首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The 3He4He ratios measured in 27 Southern Africa diamond stones, four from Premier Mine and the rest of unidentified origin, range from 4.2 × 10?8 to 3.2 × 10?4, with three stones above 1 × 10?4. We conclude that the initial helium isotopic ratio (3He4He)0 in the earth was significantly higher than that of the planetary helium-A (3He4He = 1.42 × 10?4), but close to the solar helium (3He4He ? 4 × 10?4).The apparent K-Ar ages for the twelve diamonds of unidentified origin show enormously old age, indicating excess argon-40. 3He4He evolution in diamonds suggests that the diamonds with the high 3He4He ratio (>2 × 10?4) may be as old as the earth.Noble gas elemental abundance in the diamonds relative to the air noble gas abundance shows monotonie decrease with a decreasing mass number.This paper discusses the implications of these observations on the early solar system and the origin of diamonds.  相似文献   

2.
Light hydrocarbon (C1-C3) concentrations in the water from four Red Sea brine basins (Atlantis II, Suakin, Nereus and Valdivia Deeps) and in sediment pore waters from two of these areas (Atlantis II and Suakin Deeps) are reported. The hydrocarbon gases in the Suakin Deep brine (T = ~ 25°C, Cl? = ~ 85‰, CH4 =~ 711) are apparently of biogenic origin as evidenced by C1(C2 + C3) ratios of ~ 1000. Methane concentrations (6–8 μl/l) in Suakin Deep sediments are nearly equal to those in the brine, suggesting sedimentary interstitial waters may be the source of the brine and associated methane.The Atlantis II Deep has two brine layers with significantly different light hydrocarbon concentrations indicating separate sources. The upper brine (T = ~ 50°C, Cl? = ~ 73‰, CH4 = ~ 155 μl/l) gas seems to be of biogenic origin [C1(C2 + C3) = ~1100], whereas the lower brine (T = ~ 61°C, Cl? = ~ 155‰, CH4 = ~ 120μl/l) gas is apparently of thermogenic origin [C1(C2 + C3) = ~ 50]. The thermogenic gas resulting from thermal cracking of organic matter in the sedimentary column apparently migrates into the basin with the brine, whereas the biogenic gas is produced in situ or at the seawater-brine interface. Methane concentrations in Atlantis II interstitial waters underlying the lower brine are about one half brine concentrations; this difference possibly reflects the known temporal variations of hydrothermal activity in the basin.  相似文献   

3.
4.
The Roving Automated Rare Gas Analysis (RARGA) lab of Berkeley's Physics Department was deployed in Yellowstone National Park for a 19 week period commencing in June, 1983. During this time 66 gas and water samples representing 19 different regions of hydrothermal activity within and around the Yellowstone caldera were analyzed on site. Routinely, the abundances of five stable noble gases and the isotopic compositions of He, Ne, and Ar were determined for each sample. In a few cases the isotopes of Kr and Xe were also determined and found to be of normal atmospheric constitution.Correlated variations in the isotopic compositions of He and Ar can be explained within the precision of the measurements by mixing of only three distinct components. The first component is of magmatic origin and is enriched in the primordial isotope 3He with 3He4He ≥ 16 times the air value. This component also contains radiogenic 40Ar and possible 36Ar with 40Ar36Ar ≥ 500, resulting in a 3He36Ar ratio ≥ 41,000 times the air value. The second component is assumed to be purely radiogenic 4He and 40Ar (41He401Ar = 4.08 ± .33). This component is the probable carrier of observed excesses of 211Ne, attributed to the α,n reaction on 18O. Its radiogenic character implies a crustal origin in U. Th, and Krich aquifer rocks. The third component, except for possible mass fractionation, is isotopically indistinguishable from the noble gases in the atmosphere. This component originates largely from infiltrating run-off water saturated with atmospheric gases.In addition to exhibiting nucleogenic 211Ne, Ne data show anomalies in the ratio 20Ne20Ne, which correlate roughly with the 21Ne22Ne anomalies for the most part, but not as would occur from simple mass fractionation. Some exaggerated instances of the 20Ne22Ne anomaly occur which could be explained by combined mass fractionation of Ne and Ar isotopes to a severe degree coupled with remixing with normally isotopic gases. Otherwise exotic processes have to be invoked to explain the 20Ne data.Relative abundances of the non-radiogenic and non-nucleogenic noble gases (22Ne, 36Ar, 84Kr, and 132Xe) are highly variable but strongly correlated. High Xe/Ar ratios are always accompanied by low Ne/ Ar ratios and vice versa. Except for water from the few cold (T < 20°C) springs analyzed, none of the samples have relative abundances consistent with air saturated water and the observed variations are not readily explained by the distillation of air saturated water.In characterizing each area of hydrothermal activity by the highest 3He4He ratio found for that area, we find that within the caldera this parameter is somewhat uniform at ~7 ± 1 times the air value. There are exceptions, most notably at Mud Volcano, an area located along a crest of recent and rapid uplift. Here the maximum 3He4He ratio is ~ 16 times the air value. Also noteworthy is Gibbon Basin which is in the vicinity of the most recent rhyolitic volcanism and exhibits a 3He4He ratio ~ 13 times the air value. Immediately outside the caldera the maximum sol3He4He ratio decreases rapidly to values < ~3 times the air value.  相似文献   

5.
The 13C12C fractionation factors (CO2CH4) for the reduction of CO2 to CH4 by pure cultures of methane-producing bacteria are, for Methanosarcina barkeri at 40°C, 1.045 ± 0.002; for Methanobacterium strain M.o.H. at 40°C, 1.061 ± 0.002; and, for Methanobacterium thermoautotrophicum at 65°C, 1.025 ± 0.002. These observations suggest that the acetic acid used by acetate dissimilating bacteria, if they play an important role in natural methane production, must have an intramolecular isotopic fractionation (CO2HCH3) approximating the observed CO2CH4 fractionation.  相似文献   

6.
The geochemical history of Lake Lisan, the Pleistocene precursor of the Dead Sea, has been studied by geological, chemical and isotopic methods.Aragonite laminae from the Lisan Formation yielded (equivalent) Sr/Ca ratios in the range 0.5 × 10?2?1 × 10?2, Na/Ca ratios from 3.6 × 10?3 to 9.2 × 10?3, δ18OPDB values between 1.5 and 7%. and δ13CPDB from ?7.7 to 3.4%..The distribution coefficient of Na+ between aragonite and aqueous solutions, λANa, is experimentally shown to be very sensitive to salinity and nearly temperature independent. Thus, Na/Ca in aragonite serves as a paleosalinity indicator.Sr/Ca ratios and δ18O values in aragonite provide good long-term monitors of a lake's evolution. They show Lake Lisan to be well mixed, highly evaporated and saline. Except for a diluted surface layer, the salinity of the lake was half that of the present Dead Sea (15 vs 31%).Lake Lisan evolved from a small, yet deep, hypersaline Dead Sea-like, water body. This initial lake was rapidly filled-up to its highest stand by fresh waters and existed for about 40,000 yr before shrinking back to the present Dead Sea. The chemistry of Lake Lisan at its stable stand represented a material balance between a Jordan-like input, an original large mass of salts and a chemical removal of aragonite. The weighted average depth of Lake Lisan is calculated, on a geochemical basis, to have been at least 400, preferably 600 m.The oxygen isotopic composition of Lake Lisan water, which was higher by at least 3%. than that of the Dead Sea, was probably dictated by a higher rate of evaporation.Na/Ca ratios in aragonite, which correlate well with δ13C values, but change frequently in time, reflect the existence of a short lived upper water layer of varying salinity in Lake Lisan.  相似文献   

7.
Al26 and noble gas contents of 6 ordinary chondrites with He3Ne21 ratios above 6.0 or below 4.0 are used to infer the variability of the production rates of He3 and Ne21 (PHe3 and PNe21). The ratio of the observed Al26 content to a calculated, normal value is taken as a measure of the change of PNe21 from its normal value. The corresponding change in PHe3 is then computed from the observed He3Ne21 ratio and an average value of PHe3.According to these calculations which exclude orbital effects, PHe3 will be near the average value in meteorites with high He3Ne21 ratios, while PNe21 will be about 30 per cent below normal. In meteorites with low He3Ne21 ratios, PHe3 may be depressed by as much as 25 per cent from normal while PNe21 may be 15–20 per cent above the average.  相似文献   

8.
The inert gases have been measured in six size fractions covering the range below 500 μm, in a single feldspathic fragment weighing 523 μg, and in an agglutinate particle weighing 465 μg. The two size fractions between 125 and 250 μm as well as 250 and 500 μm were separated into magnetic and non-magnetic portions, which were measured separately. Like the Apollo and Luna 16 fines, the terra fines represented by Luna 20 are very rich in trapped solar-wind gases, but they contain relatively less He4 and Ne20, which is revealed by their average He4Ne20 ratio of 35 and Ne20Ar36 ratio of 2.9. Obviously the terra materials are less retentive for solar-wind He and Ne than typical mare fines such as 10084. Whether this is due to the relatively small TiO2 or the relatively large plagioclase content of the former is not resolved. (Ar36Kr84)trapped and (Ar36Xe132)trapped ratios are relatively large; the average values are 2800 and 14400, respectively. The apparent Ne21 radiation ages of all the size fractions are in the range 209–286 × 106 yr; the average is 260 × 106 yr. This is in the range of values known for the Apollo and Luna 16 fines. The feldspathic fragment has a much greater apparent Nec21 age of 780 × 106 yr. The Ar40-Ar36 systematic reveals the presence of two Ar40 components, because Ar40 = (1.41 ± 0.076)Ar36 + (0.490 ± 0.130) × 10?4 (cm3 STP/g). The Ar40Ar36 slope of 1.41 is not inconsistent with an origin of the sample from a relatively old terra region.  相似文献   

9.
Metal and silicate portions from 13 mesosiderites, one pallasite, Bencubbin (“unique”) and Udei Station (‘iron with silicate inclusions’) have been analysed for their content of He, Ne and Ar; in most cases 36Cl could be determined as well. 36Cl-36Ar cosmic ray exposure ages fall between 10 and 160 Myr. Half of the metal samples show a deficit of spallogenic 3He (up to 30%) which we ascribe to a loss of tritium. The observed depletion of 3He in the silicates is correlated with their mineralogical composition: feldspar has lost its 3He in all cases, pyroxene definitely in one and possibly in five others, while olivine has been affected in only two meteorites. The thermal histories during their exposure to the cosmic radiation have been different for different meteoroids. Nevertheless, with the exception of Veramin, the data are compatible with the assumption of a continuous diffusion loss during a considerable fraction of the exposure era. For Veramin, however, an episodic event late in the exposure history is required. The exceptionally high 39Ar36Cl ratio in the metal, which is due to a high 39Ar activity, indicates that the event occurred during the last 500,000 years or so and resulted in an extremely excentric orbit (large aphelion).Production rates of 38,39Ar from Ca and 21,22Ne from Mg are given. The ratio P38CaP21Mg is close to unity. The ratios P38CaP38Fe vary between 20 and 50, and are not correlated with the absolute production rate of 38Ar from metal. The 22Ne21Ne production ratio from Mg is found to be close to but below unity.Of the mesosiderites only Veramin shows unambiguous evidence for primordial rare gases with larger amounts and a higher 20Ne36Ar ratio in the olivine, suggesting in situ fractionation to have at least been partly responsible for the abundance pattern found. Bencubbin contains large amounts of strongly fractionated primordial gases, but again part of the fractionation may have occurred in situ. Udei Station shows an excess of (3.5 ± 0.6) × 10?10 cm3 STP 129Xe/g in the non-magnetic portion.  相似文献   

10.
Determination of amorphous silica solubility in acidified ferric nitrate solutions confirms the presence of ferric silicate complexing. A dissociation constant for the reaction:
FeH3SiO42+Fe3+ + H3SiO4?
of 10?9.8 ± 0.3 pK units at room temperature (22 ± 3°C) is obtained, in close agreement with reported values at 25°C corrected to zero ionic strength of 10?9.9 by Weber and Stumm and 10?9.5 by Olson and O'Melia. Iron-silicate complexing may be of significance to the mobilization of silica in acid waters associated with oxidizing sulphide deposits and coal strip mining and the precipitation of secondary silicate mineral phases.  相似文献   

11.
15 ordinary chondrites for which unusually high spallogenic Ne22Ne21 or He3Ne21 ratios had been reported and one meteorite with marked shock characteristics were selected in order to investigate the relations between Ne22Ne21 ratios, Al26 contents and depth. We report Al26 and K contents of 13 samples from 11 of these and-noble gas contents of 30 samples from all of these stones.A decrease in the Al26 production rate accompanies the increase of Ne22Ne21 towards the pre-atmospheric surface: Alobs26Alcalc26 = 3.2?2.0 Ne22Ne21 for 1.08 ≤ Ne22Ne21 ≤ 1.2. Large deviations from this relationship may indicate that a meteorite experienced an abnormal flux of cosmic rays.For Ne2Ne21 > 1.2 this trend continues but the data scatter more, probably because of the steadily increasing influence of pre-atmospheric size. Ne22Ne21 ratios increase most rapidly in the outermost few centimeters according both to a plot of Ne22Ne21 vs (recovered mass)13 and to track studies. The increase seems to derive from the enhanced importance of nuclear reactions on Si.Ne22Ne21 < 1.08 defines a region where the Al26 production rates are less sensitive to depth and vanish in the limit of large shielding; the weak correlation between Ne22Ne21 and Al26 in this region rules out the use of the Ne22Ne21 ratio as a basis for a shielding correction to Al26.  相似文献   

12.
Measurement of solubility as a function of pressure allows calculation of 3V?1. Using this experimental approach, the best estimate of 3V?1 for the dissolution of aged amorphous silica in salt water or seawater at 0–2°C is ?9.9 cm3 mol?1 (standard error = 0.4 cm3 mol?1). This gives V?Si(OH)4(aq)= 55 ± 5 cm3mol?1, which compares well with other published values of V?Si(OH)4(aq).  相似文献   

13.
14.
The rate of accumulation of 4He in the groundwaters of the J-aquifer of the Great Artesian Basin, Australia has been determined using 14C and hydrologic ages. For groundwaters less than 50 Kyr in age, the 4He accumulation rate is 4.6 × 10?12 HeAU (where 1 HeAU = 1 cm3 STP 4He · cmH2O?3 · yr?1) in close agreement with in-situ production rate of 4He (3.95 × 10?12 HeAU) based on U and Th concentrations of 1.7 and 6.1, respectively, of the sandstone. For groundwaters older than 100 Kyr, the rate of 4He accumulation is 2.91 × 10?10 HeAU based on hydrologic ages; or 74 × the rate of in-situ production. The rate of 4He “production” due to weathering of the aquifer rock is calculated to be ~10?16 HeAU, indicating that the weathering input of 4He is insignificant. If the groundwater of the GAB can be considered as a trap for the total crustal production of 4He, the rate of 4He accumulation under a steady-state flux is calculated to be 3.02 × 10?10 HeAU, in agreement with the measured accumulation rate. It is concluded that over long times the 4He accumulation rate in groundwater aquifers may be controlled by the whole crust flux of 4He.  相似文献   

15.
Distribution and isotopic composition (δ13C) of low molecular weight hydrocarbon gases were studied in Big Soda Lake (depth = 64 m), an alkaline, meromictic lake with permanently anoxic bottom waters. Methane increased with depth in the anoxic mixolimnion (depth = 20–35 m), reached uniform concentrations (55 μM/l) in the monimolimnion (35–64 m) and again increased with depth in monimolimnion bottom sediments (>400 μM/kg below 1 m sub-bottom depth). The μ13C[CH4] values in bottom sediment below 1 m sub-bottom depth (<?70 per mil) increased with vertical distance up the core (δ13C[CH4] = ?55 per mil at sediment surface). Monimolimnion δ13C[CH4] values (?55 to ?61 per mil) were greater than most δ13C[CH4] values found in the anoxic mixolimnion (92% of samples had δ13C[CH4] values between ?20 and ?48 per mil). No significant concentrations of ethylene or propylene were found in the lake. However ethane, propane, isobutane and n-butane concentrations all increased with water column depth, with respective maximum concentrations of 260, 80, 23 and 22 nM/l encountered between 50–60 m depth. Concentrations of ethane, propane and butanes decreased with depth in the bottom sediments. Ratios of CH4[C2H6 + C3H8] were high (250–620) in the anoxic mixolimnion, decreased to ~161 in the monimolimnion and increased with depth in the sediment to values as high as 1736. We concluded that methane has a biogenic origin in both the sediments and the anoxic water column and that C2-C4 alkanes have biogenic origins in the monimolimnion water and shallow sediments. The changes observed in δ13C[CH4] and CH4(C2H6 + C3H8) with depth in the water column and sediments are probably caused by bacteria] processes. These might include anaerobic methane oxidation and different rates of methanogenesis and C2 to C4 alkane production by microorganisms.  相似文献   

16.
The spectrophotometric measurements of chloro complexes of lead in aqueous HCl, NaCl, MgCl2 and CaCl2 solutions at 25°C have been analyzed using Pitzer's specific interaction equations. Parameters for activity coefficients of the complexes PbCl+, PbCl20 and PbCl3? have been determined for the various media. Values of K1 = 30.0 ± 0.6, K2 = 106.7 ± 2.1 and K3 = 73.0 ± 1.5 were obtained for the cumulative formation constants. [Pb2+ + nCl? → PbCln2?n)]. These values are in reasonable agreement with literature data. The Pitzer parameters for the PbCl ion pairs in various media were used to calculate the speciation of Pb2+ in an artificial seawater solution.  相似文献   

17.
18.
The stoichiometric, KHA1, and apparent, K'HA, constants for the ionization of a number of weak acids (NH4+, HSO4?, HF, H2O, B(OH)3, H2CO3, HCO3?, H3PO4, H2PO4?, HPO42, H3AsO4 H2AsO4? and HAsO42?) in seawater at 25°C diluted with water have been fitted to equations of the form (Millero, 1979). In KHA1 = In KHA + AS12 + BS where In KHA is the thermodynamic constant in water, S is the salinity, A and B are adjustable parameters. The validity of this equation in estuarine waters has been examined by using an ion pairing model (Millero and Schreiber, 1981). The calculated values of KHA1 and K'HA at S = 35%. are in good agreement with the measured values for all the systems examined. The equation used to extrapolate the measured values to pure water KHA predicted values that agreed with those determined by using the ion pairing model. The exception was the ionization of HPO42? due to the strong interactions of Ca2+ and Mg2+ with PO43?. The differences in the predicted values of KHA1 in seawater diluted with pure water and average river water were very small for all the acids except HPO42? (the maximum ΔpK = 0.96 in average river water). The larger difference in the KHA1 for HPO42? in river waters is due to the strong interactions of Ca2+ and PO43?.  相似文献   

19.
The 26Al, light rare gas and major and minor element contents of Al-rich and poor samples separated from Allende. Bereba and Junivas have been measured. The production rate of 21Ne from Al (21PAl) is (1.9 ± 0.6) × 21PSi and 2221PAl = 1.4 ± 0.4. The 3He, 21Ne and 38Ar exposure ages of the eucritic pyroxenes agree suggesting complete cosmogenic gas retention. The eucritic feldspars have lost virtually all 3He and most radiogenic 4He. The equation 26Al = 0.42 ± 0.41 Mg + 2.74 ± 0.21 Si + 4.92 ± 0.51 Al + 1.33 S + 0.24 Ca + 0.03 Fe reproduces within 15% our 26Al measurements and the average values measured in ordinary chondrites without recourse to unusual cosmic-ray effects.  相似文献   

20.
The stability constants, K1MB, for borate complexes with the ions of Cu, Pb, Cd and Zn are determined in this work by DPASV in 0.7 M KNO3 at metal concentrations of 10?7 M. The acidity constants of the Cu2+ ion are determined by DPASV in the same conditions. The following values for log K1MB (β1MB2) have been obtained: CuB: 3.48, CuB2: 6.13, PbB: 2.20, PbB2: 4.41, ZnB: 0.9, ZnB2: 3.32, CdB: 1.42, and CdB2: 2.7, while the values for the acidity constants of Cu are pK1CuOH = 7.66 and 1Cu(OH2) = 15.91. At the low concentration of boron in 35%. S sea-water complexes with borate represent only about 0.2% Cu, 0.03% Pb, 0.02% Zn and 0.003% Cd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号