首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
1 INTRODUCTIONThe maing-length theory (MLT) is the most commonly used approach to calculate convective energy transport in stars and other astrophysical situations. Based on the original idea ofPrandtl (1952) that turbulent parcels trallsfer heat in a similar way as molecules of gas do inthermal conduction, the MLT assumes that convection cells, drived by buoyancy, move thlougha ~ng length 1 and release the heat they carry when they merge with their environment. Themost widely adopted f…  相似文献   

2.
A.G.W. Cameron 《Icarus》1973,18(3):407-450
Particle accumulation processes are discussed for a variety of physical environments, ranging from the collapse phase of an interstellar cloud to the different parts of the models of the primitive solar nebula constructed by Cameron and Pine. Because of turbulence in the collapsing interstellar gas, it is concluded that interstellar grains accumulate into bodies with radii of a few tens of centimeters before the outer parts of the solar nebula are formed. These bodies can descend quite rapidly through the gas toward midplane of the nebula, and accumulation to planetary size can occur in a few thousand years. Substantial modifications of these processes take place in the outer convection zone of the solar nebula, but again it is concluded that bodies in that zone can grow to planetary size in a few thousand years.From the discussion of the interstellar collapse phase it is concluded that the angular momentum of the primitive solar nebula was predominantly of random turbulent origin, and that it is plausible that the primitive solar nebula should have possessed satellite nebulae in highly elliptical orbits. It is proposed that the comets were formed in these satellite nebulae.A number of other detailed conclusions are drawn from the analysis. It is shown to be plausible that an iron-rich planet should be formed in the inner part of the outer nebular convection zone. Discussions are given of the processes of planetary gas accretion, the formation of satellites, the T Tauri solar wind, and the dissipation of excess condensed material after the nebular gases have been removed by the T Tauri solar wind. It is shown that the present radial distances of the planets (but not Bode's Law) should be predicted reasonably well by a solar nebula model intermediate between the uniform and linear cases of Cameron and Pine.  相似文献   

3.
We suggest from synoptic charts of radial magnetic field and intensities of spectral lines (Fe?i, He?ii, and Fe?ix/x) over Carrington rotations 1942??C?2050 that deep convective layers control the pattern of large-scale solar activity. A new result is a Kolmogorov-type energy spectrum of the longitudinal variations of solar activity. This spectrum for nonphotospheric scales of convection (harmonic number m<100) is a new ??fingerprint?? of turbulence in the deep layers of the solar convection zone (CZ). The manifestation of one source of convective turbulence in the deep CZ is revealed as the excess in the power spectrum over the Kolmogorov spectrum. This source may be identified with giant convection cells at the CZ bottom. The convective cascade of the turbulence starts at the vortex size corresponding to the trans-CZ convective cells with the turnover time which the mixing length theory (MLT) predicts. This connection between the MLT formalism and real features in the Sun could account for the success of the MLT in stellar modeling.  相似文献   

4.
Turbulent convection models (TCMs) based on hydrodynamic moment equations are compared with the classical mixing-length theory (MLT) in solar models. The aim is to test the effects of some physical processes on the structure of the solar convection zone, such as the dissipation, diffusion and anisotropy of turbulence that have been ignored in the MLT. Free parameters introduced by the TCMs are also tested in order to find appropriate values for astrophysical applications. It is found that the TCMs usually give larger convective heat fluxes than the MLT does, and the heat transport efficiency is sensitively related to the dissipation parameters used in the TCMs. As a result of calibrating to the present solar values, our solar models usually have rather smaller values of the mixing length to local pressure scaleheight ratio than the standard solar model. The turbulent diffusion is found to have important effects on the structure of the solar convection zone. It leads to significantly lowered and expanded profiles for the Reynolds correlations, and a larger temperature gradient in the central part of the superadiabatic convection region but a smaller one near the boundaries of the convection zone. It is interesting to note that, due to a careful treatment of turbulence developing towards isotropic state, our non-local TCM results in radially dominated motion in the central part and horizontally dominated motion near the boundaries of the convection zone, just as what has been observed in many 3D numerical simulations. Our solar models with the TCMs give small but meaningful differences in the temperature and sound speed profiles compared with the standard solar model using the MLT.  相似文献   

5.
In accretion disk models of the solar nebula, turbulence is driven by convective instability. This mechanism requires high opacity, which must be provided by solid grains. Evolution of the grain size distribution in a turbulent disk is computed numerically, using realistic collisional outcomes and strengths of grain aggregates, rather than an arbitrary “sticking efficiency.” The presence of turbulence greatly increases the rate of grain collisions; the coagulation rate is initially much greater than in a nonturbulent disk. Aggregates quickly reach sizes ~0.1–1 cm, but erosion and breakup in collisions prevent growth of larger bodies for plausible aggregate impact strengths. These aggregates are too small to settle to the plane of the disk, and planetesimal formation is impossible as long as the turbulence persists. However, the opacity of the disk is reduced by aggregate formation; some combinations of opacity law and surface density produce an optically thin disk, cutting off turbulent convection. The disk may experience alternating periods of turbulence and quiescence, as grains are depleted by coagulation and replenished by infall from the presolar cloud. Planetesimals can form only during the quiescent intervals; it is argued that such episodes were rare during the lifetime of the accretion disk.  相似文献   

6.
The stability of linear convective modes in the solar convection zone is investigated by incorporating the mechanical and thermal effects of turbulence through the eddy transport coefficients. The inclusion of turbulent thermal conductivity and viscosity, calculated in the framework of the mixing length approximation, is demonstrated to have a profound influence on the convective growth rates. The solar envelope model of Spruit (1977) is used to show that that most rapidly growing fundamental mode and the first harmonic are in reasonable accord with the observed features of granulation and supergranulation, respectively.On leave of absence from Govt. Digvijai College, Rajnandgaon 491441, India.  相似文献   

7.
The blue supergiant Sher 25 is surrounded by an asymmetric, hourglass-shaped circumstellar nebula. Its structure and dynamics have been studied previously through high-resolution imaging and spectroscopy, and it appears dynamically similar to the ring structure around SN 1987A. Here, we present long-slit spectroscopy of the circumstellar nebula around Sher 25, and of the background nebula of the host cluster NGC 3603. We perform a detailed nebular abundance analysis to measure the gas-phase abundances of oxygen, nitrogen, sulphur, neon and argon. The oxygen abundance in the circumstellar nebula  (12 + log O/H = 8.61 ± 0.13 dex)  is similar to that in the background nebula (8.56 ± 0.07), suggesting that the composition of the host cluster is around solar. However, we confirm that the circumstellar nebula is very rich in nitrogen, with an abundance of 8.91 ± 0.15, compared to the background value of 7.47 ± 0.18. A new analysis of the stellar spectrum with the fastwind model atmosphere code suggests that the photospheric nitrogen and oxygen abundances in Sher 25 are consistent with the nebular results. While the nitrogen abundances are high, when compared to stellar evolutionary models, they do not unambiguously confirm that the star has undergone convective dredge-up during a previous red supergiant phase. We suggest that the more likely scenario is that the nebula was ejected from the star while it was in the blue supergiant phase. The star's initial mass was around  50 M  , which is rather too high for it to have had a convective envelope stage as a red supergiant. Rotating stellar models that lead to mixing of core-processed material to the stellar surface during core H-burning can quantitatively match the stellar results with the nebula abundances.  相似文献   

8.
We apply the turbulent convection model (TCM) to investigate properties of tur-bulence in the solar convective envelope, especially in overshooting regions. The results show TCM gives negative turbulent heat flux uγ′T′in overshooting regions, which is sim-ilar to other nonlocal turbulent convection theories. The turbulent temperature fluctuation T′T′shows peaks in overshooting regions. Most important, we find that the downward overshooting region below the base of the solar convection zone is a thin cellular layer filled with roll-shaped convective cells. The overshooting length for the temperature gradi-ent is much shorter than that for element mixing because turbulent heat flux of downward and upward moving convective cells counteract each other in this cellular overshooting region. Comparing the models' sound speed with observations, we find that raking the convective overshooting into account helps to improve the sound speed profile of our nonlocal solar models. Comparing the p-mode oscillation frequencies with observations,we validated that increasing the diffusion parameters and decreasing the dissipation pa-rameters of TCM make the p-mode oscillation frequencies of the solar model be in betteragreement with observations.  相似文献   

9.
When a planetary core composed of condensed matter is accumulated in the primitive solar nebula, the gas of the nebula becomes gravitationally concentrated as an envelope surrounding the planetary core. Models of such gaseous envelopes have been constructed subject to the assumption that the gas everywhere is on the same adiabat as that in the surrounding nebula. The gaseous envelope extends from the surface of the core to the distance at which the gravitational attraction of core plus envelope becomes equal to the gradient of the gravitational potential in the solar nebula; at this point the pressure and temperature of the gas in the envelope are required to attain the background values characteristics of the solar nebula. In general, as the mass of the condensed core increases, increasing amounts of gas became concentrated in the envelope, and these envelopes are stable against hydrodynamic instabilities. However, the core mass then goes through a maximum and starts to decrease. In most of the models tested, the envelopes were hydrodynamically unstable beyond the peak in the core mass. An unstable situation was always created if it was insisted that the core mass contain a larger amount of matter than given by these solutions. For an initial adiabat characterized by a temperature of 450°K and a pressure of 5 × 10?6 atm, the maximum core mass at which instability occurs is approximately 115 earth masses; this value is rather insensitive to the position in the solar nebula or to the background pressure of the solar nebula. However, if the adiabat is lowered, then the core mass corresponding to instability is decreased. Since the core masses found by Podolak and Cameron for the giant planets are significantly less than the critical core mass corresponding to the initial solar nebula adiabat, we conclude that the giant planets obtained their large amounts of hydrogen and helium by a hydrodynamic collapse process in the solar nebula only after the nebula had been subjected to a considerable period of cooling.  相似文献   

10.
太阳大气锂的丰度7Li/H=10-11(按原子数计)。或[7Li]=log(7Li/H)+12=10.它比太阳系原始星云和银河系星际介质钾的丰度要低约两个数量级.因此太阳在它形成之后,其大气锂必定经受了严重衰减.然而年轻的银河疏散星团(如昂星团和英仙a星团)中有效温度高于5500 K的主序星,其锂丰度都基本是正常的,井末呈现明显的衰减.这充分说明,太阳型恒星锂的衰减主要发生在主序阶段,而非在主序前的演化阶段. 在恒星中,7Li是通过核反应7Li(p,a)4He,而毁坏.上述反应在T≥ 2.5×10…  相似文献   

11.
12.
V. A. Dogiel 《Solar physics》1983,82(1-2):427-436
A model of velocity field oscillations in the solar convective zone is suggested. The system of convective equations is investigated for a thin rotating spherical envelope when the rotation velocity is depended on the coordinates. It is shown that two different structures of convective cells (longitudinal, or latitudinal) can exist in the envelope depending on gradients values of the rotation velocity and Prandtl number. It is supposed that two different regimes of convection (stationary and autofluctuating) are possible in the envelope when the angular velocity gradients are determined by the convection itself. In the case of autofluctuating regime the alternation of longitudinal and latitudinal structure of convection is realized. If one assumes that on the Sun there exists an autooscillating convection regime, then the periods of the existence of latitudinal convection structure may be associated with long periods of activity minima since according to Cowling's theorem, the action of the axisymmetric magnetic field generation mechanism is impossible under conditions of axisymmetric velocity structures.  相似文献   

13.
This paper presents directional low energy solar proton measurements together with inter-planetary magnetic field measurements. Propagation of 1 to 13 MeV solar protons is discussed in terms of the relative importance of field-aligned streaming compared to convection of the proton population in the solar wind. Evidence is presented to show that protons associated with the January 24, 1969 solar flare were stored near the Sun for at least 90 minutes. It is also shown that under favourable conditions solar protons can be accelerated near the Earth's bow shock. The decay of solar protons is shown to be mainly convective; however, there are indications that in smooth field regimes convection of 1 MeV solar protons can be greatly reduced. Finally, it is pointed out that the effect of adiabatic deceleration can be quite important.  相似文献   

14.
A nonlinear analysis of the daily sunspot number for each of cycles 10 to 23 is used to indicate whether the convective turbulence is stochastic or chaotic. There is a short review of recent papers considering sunspot statistics and solar activity cycles. The differences in the three possible regimes – deterministic laminar flow, chaotic flow, and stochastic flow – are discussed. The length of data sets necessary to analyze the regimes is investigated. Chaos is described and a chronology of recent results that utilize chaos and fractals to analyze sunspot numbers follows. The parameters necessary to describe chaos – time lag, phase space, embedding dimension, local dimension, correlation dimension, and the Lyapunov exponents – are determined for the attractor for each cycle. Assuming the laminar regime is unlikely if chaos is not indicated in a cycle by the calculations, the regime must be stochastic. The sunspot numbers in each of cycles 10 to 19 indicate stochastic behavior. There is a transition from stochastic to chaotic behavior of the sunspot numbers in cycles 20, 21, 22, and 23. These changes in cycles 20 – 23 may indicate a change in the scale of turbulence in the convection zone that could result in a change in the convective heat transfer and a change in the size of the convection region for these four cycles.  相似文献   

15.
Using a complete non-local convection theory, we carried out the theoretical calculations of 7Li depletion of the solar convective envelope models with different convective parameters c1 and c2, and got a model of the solar convection zone consistent with the observed 7Li abundance and the depth of the solar convection zone determined by helioseismic techniques. The overshooting distance of effective non-local convective mixing of 7Li is very extensive, which is about 1.07HP or 0.09R. However, the super-radiative temperature zone is much narrower, and it is only 0.20HP or 0.016R.  相似文献   

16.
The solar convective zone, or SCZ, is nearly adiabatic and marginally convectively unstable. But, the SCZ is also in a state of differential rotation, and its dynamical stability properties are those of a weakly magnetized gas. This renders it far more prone to rapidly growing rotational baroclinic instabilities than a hydrodynamical system would be. These instabilities should be treated on the same footing as convective instabilities. If isentropic and isorotational surfaces coincide in the SCZ, the gas is marginally (un)stable to both convective and rotational disturbances. This is a plausible resolution for the instabilities associated with these more general rotating convective systems. This motivates an analysis of the thermal wind equation in which isentropes and isorotational surfaces are identical. The characteristics of this partial differential equation correspond to isorotation contours, and their form may be deduced even without precise knowledge of how the entropy and rotation are functionally related. Although the exact solution of the global SCZ problem in principle requires this knowledge, even the simplest models produce striking results in broad agreement with helioseismology data. This includes horizontal (i.e. quasi-spherical) isorotational contours at the poles, axial contours at the equator and approximately radial contours at mid-latitudes. The theory does not apply directly to the tachocline, where a simple thermal wind balance is not expected to be valid. The work presented here is subject to tests of self-consistency, among them the prediction that there should be a good agreement between isentropes and isorotational contours in sufficiently well-resolved large-scale numerical magnetohydrodynamics simulations.  相似文献   

17.
The eigen-vibrational frequencies of Xiong Da-run's nonlocal and local convection models of solar envelope are calculated and compared. The differences between the observational and theoretical vibrational frequencies are less than 1%. They can be divided into two isolated groups. For modes with l ≥ 60, all the differences between observed and theoretical eigen-vibrational frequencies are distributed in a narrow and inclined belt in the (Δvv)-diagram. This shows that the theoretical model of solar convective region can approximately reflect the intrinsic structure of the sun in the region of r = (0.70–0.95)R. The discrepancies between the theoretical and observational frequencies come from the outer layers. For modes with l < 60, the theoretical vibrational frequency is smaller than the observational one. This implies that the temperature of the upper part of the convectively unstable region is rather low. The frequency difference is more dispersed in the local convection model than in the nonlocal convection model. For the intermediate- and low-frequency ranges (v < 3000), the difference between the two models is small, while for the high-frequency range (v ≥ 3000) the frequency in the local model is higher than in the nonlocal model. This means that the temperature of the radiation region beneath the convective region is higher in the local convection model than in the nonlocal convection model. The nonlocal model is nearer to the observation than the local model.  相似文献   

18.
B. N. Andersen 《Solar physics》1994,152(1):241-246
The interaction between convection and gravity waves are simulated numerically in a model closely corresponding to the physical conditions in the solar interior.The penetration of convective elements into the stably stratified interior is shown to generate gravity waves. The energy efficiency of this generation is less than 0.1 %. The simulations also show that the convective overshoot region is very shallow, 0.02–0.06 pressure scaleheights.  相似文献   

19.
In the solar convection zone, acoustic waves are scattered by turbulent sound speed fluctuations. In this paper the scattering of waves by convective cells is treated using Rytov's technique. Particular care is taken to include diffraction effects, which are important, especially for high-degree modes that are confined to the surface layers of the Sun. The scattering leads to damping of the waves and causes a phase shift. Damping manifests itself in the width of the spectral peak of p-mode eigenfrequencies. The contribution of scattering to the linewidths is estimated and the sensitivity of the results to the assumed spectrum of the turbulence is studied. Finally, the theoretical predictions are compared with recently measured linewidths of high-degree modes.  相似文献   

20.
We present a series of numerical simulations of the quiet-Sun plasma threaded by magnetic fields that extend from the upper convection zone into the low corona. We discuss an efficient, simplified approximation to the physics of optically thick radiative transport through the surface layers, and investigate the effects of convective turbulence on the magnetic structure of the Sun’s atmosphere in an initially unipolar (open field) region. We find that the net Poynting flux below the surface is on average directed toward the interior, while in the photosphere and chromosphere the net flow of electromagnetic energy is outward into the solar corona. Overturning convective motions between these layers driven by rapid radiative cooling appears to be the source of energy for the oppositely directed fluxes of electromagnetic energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号