasperoid that consists largely of quartz, willemite, cerussite, smithsonite, goethite and hematite, as well as numerous other secondary minerals, including vanadates, phosphates and carbonates of Zn, Pb, V and Cu.Galena, sphalerite and pyrite from the Pb–Zn rich massive orebodies have homogeneous, negative sulphur isotope ratios with mean δ34SCDT permil (‰) values of − 17.75 ± 0.28 (1σ), − 16.54 ± 0.0.27 and − 15.82 ± 0.25, respectively. The Zn-rich and Pb-poor No. 2 orebody shows slightly heavier ratios of − 11.70 ± 0.5‰ δ34S for sphalerite and of − 11.91 ± 0.71‰ δ34S for pyrite. The negative sulphur isotope ratios are considered to be typical of sedimentary sulphides produced through bacterial reduction of seawater sulphate and suggest a sedimentary source for the sulphur.Carbon and oxygen isotope ratios of the host dolomite have mean δ13CPDB and δ18OSMOW values of 2.89‰ and 27.68‰, respectively, which are typical of marine carbonates. The oxygen isotope ratios of dolomite correlate negatively to the SiO2 content introduced during silicification of the host dolomite. The depletion in 18O in dolomite indicates high temperature fluid/rock interaction, involving a silica- and 18O-rich hydrothermal solution.Two types of secondary fluid inclusions in dolomite, both of which are thought to be related to ore deposition, indicate temperatures of ore deposition in the range of 257 to 385 and 98 to 178 °C, respectively. The high temperature fluid inclusions contain liquid + vapour + solid phases and have salinities of 15 to 31 eq. wt.% NaCl, whereas the low temperature inclusions consist of liquid + vapour with a salinity of 11.5 eq. wt.% NaCl.Fluid transport may have been caused by tectonic movements associated with the early stages of the Pan-African Lufilian orogeny, whereas ore deposition within favourable structures occurred due to changes in pressure, temperature and pH in the ore solution during metasomatic replacement of the host dolomite. The termination of the Kabwe orebodies at the Mine Club fault zone and observed deformation textures of the ore sulphides as well as analysis of joint structures in the host dolomite, indicate that ore emplacement occurred prior to the latest deformation phase of the Neoproterozoic Lufilian orogeny.  相似文献   

8.
The area of the Middle–Lower Yangtze River valley, Eastern China, extending from Wuhan (Hubei province) to western Zhenjiang (Jiangsu province), hosts an important belt of Cu–Au–Mo and Fe deposits. There are two styles of mineralization, i.e., skarn/porphyry/stratabound Cu–Au–Mo–(Fe) deposits and magnetite porphyry deposits in several NNE-trending Cretaceous fault-bound volcanic basins. The origin of both deposit systems is much debated. We dated 11 molybdenite samples from five skarn/porphyry Cu–Au–Mo deposits and 5 molybdenite samples from the Datuanshan stratabound Cu–Au–Mo deposit by ICP-MS Re–Os isotope analysis. Nine samples from the same set were additionally analyzed by NTIMS on Re–Os. Results from the two methods are almost identical. The Re–Os model ages of 16 molybdenite samples range from 134.7 ± 2.3 to 143.7 ± 1.6 Ma (2σ). The model ages of the five samples from the Datuanshan stratabound deposit vary from 138.0 ± 3.2 to 140.8 ± 2.0 Ma, with a mean of 139.3 ± 2.6 Ma; their isochron age is 139.1 ± 2.7 Ma with an initial Os ratio of 0.7 ± 8.1 (MSWD = 0.29). These data indicate that the porphyry/skarn systems and the stratabound deposits have the same age and suggest an origin within the same metallogenic system. Albite 40Ar/39Ar dating of the magnetite porphyry deposits indicates that they formed at 123 to 125 Ma, i.e., 10–20 Ma later. Both mineralization styles characterize transitional geodynamic regimes, i.e., the period around 140 Ma when the main NS-trending compressional regime changed to an EW-trending lithospheric extensional regime, and the period of 125–115 Ma of dramatic EW-trending lithospheric extension.  相似文献   

9.
Draa Sfar is a Visean, stratabound, volcanogenic massive sulphide ore deposit hosted by a Hercynian carbonaceous, black shale-rich succession of the Jebilet terrane, Morocco. The ore deposit contains 10 Mt grading 5.3 wt.% Zn, 2 wt.% Pb, and 0.3 wt.% Cu within two main massive sulphides orebodies, Tazakourt (Zn-rich) and Sidi M'Barek (Zn–Cu rich). Pyrrhotite is by far the dominant sulphide (70 to 95% of total sulphides), sphalerite is fairly abundant, chalcopyrite and galena are accessory, pyrite, arsenopyrite and bismuth minerals are rare. Pyrrhotite is monoclinic and mineralogical criteria indicate that it is of primary origin and not formed during metamorphism. Its composition is very homogeneous, close to Fe7S8, and its absolute magnetic susceptibility is 2.10− 3 SI/g. Ar–Ar dating of hydrothermal sericites from a coherent rhyolite flow or dome within the immediate deposit footwall indicates an age of 331.7 ± 7.9 Ma for the Draa Sfar deposit and rhyolite volcanism.The Draa Sfar deposit has undergone a low-grade regional metamorphic event that caused pervasive recrystallization, followed by a ductile–brittle deformation event that has locally imparted a mylonitic texture to the sulphides and, in part, is responsible for the elongated and sheet-like morphology of the sulphide orebodies. Lead isotope data fall into two compositional end-members. The least radiogenic end-member, (206Pb/204Pb = 18.28), is characteristic of the Tazakourt orebody, whereas the more radiogenic end-member (206Pb/204Pb  18.80) is associated with the Sidi M'Barek orebody, giving a mixing trend between the two end-members. Lead isotope compositions at Draa Sfar testify to a significant continental crust source for the base metals, but are different than those of the Hajar and South Iberian Pyrite Belt VMS deposits.The abundance of pyrrhotite versus pyrite in the orebodies is attributed to low fO2 conditions and neither a high temperature nor a low aH2S (below 10− 3) is required. The highly anoxic conditions required to stabilize pyrrhotite over pyrite are consistent with formation of the deposit within a restricted, sediment-starved, anoxic basin characterized by the deposition of carbonaceous, pelagic sediments along the flank of a rhyolitic flow-dome complex that was buried by pelitic sediments. Deposition of sulphides likely occurred at and below the seafloor within anoxic and carbonaceous muds.Draa Sfar and other Moroccan volcanogenic massive sulphide deposits occur in an epicontinental volcanic domain within the outer zone of the Hercynian belt and formed within a sedimentary environment that has a high pelagic component. In spite of the diachronous emplacement between the IPB deposits (late Devonian to Visean) and Moroccan deposits (Dinantian), all were formed around 340 ± 10 Ma following a major phase of the Devonian compression.  相似文献   

10.
The Zgounder ore deposit (Anti-Atlas, Morocco), is hosted in a PII–PIII Proterozoic volcanosedimentary series. Disseminated mineralization is dominated by mercuriferous native silver (2 to 30 wt.% Hg), with few silver sulfosalts (acanthite, pearceite), arsenopyrite and base-metal sulfides. Arsenic grade of arsenopyrite and homogenisation temperatures of fluid inclusions indicate initial conditions of high temperature (above 400 °C). Lead isotope compositions comfort a Late-Proterozoic age and a crustal origin for metals. Similarities are obvious with the neighbouring silver ore deposit of Imiter and lead to consider Zgounder as another example of Neoproterozoic epithermal deposit in the Anti-Atlas of Morocco, a region that appears more and more as a silver metallogenic province. To cite this article: É. Marcoux, A. Wadjinny, C. R. Geoscience 337 (2005).  相似文献   

11.
The Bou Madine ore deposit is located SW of Jbel Ougnat, the easternmost inlier of the Anti-Atlas Pan-African belt in Morocco. The host rocks are high-K calc-alkaline volcanic rocks, that are part of the Neoproterozoic Tamerzaga-Timrachine Formation (TTF, lower PIII). The TTF consists of ignimbrites of rhyolitic to dacitic compositions, andesite flows and hypovolcanic bodies (andesite dykes and rhyolite chonoliths) emplaced along N160°E tension gashes associated with a regional N30°E sinistral fault system. The mineralization is related to a high enthalpy geothermal system, eventually evolving into a low temperature epithermal system. A regional propylitisation (T around 260 °C) overprinted the TTF rocks prior to the emplacement of the mineralization. There were two main hydrothermal stages. During the first stage, massive veins with pyrite, arsenopyrite and minor pyrrhotite and cassiterite were formed. The veins were emplaced along N160°E-trending en echelon joints related to N120°E dextral arrays. A quartz-sericite-pyrite alteration overprinted the propylites around the veins (“bleached haloes”), at temperatures up to 300–310 °C. The second stage of mineralization was coeval with dextral re-activation of the N160°E veins, in relation with a NE-ward shift of the shortening direction. First, polymetallic sulphides (sphalerite, chalcopyrite, stannite, galena) were deposited at temperatures 260 °C. Younger quartz veinlets contain arsenopyrite and minor micrometre-size sulphides and sulpho-salts, hosting the precious metals. This was the low temperature epithermal stage (≈150 °C), in relation with invading meteoric water.  相似文献   

12.
水头山铅锌矿床位于保山地块南端芦子园矿集区,区内以发育矽卡岩型和热液脉型两类铅锌矿化为特点.为查明铅锌多金属成矿作用过程,本文对水头山热液脉型铅锌矿床主成矿阶段的闪锌矿开展了Rb-Sr同位素组成测定,获得闪锌矿的Rb-Sr等时线年龄为135.8±4.2Ma(MSWD=1.70,n=6),结合区内其他矿床的成矿年龄,认为...  相似文献   

13.
The Qaleh-Zari copper deposit, located in South Khorasan in the Central Lut region of Iran, is a polymetallic vein deposit with major amounts of Cu, Au, Ag and minor amounts of Pb, Zn and Bi. Mineralization occurs in a series of NW–SE trending fault planes and breccia zones in Paleogene andesitic to basaltic volcanic rocks. Argillization, sericitization and propylitization characterize alteration halos bordering mineral veins. The main ore minerals are chalcopyrite, pyrite, galena and sphalerite, with quartz, calcite and minor chlorite as the main gangue phases. Microthermometric measurements of fluid inclusions in cogenetic quartz indicate homogenization temperatures between 160 and 300 °C and salinities from 1 to 4 wt% NaCl equiv. Boiling occurred in the mineralising fluids at 160–1000 m below the paleo-water table at pressures of approximately 15−80 bar at various stages in the formation of the ore body. The wide range of pressures and temperatures reflects the multi-stage nature of the mineralization at Qaleh-Zari. The δ18O values in quartz (relative to SMOW) and δ34S values in chalcopyrite and galena (relative to CDT) range from 6.5 to 7.5‰ and 0.0–1.5‰ (mean: 7.0‰), respectively. At 300 °C, calculated fluid δ18O values are close to 0‰. These data suggest a magmatic origin for sulfur and a surficial origin for the mineralizing fluid. Mineralization at Qaleh-Zari is interpreted as epithermal and low-sulfidation in style and was probably related to a deep-seated magmatic system. Ore deposition was the result of boiling, cooling and pressure reduction.  相似文献   

14.
Several important mineral deposits of Sn, Zn, Cu, Pb, and other metals associated with Devonian sediments and Yanshanian (Cretaceous) granitic rocks are known in the Dachang district (Guangxi). Early genetic hypotheses related the origin of the deposits entirely to the Yanshanian granites. Recently, it was suggested that in Devonian times an earlier syngenetic metal concentration may have occurred, later overprinted by the Yanshanian metallogeny. This contribution is aimed at placing constraints on the physicochemical conditions during the Yanshanian ore formation-remobilization by studying the sulfide chemistry (arsenopyrite, sphalerite, stannite) and fluid inclusion data on the two major deposits in the area, i.e., the polymetallic cassiterite deposit of Changpo and the Zn-Cu skarn deposit of Lamo. Sphalerite and arsenopyrite are quite abundant in both deposits; stannite is minor, but fairly widespread at Changpo, and quite rare at Lamo. They are accompanied by pyrite, pyrrhotite, galena, chalcopyrite, cassiterite, fluorite, and a large variety of other sulfides and sulfosalts. The main compositional data for sphalerite and arsenopyrite are summarized as follows:Changpo: arsenopyrite associated with pyrrhotite 31.4–36.1 at% As; Associated with pyrite 31.9–33.1 at% As; sphalerite associated with pyrrhotite 18.3–22.2 mol% FeS; associated with pyrite 10.6–18.6 mol% FeS.Lamo: arsenopyrite associated with pyrrhotite 32.9–35.3 at% As; associated with pyrite 30.3–31.7 at% As; sphalerite associated with pyrrhotite, 17.2–24.4 mol% FeS; associated with pyrite 4.2–19.6 mol% FeS.Partitioning of Fe and Zn between coexisting sphalerite and stannite from Changpo indicates temperatures of 300°–350°C. For Lamo, the following fluid inclusion data are available: fluorite, salinities of 0–9.5 equiv. wt% NaCl, and homogenization temperatures between 160°C and 250°C; quartz, moderate salinities (0–4.6 equiv. wt% NaCl), and homogenization temperatures of 208°–260°C. Combining the mineralogical evidence with the compositional and fluid inclusion data, it is suggested that the evolution of the environment during the Yanshanian event was characterized by the following parameters: pressure was relatively low (on the order of 1–1.5 kb); temperature may have been as high as 500°C during deposition of the As-richest arsenopyrites, but eventually dropped below 200°–250°C in the latest stages; with an increase in sulfur activity and/or the decrease in temperature pyrrhotite was no longer stable in the latest stages of mineralization.  相似文献   

15.
CSA mine exploits a ‘Cobar-type’ Cu–Pb–Zn±Au±Ag deposit within a cleaved and metamorphosed portion of the Cobar Supergroup, central New South Wales. The deposit comprises systems of ‘lenses’ that encompass veins, disseminations and semi-massive to massive Cu–Pb–Zn ores. The systems and contained lenses truncate bedding, are approximately coplanar with regional cleavage and similarly oriented shear zones and plunge parallel to the elongation lineation. Systems have extreme vertical continuity (>1000 m), short strike length (400 m) and narrow width (100 m), exhibit vertical and lateral ore-type variation and have alteration haloes. Models of ore formation include classical hydrothermalism, structurally controlled remobilisation and polymodal concepts; syntectonic emplacement now holds sway.Fluid inclusions were examined from quartz±sulphide veins adjacent to now-extracted ore, from coexisting quartz–sulphide within ore, and from vughs in barren quartz veins. Lack of early primary inclusions precluded direct determination of fluids associated with D2–D3 ore and vein emplacement. Similarly, decrepitation (by near-isobaric heating) of the two oldest secondary populations precluded direct determination of fluid phases immediately following D2–D3 ore and vein emplacement. Post-decrepitation outflow (late D3 to early post-D3) is recorded by monophase CH4 inclusions. Entrained outflow of deeply circulated meteoric fluid modified the CH4 system; modification is recorded by H2O+CH4 and H2O+(trace CH4) secondary populations and by an H2O+(trace CH4) primary population. The contractional tectonics (D2–D3) of ore emplacement was superseded by relaxational tectonics (D4P) that facilitated meteoric water penetration and return flow.Under D2 prograde metamorphism, entrapment temperatures (Tt) and pressures (Pt) for pre-decrepitation secondary inclusions are estimated as Tt300–330 °C and Pt1.5–2 kbar≈Plith (the lithostatic pressure). Decrepitation accompanied peak metamorphism (T350–380 °C) in mid- to late-D3, while in late-D3 to early post-D3, essentially monophase CH4 secondary inclusions were entrapped at Tt350 °C and Pt=1.5–2 kbar≈Plith. Subsequently, abundant CH4 and entrained meteoric water were entrapped as H2O+CH4 secondaries under slowly decreasing temperature (Tt330–350 °C) and constant pressure (Pt1.5–2 kbar). Finally, with increasingly dominant meteoric outflow, H2O+(trace CH4) populations record decreasing temperatures (Tt>300 to <350 down to 275–300 °C) at pressures of Phydrostatic<Pt (1 kbar) <Plith (1.5 kbar).The populations of inclusions provide insight into fluid types, flow regimes and P–T conditions during parts of the deposit's evolution. They indirectly support the role of basin-derived CH4 fluids in ore formation, but provide no insight into a basement-sourced ore-forming fluid. They fully support post-ore involvement of meteoric water. The poorly constrained entrapment history is believed to span 10 Ma from 395 to 385 Ma.  相似文献   

16.
Epigenetic gold mineralization occurs in the Marmato mining district, within the Calima Terrain of the Setentrional Andes, Colombia. Regional rocks associated with this mineralization include: graphite- and chlorite-schists of the Arquia Complex; metamorphosed during the Cretaceous, Miocene sandstones, shales and conglomerates of the Amagá Formation; as well as pyroclastic rocks (clasts of basalt, andesites and mafic lavas) and subvolcanic andesitic/dacitic bodies of the Combia Formation (9 to 6 Ma). The subvolcanic Marmato stock hosts mesothermal and epithermal low-sulfidation Au–Ag ores in the form of distensional veins, stockwork, and quartz veinlets within brecciated zones. Ore minerals are pyrite, sphalerite and galena with subordinate chalcopyrite, arsenopyrite, pyrrhotite, argentite and native gold/electrum.Sericitized plagioclase from a porphyry dacite yielded a K–Ar age of 5.6 ± 0.6 Ma, interpreted as the age of ore deposition. This is in close agreement with the age of reactivation of the Cauca–Romeral Fault System (5.6 ± 0.4 Ma), which bounds the Calima Terrain. A porphyry andesite–dacite (6.7 ± 0.1 Ma), hosting the Au–Ag veins, shows a measured 87Sr/86Sr between 0.70440 and 0.70460, εNd between + 2.2 and + 3.2 and 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of 18.964 to 19.028; 15.561 to 15.570; and 38.640 to 38.745, respectively. The 87Sr/86Sr and εNd values of rocks from the Arquia Group range from 0.70431 to 0.73511 and − 12.91 to + 10.0, respectively, whereas the corresponding Pb isotopic ratios (206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb) range from 18.948 to 19.652; 15.564 to 15.702; and 38.640 to 38.885, respectively. 87Sr/86Sr and εNd values obtained on sulfides from the gold quartz veins, which occur at shallow and intermediate levels, range from 0.70500 to 0.71210 and from − 1.11 to + 2.40. In the deepest veins, εNd values lie between + 1.25 and + 3.28 and the 87Sr/86Sr of calcite and pyrite fall between 0.70444 and 0.70930. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of all mineralization are in the ranges 18.970 to 19.258; 15.605 to 15.726 and 38.813 to 39.208, respectively. Carbonates have an average 87Sr/86Sr ratio of 0.70445, which is within the range of values measured in the host dacite. The Sr isotopic data indicate that carbonic fluids have a restricted hydrothermal circulation within the host igneous body, while the Sr, Pb and Nd isotopic compositions of the sulfides suggest that the fluids not only circulated within the Marmato stock, but also throughout the Arquia Complex, inferring that these rocks offer a potential target for mineral exploration. Based on geological and geochronological evidence, the epizonal Marmato gold ores formed during the Miocene to Pliocene, as a result of cooling of the Marmato stock and reactivation along a crustal-scale fault zone related to thermal processes in an accretionary oceanic–continental plate orogen.  相似文献   

17.
The Huize Zn–Pb–(Ag) district, in the Sichuan–Yunnan–Guizhou Zn–Pb–(Ag) metallogenic region, contains significant high-grade, Zn–Pb–(Ag) deposits. The total metal reserve of Zn and Pb exceeds 5 Mt. The district has the following geological characteristics: (1) high ore grade (Zn + Pb ≥ 25 wt.%); (2) enrichment in Ag and a range of other trace elements (Ge, In, Ga, Cd, and Tl), with galena, sphalerite, and pyrite being the major carriers of Ag, Ge, Cd and Tl; (3) ore distribution controlled by both structural and lithological features; (4) simple and limited wall-rock alteration; (5) mineral zonation within the orebodies; and (6) the presence of evaporite layers in the ore-hosting wall rocks of the Early Carboniferous Baizuo Formation and the underlying basement.Fluid-inclusion and isotope geochemical data indicate that the ore fluid has homogenisation temperatures of 165–220 °C, and salinities of 6.6–12 wt.% NaCl equiv., and that the ore-forming fluids and metals were predominantly derived from the Kunyang Group basement rocks and the evaporite-bearing rocks of the cover strata. Ores were deposited along favourable, specific ore-controlling structures. The new laboratory and field studies indicate that the Huize Zn–Pb–(Ag) district is not a carbonate-replacement deposit containing massive sulphides, but rather the deposits can be designated as deformed, carbonate-hosted, MVT-type deposits. Detailed study of the deposits has provided new clues to the localisation of concealed orebodies in the Huize Zn–Pb–(Ag) district and of the potential for similar carbonate-hosted sulphide deposits elsewhere in NE Yunnan Province, as well as the Sichuan–Yunnan–Guizhou Zn–Pb–(Ag) metallogenic region.  相似文献   

18.
The Changkeng Au and Fuwang Ag deposits represent an economically significant and distinct member of the Au–Ag deposit association in China. The two deposits are immediately adjacent, but the Au and Ag orebodies separated from each other. Ores in the Au deposit, located at the upper stratigraphic section and in the southern parts of the orefield, contain low Ag contents (< 11 ppm); the Ag orebodies, in the lower stratigraphic section, are Au-poor (< 0.2 ppm). Changkeng is hosted in brecciated cherts and jasperoidal quartz and is characterized by disseminated ore minerals. Fuwang, hosted in the Lower Carboniferous Zimenqiao group bioclastic limestone, has vein and veinlet mineralization associated with alteration comprised of quartz, carbonate, sericite, and sulfides. Homogenization temperatures of fluid inclusions from quartz veinlets in the Changkeng and Fuwang deposits are in the range of 210 ± 80 °C and 230 ± 50 °C, respectively. Salinities of fluid inclusions from the two deposits range from 1.6 to 7.3 wt.% and 1.6 to 2.6 wt.% equiv. NaCl, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of the fluid inclusions from the Changkeng deposit range from − 80‰ to − 30‰, − 7.8‰ to − 3.0‰, − 16.6‰ to − 17.0‰ and 0.0100 to 0.0054 Ra, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of fluid inclusions from the Fuwang deposit range from − 59‰ to − 45‰, − 0.9‰ to 4.1‰, − 6.7‰ to − 0.6‰ and 0.5930 to 0.8357 Ra, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of the fluid inclusions suggest the ore fluids of the Changkeng Au-ore come from the meteoric water and the ore fluids of the Fuwang Ag-ore are derived from mixing of magmatic water and meteoric water. The two deposits also show different Pb-isotopic signatures. The Changkeng deposit has Pb isotope ratios (206Pb/204Pb: 18.580 to 19.251, 207Pb/204Pb: 15.672 to 15.801, 208Pb/204Pb: 38.700 to 39.104) similar to those (206Pb/204Pb: 18.578 to 19.433, 207Pb/204Pb: 15.640 to 15.775, 208Pb/204Pb: 38.925 to 39.920) of its host rocks and different from those (206Pb/204Pb: 18.820 to 18.891, 207Pb/204Pb: 15.848 to 15.914, 208Pb/204Pb: 39.579 to 39.786) of the Fuwang deposit. The different signatures indicate different sources of ore-forming material. Rb–Sr isochron age (68 ± 6 Ma) and 40Ar–39Ar age (64.3 ± 0.1 Ma) of the ore-related quartz veins from the Ag deposit indicate that the Fuwang deposit formed during the Cenozoic Himalayan tectonomagmatic event. Crosscutting relationships suggests that Au-ore predates Ag-ore. The adjacent Changkeng and Fuwang deposits could, however, represent a single evolved hydrothermal system. The ore fluids initially deposited Au in the brecciated siliceous rocks, and then mixing with the magmatic water resulted in Ag deposition within fracture zones in the limestone. The deposits are alternatively the product of the superposition of two different geological events. Age evidence for the Fuwang deposit, together with the Xiqiaoshan Tertiary volcanic-hosted Ag deposit in the same area, indicates that the Pacific Coastal Volcanic Belt in the South China Fold Belt has greater potential for Himalayan precious metal mineralization than previous realized.  相似文献   

19.
The Cuiabá Gold Deposit is located in the northern part of the Quadrilátero Ferrífero, Minas Gerais State, Brazil. The region constitutes an Archean granite–greenstone terrane composed of a basement complex (ca. 3.2 Ga), the Rio das Velhas Supergroup greenstone sequence, and related granitoids (3.0–2.7 Ga), which are overlain by the Proterozoic supracrustal sequences of the Minas (< 2.6–2.1  Ga) and Espinhaço (1.7 Ga) supergroups.The stratigraphy of the Cuiabá area is part of the Nova Lima Group, which forms the lower part of the Rio das Velhas Supergroup. The lithological succession of the mine area comprises, from bottom to top, lower mafic metavolcanics intercalated with carbonaceous metasedimentary rocks, the gold-bearing Cuiabá-Banded Iron Formation (BIF), upper mafic metavolcanics and volcanoclastics and metasedimentary rocks. The metamorphism reached the greenschist facies. Tectonic structures of the deposit area are genetically related to deformation phases D1, D2, D3, which took place under crustal compression representing one progressive deformational event (En).The bulk of the economic-grade gold mineralization is related to six main ore shoots, contained within the Cuiabá BIF horizon, which range in thickness between 1 and 6 m. The BIF-hosted gold orebodies (> 4 ppm Au) represent sulfide-rich segments of the Cuiabá BIF, which grade laterally into non-economic mineralized or barren iron formation. Transitions from sulfide-rich to sulfide-poor BIF are indicated by decreasing gold grades from over 60 ppm to values below the fire assay detection limit in sulfide-poor portions. The deposit is “gold-only”, and shows a characteristic association of Au with Ag, As, Sb and low base-metal contents. The gold is fine grained (up to 60 μm), and is generally associated with sulfide layers, occurring as inclusions, in fractures or along grain boundaries of pyrite, the predominant sulfide mineral (> 90 vol.%). Gold is characterized by an average fineness of 0.840 and a large range of fineness (0.759 to 0.941).The country rocks to the mineralized BIF show strong sericite, carbonate and chlorite alteration, typical of greenschist facies metamorphic conditions. Textures observed on microscopic to mine scales indicate that the mineralized Cuiabá BIF is the result of sulfidation involving pervasive replacement of Fe-carbonates (siderite–ankerite) by Fe-sulfides. Gold mineralization at Cuiabá shows various features reported for Archean gold–lode deposits including the: (1) association of gold mineralization with Fe-rich host rocks; (2) strong structural control of the gold orebodies, showing remarkable down-plunge continuity (> 3 km) relative to strike length and width (up to 20 m); (3) epigenetic nature of the mineralization, with sulfidation as the major wall–rock alteration and directly associated with gold deposition; (4) geochemical signature, with mineralization showing consistent metal associations (Au–Ag–As–Sb and low base metal), which is compatible with metamorphic fluids.  相似文献   

20.
We report fluid inclusion data for skarn, formed at the contact between Hercynian granitoids and dolomite of the Proterozoic Bayan Obo Group, in the vicinity of Bayan Obo REE–Nb–Fe deposit, Inner Mongolia, China. Three types of fluid inclusions are identified: two-phase CH4-rich, three-phase liquid–vapour–solid and two-phase aqueous inclusions. Using microthermometry and laser Raman microprobe analysis to calculate isochores for CH4-bearing inclusions, we estimate fluid trapping conditions at T=280 to 344 °C and P<1 to 2.3 kbar. Such conditions are compatible with formation of CH4 inclusions as a result of reaction between graphite in the country rocks (black slate sequence) and fluids derived from magma. The lack of carbonaceous material in the inclusions supports the hypothesis that CH4 was generated during fluid migration rather than by in situ reaction. In contrast to the skarn, and despite the fact that similar graphite-bearing slates are found in the host rocks, no CH4-bearing inclusions have been so far reported from Bayan Obo REE ores. We therefore conclude that the skarn-forming fluids in the contact aureole of the Hercynian granitoids were not involved at any stage in the formation of the Bayan Obo deposit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号