首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Planetary and Space Science》1999,47(3-4):327-330
The asteroid 85 Io has been observed using CCD and photoelectric photometry on 18 nights during its 1995–96 and 1997 apparitions. We present the observed lightcurves, determined colour indices and modelling of the asteroid spin vector and shape. The colour indices (U-B = 0.35±0.02, B-V = 0.66±0.02, V-R = 0.34±0.02, R-I = 0.36±0.02) are as expected for a C-type asteroid. The allowed spin vector solutions have the pole co-ordinates λ0 = 285±4°, β0 = −52±9° or λ0 = 108±10°, β0 = −46±10° and λ0 = 290±10°, β0 = −16±10° with a retrograde sense of rotation and a sidereal period Psid = 0d.286463±0d.000001. During the 1995–96 apparition the International Occultation Time Association (IOTA) observed an occultation event by 85 Io. The observations and modelling presented here were analysed together with the occultation data to develop improved constraints on the size of the asteroid. The derived value of 164 km is about 5% larger than the IRAS diameter. © 1999 Elsevier Science Ltd. All rights reserved.  相似文献   

2.
We used observations at 4 oppositions to calculate the rotation of the asteroid (16) Psyche. Our results are 1) the pole is λ 225°, β = +5° (1950.0), 2) the rotation is direct, and 3) the sidereal period is 4h 11m 45s.42 ± 0s.01.At the three oppositions of 1955, 1965 and 1980, the relative positions of the Sun, the Earth and the asteroids were almost the same, and the observed light curves were also nearly the same. Therefore, this asteroid may be said to have shown no precession over the 20 years observed.  相似文献   

3.
The asteroid 133 Cyrene was observed photometrically on 17 nights during oppositions in 1979 and 1980. The synodic period of rotation was found to be 12.h708 ± 0.h001 with an amplitude of ~0.m30 during both oppositions. At large phase angles, the phase relation is quite ordinary (βv ≈ 0.025 mag/degree); however, the low phase angle observations reveal a dramatic opposition brightening, ~0.2 mag/degree near zero phase angle. The absolute magnitude, V(1,0), extrapolated with the above linear phase coefficient, is 8.40. The following color indicates were also measured: B- V = 0.90, U-B = 0.51.  相似文献   

4.
Analytic expressions for the semimajor and semiminor axes and an orientation angle of the ellipse projected by a triaxial ellipsoid (an asteroid) and of the ellipse segment cast by a terminator across the ellipsoid as functions of the dimensions and pole of the body and the asterocenteric position of the Earth and Sun are derived. Applying these formulae to observations of the Earth-approaching asteroid 433 Eros obtained with the speckle interferometry system of Steward Observatory on December 17–18, 1981, and January 17–18, 1982, the following dimensions are derived: (40.5 ± 3.1 km) × (14.5 ± 2.3 km) × (14.1 ± 2.4 km) Eros' north pole is found to lie within 14° of RA = 0h16m Dec. = +43° (ecliptic longitude 23°, latitude +37°). Other than knowing the rotation period of Eros, these results are completely independent of any other data, and in the main confirm the results obtained in the 1974–1975 apparition by other methods. These dimensions, together with a lightcurve from December 18, 1981, lead to a geometric albedo of 0.156 ± 0.010. A series of two-dimensional power spectra and autocorrelation functions of the resolved asteroid clearly show it spinning in space.  相似文献   

5.
UBV observations of asteroid 433 Eros were conducted on 17 nights during the winter of 1974/75. The peak-to-peak amplitude of the lightcurve varied from about 0.3 mag to nearly 1.4mmag. The absolute V mag at maximum light, extrapolated to zero phase, is 10.85. Phase coefficients of 0.0233 mag/degree, 0.0009 mag/degree and 0.0004 mag/degree were derived for V, B-V, and U-B, respectively. The zero-phase color of Eros (B?V = 0.88, U?B = 0.50) is representative of an S (silicaceous) compositional type asteroid. The color does not vary with rotation. The photometric behavior of Eros can be modeled by a cylinder with rounded ends having an axial ratio of about 2.3:1. The asteroid is rotating about a short axis with the north pole at λ0 = 15° and β0 = 9°.  相似文献   

6.
The results of photometric astrometry, a method of determining the orientation of a rotation axis, as applied to asteroid 44 Nysa are presented. The pole orientation of Nysa was found to be λ0 = 100°, β0 = +60° with an uncertainty of 10°. The sidereal period is 0d.26755902 ± 0.00000006, and the rotation prograde. Refinements to, and limitations of, the application of the method of photometric astrometry are discussed. In light of the results presented herein, we believe that all photometric astrometry pole determinations of the past should be redone.  相似文献   

7.
《Icarus》1987,69(2):354-369
Photoelectric lightcurves of 532 Herculina in 1984 show two maxima and two minima with a synodic rotation period of 0.39185 ± 0.00002 day (1σ). During some other oppositions the Herculina lightcurve has only one maximum and one minimum over that same rotation period. The absolute magnitude in V is 6.13 ± 0.02 mag, the phase coefficient in V is 0.037 ± 0.002, and the mean colors are BV = +0.86 ± 0.04 and UB = +0.43 ± 0.02. We applied photometric astrometry and the results indicate a sideral period of 0.3918711 ± 0.0000001 day with retrograde rotation for a north pole at 276° long and +1° lat. The uncertainty of the pole is ±1°. A model of Herculina is presented that generates lightcurves consistent with both the observed amplitudes and the timings of extrema over precisely 28,630 sideral rotations during 30 years. The model is a sphere with two dark regions that are each about 0.13 times the brightness of the surrounding surface. The regions are at 0° asterocentric longitude, +15° lat, with a radius of 30°, and 170° long, −38° lat, with a radius of 26°. With the photometric astrometry pole and the model with two dark regions, predicted lightcurves are shown for the next four oppositions.  相似文献   

8.
Richard P. Binzel 《Icarus》1984,59(3):456-461
Photoelectric lightcurves of asteroid 2 Pallas obtained in March 1982 and May 1983 display amplitudes of 0.04 and 0.10 magnitude respectively. The latter lightcurve shows that Pallas was at a V(1,0) magnitude of 4.51 ± 0.02 when it occulted 1 Vulpeculae on May 29 1983. A least-squares best fit to an amplitude-aspect relation for all available lightcurve observations of Pallas between 1951 and 1983 yields two solutions for its pole position: λ = 200, β = 40 and λ = 220, β = 15, where the uncertainty regions corresponds to an overall estimate of ± degrees. Use of phase angle bisector coordinates (A. W. Harris, J. W. Young, F. Scaltriti, and V. Zappalà (1984) Icarus57, 251–258) gave lower residuals than geocentric coordinates. The (220,15) pole position is favored since it is in very good agreement with an independent pole solution obtained by photometric astrometry (J. V. Lambert 1983 personal communication). This pole position implies that the latitude of the sub-Earth point at the time of the occultation was 22 degrees.  相似文献   

9.
《Icarus》1986,67(2):251-263
511 Davida was observed with the technique of speckle interferometry at Steward Observatory's 2.3-m telescope on May 3, 1982. Assuming Davida to be a featureless triaxial ellipsoid, based on five 7-min observations its triaxial ellipsoid dimensions and standard deviations were found to be (465 ± 90) × (358 ± 58) × (258 ± 356) km. This shape is close to an equilibrium figure (a gravitationally shaped “rubble pile?”) suggesting a density of 1.4 ± 0.4 g/cm3. Simultaneously with the triaxial solution for the size and shape of Davida, we found its north rotational pole to lie within 29° of RA = 19h08m, Dec = +15° (λ = 291°, β = +37°). If Davida is assumed to be a prolate biaxial ellipsoid, then its dimensions were found to be (512 ± 100) × (334 ± 39) km, with a north pole within 16° of RA = 10h52m, Dec = +16° (λ = 322°, β = +32°). We derive and apply to Davida a new simultaneous amplitude-magnitude (SAM)-aspect method, finding, from photometric data only, axial ratios of a/b = 1.25 ± .02, b/c = 1.14 ± .03, and a rotational pole within 4° of λ = 307°, β = +32°. We also derive a (weighted) linearized form of the amplitude-aspect relation to obtain axial ratios and a pole. However, amplitudes must be known to better than .01 if the b/c or a/c ratios are desired to better than 10%. Combining the speckle and SAM results, we find for the Gehrels and Tedesco phase function a geometric albedo of .033 ± .009 and for the Lumme and Bowell function .041 ± .011, for a unified model of 437 × 350 × 307 km. Differences between the photometric and speckle axial ratios and poles are probably due to the effects of albedo structure over the asteroid; details on individual lightcurves support this conclusion.  相似文献   

10.
Speckle interferometry of 532 Herculina performed on January 17 and 18, 1982, yields triaxial ellipsoid dimensions of (263 ± 14) × (218 ± 12) × (215 ± 12) km, and a north pole for the asteroid within 7° of RA = 7b47m and DEC = ?39° (ecliptic coordinates γ = 132° β = ?59°). In addition, a “spot” some 75% brighter than the rest of the asteroid is inferred from both speckle observations and Herculina's lightcurve history. This bright complex, centered at asterocentric latitude ?35°, longitude 145–165°, extends over a diameter of 55° (115 km) of the asteroid's surface. No evidence for a satellite is found from the speckle observations, which leads to an upper limit of 50 km for the diameter of any satellite with an albedo the same as or higher than Herculina.  相似文献   

11.
By means of new photoelectric observations made in 1974 an attempt to determine the poles of asteroids 9 and 44 was made. Following a method based upon the magnitude-aspect and amplitude-aspect relations, the coordinates of the poles for 9 and 44 were found to be, respectively, λ0 = 191° ± 5°, β0 = 56° ± 6° and λ0 = 100° ± 10°, β0 = 50° ± 10°. The previously published pole for asteroid 22, λ0 = 215° ± 10°, β0 = 45° ± 15°, was confirmed. From its phase relation we determined the phase coefficient of 44 Nysa, a very high albedo object (pv = 0.377). The very low phase coefficient obtained (βv = 0.018 mag/deg) agrees very well with an inverse relation between geometrical albedo and phase coefficient. The results are summarized in a table.  相似文献   

12.
We present 26 lightcurves of 16 Psyche from 1975 and 1976. The synodic period during this apparition was 4h.1958. Combining photometric data from this opposition with those from previous apparitions allowed us to derive a mean phase coefficient in V of 0.026 ± 0.002 mag/deg and to establish that Psyche's absolute V0 magnitude and rotational amplitude vary with aspect; at 90° aspect, V0(1, 0) = 6.27 ± 0.05 and the lightcurve amplitude is 0.30 mag, while at 0° or 180° aspect, V0(1, 0) = 6.02 ± 0.02 and the amplitude is ?0.03 mag. This behavior is accounted for if, to first order, Psyche's shape is that of a triaxial ellipsoid with axial ratios near 5:4:3. Colors at zero phase are U-B = 0.26 ± 0.01 and B-V = 0.71 ± 0.01. Color phase coefficients are <0.001 mag/deg in U-B and 0.0010 ± 0.0004 mag/deg in B-V.  相似文献   

13.
We report infrared thermal emission measurements of 1862 Apollo, which is the type example of an Earth-crossing asteroid. We derive a geometric albedo of 0.21 ± 0.02 which is within the albedo range of the S class of asteroids. The effective diameter was observed to vary with rotation from 1.2 ± 0.1 to 1.5 ± 0.1 km.  相似文献   

14.
《Icarus》1986,65(1):122-128
The Amplitude-Magnitude (AM) method is used for the pole determination of the asteroid 511 Davida, using observations from six oppositions. The possible North poles are found to be λ1 = 92° ± 7°; β1 = 33° ± 6°, and λ2 = 303° ± 4°; β2 = 34° ± 5°, when scattering effect is not taken into account. When scattering is accounted for, solutions not significantly different from (λ1, β1) and (λ2, β2) are obtained. The moderately eccentric and inclined orbit of 511 Davida does not allow us to distinguish between the two pole solutions. A comparison with other methods is necessary in order to make a definitive choice.  相似文献   

15.
A small Apollo object was found while photographing the split comet DuToit 2-Hartley on February 27/28, 1982. Designated 1982 DB, this Earth-crossing asteroid passed the Earth at a distance of 4.08 million km about 1 month prior to its discovery. Asteroid 1982 DB has been determined to be the most accessible near-Earth minor planet known. It provides many excellent opportunities for rendezvous and sample return missions, and a rare dual rendezvous mission with 1980 AA as the second target. For a mission to be realized, opportunities to observe 1982 DB during future apparitions must be taken.  相似文献   

16.
J.L. Dunlap 《Icarus》1976,28(1):69-78
Ten lightcurves and UBV photometry of 433 Eros were obtained between August 1972 and May 1975. The absolute magnitude of the lightcurve maximum is 10.75 and the phase coefficient is 0.025 mag/deg. There may be a small difference in B-V color between the northern and southern hemispheres. The pole of the axis of rotation is directed toward λ0 = 16°, β0 = 12°, ecliptic longitude and latitude, respectively, and the rotation is direct with a sidereal period of 0.d219599 or 5h16m13s4 ± 0.s2. The dimensions derived from the polarimetric albedo and the lightcurve amplitudes are 12km × 12km × 31km for a smooth cylinder with hemispherical ends.  相似文献   

17.
A.W. Harris  J.W. Young 《Icarus》1983,54(1):59-109
Results of photoelectric lightcurve observations made during 1979 are reported. Of a total of 53 asteroids observed, reliable rotation periods are reported for 22 asteroids for which no previous values are known, 7 periods are reported which are revisions of previously reported values, and for 12 other asteroids periods are suggested which are admittedly of low reliability and those objects should be reobserved. In addition, phase relations are presented for many of the asteroids, fitted to the theoretical phase function of Lumme and Bowell (Astron. J., 86, 1705, 1981). Adopting their formalism, mean absolute magnitudes at zero phase angle, V(0°), for 52 asteroids, and values of the multiple scattering parameter, Q, for 22 asteroids are reported. For comparison purposes, the absolute magnitude, V(1,0) and the linear phase coefficient, βv, in the traditional system are computed. In the appendixes (1) the methods of observation and data reduction are discussed, which are recommended to other lightcurve observers in the hope of standardizing reporting practices as much as possible; and (2) a cumulative index of all asteroid rotation data of which the authors are aware is presented.  相似文献   

18.
Nineteen new lightcurves of 16 Psyche are presented along with a pole orientation derived using two independent methods, namely, photometric astrometry (PA) and magnitude-amplitude-shape-aspect (MASA). The pole orientations found using these two methods agree to within 4°. The results from applying photometric astrometry were prograde rotation, a sidereal period of 0ddot1748143 ± 0ddot0000003, and a pole at longitude 223° and latitude +37°, with an uncertainty of 10°; and, from applying magnitude-amplitude-shape-aspect a pole at 220 ± 1°, +40 ± 4°, and a modeled triaxial ellipsoid shape (a > b > c) with a/b = 1.33 ± 0.02 and b/c = 1.33 ± 0.07. The discrepancy between the high pole latitude found here and the low latitudes reported by others is discussed.  相似文献   

19.
《Icarus》1986,68(1):1-39
Pole determinations for 20 large asteroids are presented. This is the first determination of the sense of rotation for 11 of the objects, and a sense of rotation opposite to previous results is obtained for two of the remaining nine asteroids. The spin axes are fairly isotropically distributed, with a statistically uncertain preference for prograde rotation. The mean of the component of the spin angular velocity vectors toward the north ecliptic pole is 〈ωz〉 = (0.8 ± 0.5) rev/day. This suggests that for large asteroids an original predominance of prograde rotators has not completely been randomized by collisions (the median diameter in the present sample is approximately 200 km). Two fundamentally different pole determination methods were combined in order to get as reliable results as possible. The first is an Amplitude-Magnitude method based on triaxial ellipsoidal models. The celestial sphere is scanned with trial poles and the one is chosen for which the best fit is obtained with semiempirical amplitude-aspect-phase and magnitude-aspect-phase relationships. Triaxial approximations to the true asteroidal shapes are also obtained with this method. The second method uses the variation of the observed synodic period of rotation to derive the axis and sense of rotation. A well-defined “standard feature” in the lightcurves is selected and is assumed to remain at a fixed rotational phase. An efficient algorithm for finding the correct number of rotational cycles between observations during different apparitions is used. This makes it possible to identify extrema observed during different apparitions with each other (it is not safe to assume that, e.g., the primary maximum at one opposition remains primary at other aspect angles). Discrimination between ambiguous rotation periods can also be made with this method. 4 Vesta is shown to have one maximum and one minimum per rotational cycle. The secular variations of the period of rotation for 7 Iris and 15 Eunomia are less than 3 × 10−4 and 2 × 10−4 sec/year, respectively.  相似文献   

20.
Ronald C. Taylor 《Icarus》1985,61(3):490-496
Refinements to the pole-determination method photometric astrometry (PA) were completed in 1983 (R. C. Taylor and E. F. Tedesco, 1983, Icarus54, 13–22). A goal is to redo the pole analysis for every asteroid whose pole had been determined from earlier versions of PA: Previous PA poles are reviewed in this paper. Asteroid 433 Eros is in that collection and has redone. The result are prograde rotation; a sidereal period of 0.219588 ± 0.000005 day; and a north pole at 22° longitude, +9° latitude. The uncertainty of the pole is 10°. The pole position of Eros determined by C.D. Vesely (1971, In Physical Studies of Minor Planets (T. Gehrels, Ed.), pp. 133–140, NASA SP-267) and Dunlap (1976, Icarus28, 69–78), using earlier versions of photometric astrometry, were within 21 and 7°, respectively, of the present result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号