首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the MHD waves in a double magnetic flux tube embedded in a uniform external magnetic field. The tube consists of a dense hot cylindrical cord surrounded by a co-axial shell. The plasma and the magnetic field are taken to be uniform inside the cord and also inside the shell. Two slow and two fast magnetosonic modes can exist in the thin double tube. The first slow mode is trapped by the cord, the other is trapped by the shell. The oscillations of the second mode have opposite phases inside the cord and shell. The speeds of the slow modes propagating along the tube are close to the tube speeds inside the cord and the shell. The behavior of the fast modes depends on the magnitude of Alfvén speed inside the shell. If it is less than the Alfvén speed inside the cord and in the environment, then the fast mode is trapped by the shell and the other may be trapped under the certain conditions. In the opposite case when the Alfvén speed in the shell is greater than those inside the cord and in the environment, then the fast mode is radiated by the tube and the other may also be radiated under certain conditions. The oscillation of the cord and the shell with opposite phases is the distinctive feature of the process. The proposed model allows to explain the basic phenomena connected to the coronal oscillations: i) the damping of oscillations stipulated in the double tube model by the radiative loss, ii) the presence of two different modes of perturbations propagating along the loop with close speeds, iii) the opposite phases of oscillations of modulated radio emission, coming from the near coronal sources having sharply different densities.  相似文献   

2.
The damping of fast kink oscillations of solar coronal loops attributable to the radiation of MHD waves into the surroundings is considered in the thin-tube approximation. The oscillation damping decrement is calculated both by using a new energy method and by solving the dispersion equation for magnetic-tube eigenmodes. The two approaches are in good agreement under appropriate assumptions. The damping is negligible if MHD waves are radiated perpendicular to the magnetic field. The low Q factor of the loop oscillations in active regions found with the TRACE space telescope is associated with the generation of running waves that propagate along magnetic field lines.  相似文献   

3.
We consider a model of a coronal loop in the form of a cord surrounded by a coaxial shell. Two slow magnetosonic waves longitudinally propagate within a thin flux tube on the m=0 cylindrical mode with velocities close to the tube velocities in the cord and the shell. One wave propagates inside the cord, while the other propagates inside the shell. A peculiar feature of the second wave is that the plasma in the cord and the shell oscillates with opposite phases. There are two fast magnetosonic waves on each of the cylindrical modes with m>0. If the plasma density in the shell is lower than that in the surrounding corona, then one of the waves is radiated into the corona, which causes the loop oscillations to be damped, while the other wave is trapped by the cord, but can also be radiated out under certain conditions. If the plasma density in the shell is higher than that in the cord, then one of the waves is trapped by the shell, while the other wave can also be trapped by the shell under certain conditions. In the wave trapped by the shell and the wave radiated by the tube, the plasma in the cord and the shell oscillates with opposite phases.  相似文献   

4.
We present results for the generation process of a shell current loop by using a three-dimensional ideal MHD code. It is shown that a shell current loop with a diffuse closure current can be generated due to the twisting motions of the loop footpoints. It is also shown that during the generation of a shell current loop, plasma density enhancement propagates along a shell current loop. It is suggested that the generation process of a shell current loop may be related to the movement of soft X-ray enhancement from the footpoints along a loop before onset of a solar flare.  相似文献   

5.
In this paper the observed 1.4–1.6 s quasi-periodic oscillations in the spike radiation of the microwave outburst of 1981 May 16 are analysed in teras of MHD waves. We point out that the fast magnetoacoustic waves (“sausage” mode) propagating inside and outside a loop can modulate the magnetic field and the pitch angle distribution of the electron beams in the source region. The growth rate of electron-cyclotron-maser instability is then affected to give rise to the quasi-periodic oscillations. Quantitative estimates of relevant physical parameters are given.  相似文献   

6.
我们在1981年5月16日所观测到的典型的微波大爆发的spike辐射中,发现存有~1.4—1.6秒的准周期振荡特征。本文依据MHD波理论,对观测进行了分析讨论,本文认为在日冕圈内外传播着的快磁声波(“腊肠”模)调制了源区的磁场以及电子束的投射角分布,从而影响了ECM不稳定性的增长率,因此而产生了spike辐射中的准周期振荡。另外,本文还对一些有关的物理参数作了定量的估算。  相似文献   

7.
The dispersion properties of the sausage eigenmodes of oscillations in a thin magnetic flux tube are numerically analyzed in terms of ideal magnetohydrodynamics (MHD). The period of the modes accompanied by the emission of MHD waves into the surrounding medium, which leads to acoustic damping of oscillations, is determined by the radius of the tube, not by its length. The dissipation of the sausage oscillations in comparatively high (?0.7R ) and tenuous (?6 × 108 cm?3) coronal loops is considered. Their Q factor has bound found to be determined by the acoustic damping mechanism. The ratio of the plasma densities outside and inside the loop and the characteristic height of the emission source have been estimated by assuming the quasi-periodic pulsations of meter-wavelength radio emission to be related to the sausage oscillations.  相似文献   

8.
A mechanism of damped oscillations of a coronal loop is investigated. The loop is treated as a thin toroidal flux rope with two stationary photospheric footpoints, carrying both toroidal and poloidal currents. The forces and the flux-rope dynamics are described within the framework of ideal magnetohydrodynamics (MHD). The main features of the theory are the following: i) Oscillatory motions are determined by the Lorentz force that acts on curved current-carrying plasma structures and ii) damping is caused by drag that provides the momentum coupling between the flux rope and the ambient coronal plasma. The oscillation is restricted to the vertical plane of the flux rope. The initial equilibrium flux rope is set into oscillation by a pulse of upflow of the ambient plasma. The theory is applied to two events of oscillating loops observed by the Transition Region and Coronal Explorer (TRACE). It is shown that the Lorentz force and drag with a reasonable value of the coupling coefficient (c d ) and without anomalous dissipation are able to accurately account for the observed damped oscillations. The analysis shows that the variations in the observed intensity can be explained by the minor radial expansion and contraction. For the two events, the values of the drag coefficient consistent with the observed damping times are in the range c d ≈2 – 5, with specific values being dependent on parameters such as the loop density, ambient magnetic field, and the loop geometry. This range is consistent with a previous MHD simulation study and with values used to reproduce the observed trajectories of coronal mass ejections (CMEs).  相似文献   

9.
Using microwave observations made with the Nobeyama radioheliograph (=1.76 cm), we have studied temporal variations of sunspot-associated sources in the circularly polarized component. For all three cases of well-developed and rather stable sunspots we found nearly harmonic oscillations with periods in a range of 120–220 s. In one case of an unstable and quickly devolving active region, the fluctuations appear to be irregular with no dominant period. Sunspot-associated solar radio sources are known to be generated by cyclotron radiation of thermal electrons in magnetic tubes of sunspots at the level of the lower solar corona or chromosphere–corona transition region (CCTR). At the wavelength of 1.76 cm, the polarized emission arises in a layer where the magnetic field is B=2000 G (assuming the emission generated at the third harmonic of electron gyrofrequency). We suggest that the observed effect is a manifestation of the well-known 3-min oscillations observed in the chromosphere and photosphere above sunspots. The observed effects are believed to be a result of resonance oscillation of MHD waves inside a magnetic tube. Radio observations of this phenomenon open a new tool for studying regions of reflection of MHD waves near CCTR level. The method is very sensitive both to the height of the CCTR and magnetic fields above sunspots. Thus, detection of oscillations of the height of the transition region even with an amplitude of a few km are possible. The use of a spectrum of one of the observed sources obtained with the radio telescope RATAN-600 allows us to conclude that oscillations in magnetic field strength of about 4 G could be responsible for the effect and are reliably registered. The appearance of the famous 5-min oscillations in the solar atmosphere was also registered in some spectra of radio oscillations.  相似文献   

10.
The radial oscillations of coaxial magnetic flux tubes with an azimuthal field in the shell modeling current-carrying coronal loops are studied in the cool plasma approximation. Since the concept of current-carrying coronal loops provides a theoretical basis for studying simple loop flares, finding their parameters by means of coronal seismology is a topical problem of modern solar physics. The dispersion equation for radial oscillations is derived and the dispersion curves are constructed. Oscillations with arbitrarily long periods are shown to exist at the fundamental radial mode.  相似文献   

11.
Roberts  B. 《Solar physics》2000,193(1-2):139-152
It has long been suggested on theoretical grounds that MHD waves must occur in the solar corona, and have important implications for coronal physics. An unequivocal identification of such waves has however proved elusive, though a number of events were consistent with an interpretation in terms of MHD waves. Recent detailed observations of waves in events observed by SOHO and TRACE removes that uncertainty, and raises the importance of MHD waves in the corona to a higher level. Here we review theoretical aspects of how MHD waves and oscillations may occur in a coronal medium. Detailed observations of waves and oscillations in coronal loops, plumes and prominences make feasible the development of coronal seismology, whereby parameters of the coronal plasma (notably the Alfvén speed and through this the magnetic field strength) may be determined from properties of the oscillations. MHD fast waves are refracted by regions of low Alfvén speed and slow waves are closely field-guided, making regions of dense coronal plasma (such as coronal loops and plumes) natural wave guides for MHD waves. There are analogies with sound waves in ocean layers and with elastic waves in the Earth's crust. Recent observations also indicate that coronal oscillations are damped. We consider the various ways this may be brought about, and its implications for coronal heating.  相似文献   

12.
In this paper, the slow MHD mode oscillations of the coronal plasma are studied. The aim is to identify the effect of structuring (such as magnetic field, temperature, density, and pressure) on the frequencies of oscillations. We modelled the coronal medium as a low-β plasma with longitudinally density and pressure stratifications and a weakly inhomogeneous magnetic field varied slowly with height and radial directions. The linearized ideal MHD equations reduced to a single Klein–Gordon differential equation for square of oscillatory frequencies. The eigenfunctions and analytical dispersion relations are derived. The dispersion relations were solved numerically. In the case of uniform magnetic field, the previous studies verified. Our numerical results show that, the frequencies and their ratios are very sensitive functions of pressure scale height, and slightly varying functions of inhomogeneity parameter of magnetic field. By changing the magnetic field strength between the apex and footpoints of the loop about 50%, the frequencies ratio are changed about 5%. We concluded that, the pressure scale height and temperature gradient are first order effects and inhomogeneity of magnetic field is a second order effect on the slow mode oscillations.  相似文献   

13.
We discovered quasi-periodic oscillation characteristics of 1.4–1.6 s in the spike radiation of the typical microwave outburst observed on May 16, 1981. We analysed the observations in terms of MHD waves (sausage mode) propagating inside and outside a loop. The waves can modulate the magnetic field and the pitch angle distribution of the electron beams in the source region. These affect the growth rates of the ECM instability and so quasi-periodic oscillations in the spike radiation are generated. In addition, we estimated quantitively some relevant physical parameters.  相似文献   

14.
We investigate the effect of a variable, i.e. time-dependent, background on the standing acoustic (i.e. longitudinal) modes generated in a hot coronal loop. A theoretical model of 1D geometry describing the coronal loop is applied. The background temperature is allowed to change as a function of time and undergoes an exponential decay with characteristic cooling times typical for coronal loops. The magnetic field is assumed to be uniform. Thermal conduction is assumed to be the dominant mechanism for damping hot coronal oscillations in the presence of a physically unspecified thermodynamic source that maintains the initial equilibrium. The influence of the rapidly cooling background plasma on the behaviour of standing acoustic (longitudinal) waves is investigated analytically. The temporally evolving dispersion relation and wave amplitude are derived by using the Wenzel–Kramers–Brillouin theory. An analytic solution for the time-dependent amplitude that describes the influence of thermal conduction on the standing longitudinal (acoustic) wave is obtained by exploiting the properties of Sturm–Liouville problems. Next, numerical evaluations further illustrate the behaviour of the standing acoustic waves in a system with a variable, time-dependent background. The results are applied to a number of detected loop oscillations. We find a remarkable agreement between the theoretical predictions and the observations. Despite the emergence of the cooling background plasma in the medium, thermal conduction is found to cause a strong damping for the slow standing magneto–acoustic waves in hot coronal loops in general. In addition to this, the increase in the value of thermal conductivity leads to a strong decay in the amplitude of the longitudinal standing slow MHD waves.  相似文献   

15.
In the present work we aim to study particle acceleration in twisted coronal loops. For this purpose, an MHD model of magnetic reconnection in a linearly unstable twisted magnetic fluxtube is considered. Further, the electric and magnetic fields obtained in the MHD simulations are used to calculate proton and electron trajectories in the guiding-centre approximation. It is shown that particle acceleration in such a model is distributed rather uniformly along the coronal loop and the high-energy population remains generally neutral. It also follows from the model that the horizontal cross-section of the volume occupied by high-energy particles near the loop footpoints increases with time, which can be used as an observational proxy.  相似文献   

16.
It is well known that the oscillating MHD waves drive periodic variations in the magnetic field. But how the MHD waves can be triggered in the flaring loops is not yet well known. It seems to us that this problem should be connected with the physical processes occurring in the flare loop during a solar flare. A peculiar solar flare event at 04:00–04:51 UT on May 23, 1990 was observed simultaneously with time resolutions 1 s and 10 ms by Nanjing University Observatory and Beijing Normal University Observatory, which are about 1000 km apart, at 3.2 cm and 2 cm wavelengths, respectively. Two kinds of pulsations with quasi-periods 1.5 s and 40 s were found in radio bursts at the two short centimeter waves; however, the shorter quasi-periodic pulsations were superimposed upon the longer ones. From the data analysis of the above-mentioned quasi-periodic pulsations and associated phenomena in radio and soft X-ray emissions during this flare event published in Solar Geophysical Data (SGD), the authors suggest that the sudden increase in plasma pressure inside (or underlying) the flare kernel due to the upward moving chromospheric evaporated gas, which is caused by the explosive collision heating of strong non-thermal electrons injected downwards from the microwave burst source, plays the important role of triggering agents for MHD oscillations (fast magneto-acoustic mode and Alfvén mode) of the flare loop. These physical processes occurring in the flare loop during the impulsive phase of the solar flare may be used to account for the origin and observational characteristics of quasi-periodic pulsations in solar radio bursts at the two short centimeter wavelengths during the flare event of 1990 May 23. In addition, the average physical parameters N, T, B inside or underlying the flare kernel can be also evaluated.  相似文献   

17.
We investigate the propagation of MHD waves in a magnetised plasma in a weakly stratified atmosphere, representative of hot coronal loops. In most earlier studies, a time-independent equilibrium was considered. Here we abandon this restriction and allow the equilibrium to develop as a function of time. In particular, the background plasma is assumed to be cooling due to thermal conduction. The cooling is assumed to occur on a time scale greater than the characteristic travel times of the perturbations. We investigate the influence of cooling of the background plasma on the properties of magneto–acoustic waves. The MHD equations are reduced to a 1D system modelling magneto–acoustic modes propagating along a dynamically cooling coronal loop. A time-dependent dispersion relation that describes the propagation of the magneto–acoustic waves is derived using the WKB theory. An analytic solution for the time-dependent amplitude of waves is obtained, and the method of characteristics is used to find an approximate analytical solution. Numerical calculations of the analytically derived solutions are obtained to give further insight into the behaviour of the MHD waves in a system with a variable, time-dependent background. The results show that there is a strong damping of MHD waves and the damping also appears to be independent of the position along the loop. Studies of MHD wave behaviour in a time-dependent backgrounds seem to be a fundamental and very important next step in the development of MHD wave theory that is applicable to a wide range of situations in solar physics.  相似文献   

18.
The thermomechanical oscillations of a radiating spherical shell are studied. With a reasonable choice of parameters this simple model reproduces the behaviour of X-ray bursters and recurrent novae. Different hypotheses on the radiation pressure are introduced and the problem is studied at the classical and post-newtonian levels.  相似文献   

19.
The goal of this paper is a detailed statistical analysis of the low-frequency Ca II line intensity oscillations containing information about the dynamics of the lower and middle chromosphere. A pixel-by-pixel analysis of the observed parameters has been performed. The following results have been obtained. (1) The low-frequency chromospheric oscillations (periods >400 s) are seen much more frequently in networks than in chromospheric network cells. (2) The relative fraction of the low-frequency chromospheric intensity oscillations increases with height. (3) The occurrence distribution of intensity oscillations as a function of the frequency is subdivided at least into two types. (4) In contrast to the low-frequency photospheric oscillations, the phase differences between the Ca II K and 849.8 nm line intensity oscillations do not give grounds to identify the low-frequency chromospheric oscillations with internal gravity waves. (5) The spectral composition of the oscillations in the network chromosphere resembles that expected in magnetic flux tubes in the nonlinear regime of conversion of transverse MHD waves at lower levels of the atmosphere into longitudinal MHD waves in its upper layer.  相似文献   

20.
P. Xu  T. G. Forbes 《Solar physics》1992,139(2):315-342
We investigate the structure of slow-mode MHD shocks in a plasma where both radiation and thermal conduction are important. In such a plasma a slow shock dissociates into an extended foreshock, an isothermal subshock, and a downstream radiative cooling region. Our analysis, which is both numerical and analytical, focuses on the nearly switch-off shocks which are generated by magnetic reconnection in a strong magnetic field. These shocks convert magnetic energy into kinetic energy and heat, and we find that for typical flare conditions about f of the conversion occurs in the subshock while the remaining 1/3 occurs in the foreshock. We also find that no stable, steady-state solutions exist for radiative slow shocks unless the temperature in the radiative region downstream of the subshock falls below 105 K. These results suggest that about 2/3 of the magnetic energy released in flare loops is released at the top of the loop, while the remaining 1/3 is released in the legs of the loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号