首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The magnetic fields of celestial bodies are usually supposed to be due to a ‘hydromagnetic dynamo’. This term refers to a number of rather speculative processes which are supposed to take place in the liquid core of a celestial body. In this paper we shall follow another approach which is more closely connected with hydromagnetic processes well-known from the laboratory, and hence basically less speculative. The paper should be regarded as part of a general program to connect cosmical phenomena with phenomena studied in the laboratory. As has been demonstrated by laboratory experiments, a poloidal magnetic field may be increased by the transfer of energy from a toroidal magnetic field through kink instability of the current system. This mechanism can be applied to the fluid core of a celestial body. Any differential rotation will produce a toroidal field from an existing poloidal field, and the kink instability will feed toroidal energy back to the poloidal field, and hence amplify it. In the Earth-Moon system the tidal braking of the Earth's mantle acts to produce a differential angular velocity between core and mantle. The braking will be transferred to the core by hydromagnetic forces which at the same time give rise to a strong magnetic field. The strength of the field will be determined by the rate of tidal braking. It is suggested that the magnetization of lunar rocks from the period ?4 to ?3 Gyears derives from the Earth's magnetic field. As the interior of the Moon immediately after accretion probably was too cool to be melted, the Moon could not produce a magnetic field by hydromagnetic effects in its core. The observed lunar magnetization could be produced by such an amplified Earth field even if the Moon never came closer than 10 or 20 Earth's radii. This hypothesis might be checked by magnetic measurements on the Earth during the same period.  相似文献   

2.
In this paper, we study quantitatively the effect of the Earth's core formation on the secular rate of change of the length of day (LOD). We find that for the present epoch, a growth rate of the core comprised between 1 and 10 mm/cy seems to be a plausible guess, leading to a relative de crease of LOD comprised roughly between 10 and 100 μs/cy. Such values do not affect significantly the observed secular in crease of LOD caused by tidal braking, which amounts to about 1.79 ms/cy. However, in the remote geological past, before the Phanerozoic, the effects of core growth may have been much more important, because the total change of LOD associated with core formation has been estimated by Birch in 1965 to be 2.4 hours for an initially undifferentiated cold Earth, and 3.1 hours for an initially undifferentiated hot Earth. We consider a number of scenarios, some of them corresponding to very early and/or very fast core formation, others corresponding to slow and/or late core formation. We show that palaeo‐LOD measurements seem to favour slow core formation during the Proterozoic, contrarily to the now largely prevailing hypothesis based on geochemical arguments that the iron core formed very early in the Earth's history and during a geologically short time interval (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Abstract— The abundances of alkali elements in the Earth's core are predicted by assuming that accretion of the Earth started from material similar in composition to enstatite chondrites and that enstatite achondrites (aubrites) provide a natural laboratory to study core-mantle differentiation under extremely reducing conditions. If core formation on the aubrite parent body is comparable with core formation on the early Earth, it is found that 2600 (±1000) ppm Na, 550 (±260) ppm K, 3.4 (±2.1) ppm Rb, and 0.31 (±0.24) ppm Cs can reside in the Earth's core. The alkali-element abundances are consistent with those predicted by independent estimates based on nebula condensation calculations and heat flow data.  相似文献   

4.
Ja-Ren Lin  Taras V. Gerya 《Icarus》2009,204(2):732-748
We developed and tested an efficient 2D numerical methodology for modeling gravitational redistribution processes in a quasi spherical planetary body based on a simple Cartesian grid. This methodology allows one to implement large viscosity contrasts and to handle properly a free surface and self-gravitation. With this novel method we investigated in a simplified way the evolution of gravitationally unstable global three-layer structures in the interiors of large metal-silicate planetary bodies like those suggested by previous models of cold accretion [Sasaki, S., Nakazawa, K., 1986. J. Geophys. Res. 91, 9231-9238; Karato, S., Murthy, V.R., 1997. Phys. Earth Planet Interios 100, 61-79; Senshu, H., Kuramoto, K., Matsui, T., 2002. J. Geophys. Res. 107 (E12), 5118. 10.1029/2001JE001819]: an innermost solid protocore (either undifferentiated or partly differentiated), an intermediate metal-rich layer (either continuous or disrupted), and an outermost silicate-rich layer. Long-wavelength (degree-one) instability of this three-layer structure may strongly contribute to core formation dynamics by triggering planetary-scale gravitational redistribution processes. We studied possible geometrical modes of the resulting planetary reshaping using scaled 2D numerical experiments for self-gravitating planetary bodies with Mercury-, Mars- and Earth-size. In our simplified model the viscosity of each material remains constant during the experiment and rheological effects of gravitational energy dissipation are not taken into account. However, in contrast to a previously conducted numerical study [Honda, R., Mizutani, H., Yamamoto, T., 1993. J. Geophys. Res. 98, 2075-2089] we explored a freely deformable planetary surface and a broad range of viscosity ratios between the metallic layer and the protocore (0.001-1000) as well as between the silicate layer and the protocore (0.001-1000). An important new prediction from our study is that realistic modes of planetary reshaping characterized by a high viscosity protocore and low viscosity molten silicate and metal [Senshu, H., Kuramoto, K., Matsui, T., 2002. J. Geophys. Res. 107 (E12), 5118. 10.1029/2001JE001819] may result in the transient exposure of the protocore to the planetary surface and a strongly (up to 8% of the planetary diameter) aspherical deviation of the planetary shape during the early stages of core formation. Exposure of the protocore might happen in the early stages of iron core formation. This process may conceivably convert a large amount of potential energy into temperature increase and a transient strongly non-uniform depth of the magma ocean around the protoplanet. Our simplified model also predicts that the time for metallic core formation out of the metal-rich layer depends mainly on the dynamics of the deformation of the solid strong protocore. In nature this dynamics will be strongly dependent on the effective viscosity of the protocore, which should generally have non-Newtonian pressure-, temperature-, and stress-dependent rheology with strong thermomechanical feedbacks from gravitational energy dissipation.  相似文献   

5.
Accretional temperature profiles for Saturn’s large moon Titan are used to determine the conditions needed for accretion to avoid global melting as a function of the timing, duration, and nebular conditions of Titan’s accretion. We find that Titan can accrete undifferentiated in a “gas-starved” disk even with modest quantities of ammonia mixed in with its ices. Simulations of impact-induced core formation are used to show that Titan can remain only partially differentiated after an outer Solar System late heavy bombardment capable of melting its outer layers, permitting some of its rock to consolidate into a core.  相似文献   

6.
7.
We study protoplanetary disc evolution assuming that angular momentum transport is driven by gravitational instability at large radii, and magnetohydrodynamic (MHD) turbulence in the hot inner regions. At radii of the order of 1 au such discs develop a magnetically layered structure, with accretion occurring in an ionized surface layer overlying quiescent gas that is too cool to sustain MHD turbulence. We show that layered discs are subject to a limit cycle instability, in which accretion on to the protostar occurs in ∼104-yr bursts with ̇ ∼10−5 M yr−1, separated by quiescent intervals lasting ∼105 yr where ̇ ≈10−8 M yr−1. Such bursts could lead to repeated episodes of strong mass outflow in young stellar objects. The transition to this episodic mode of accretion occurs at an early epoch ( t ≪1 Myr), and the model therefore predicts that many young pre-main-sequence stars should have low rates of accretion through the inner disc. At ages of a few Myr, the discs are up to an order of magnitude more massive than the minimum-mass solar nebula, with most of the mass locked up in the quiescent layer of the disc at r ∼1 au. The predicted rate of low-mass planetary migration is reduced at the outer edge of the layered disc, which could lead to an enhanced probability of giant planet formation at radii of 1–3 au.  相似文献   

8.
In this lecture, I will briefly address several phenomena expected when magnetic fields are present in the innermost regions of circumstellar accretion discs: (i) the magneto-rotational instability and related “dead zones”; (ii) the formation of magnetically-driven jets and the observational constraints derived from Classical T Tauri stars; (iii) the magnetic star–disc interactions and their expected role in the stellar spin down.It should be noted that the magnetic fields invoked here are organized large scale magnetic fields, not turbulent small scale ones. I will therefore first argue why one can safely expect these fields to be present in circumstellar accretion discs. Objects devoid of such large scale fields would not be able to drive jets. A global picture is thus gradually emerging where the magnetic flux is an important control parameter of the star formation process as a whole. High angular resolution technics, by probing the innermost circumstellar disc regions should provide valuable constraints.  相似文献   

9.
We show that radiation-dominated accretion discs are likely to suffer from a 'photon bubble' instability similar to that described by Arons in the context of accretion on to neutron star polar caps. The instability requires a magnetic field for its existence. In an asymptotic regime appropriate to accretion discs, we find that the overstable modes obey the remarkably simple dispersion relation
ο2=−i gkF ( B , k ).
Here g is the vertical gravitational acceleration, B is the magnetic field, and F is a geometric factor of order unity that depends on the relative orientation of the magnetic field and the wavevector. In the non-linear outcome it seems likely that the instability will enhance vertical energy transport and thereby change the structure of the innermost parts of relativistic accretion discs.  相似文献   

10.
The characterization of exoplanets and their birth protoplanetary disks has enormously advanced in the last decade. Benefitting from that, our global understanding of the planet formation processes has been substantially improved. In this review, we first summarize the cutting-edge states of the exoplanet and disk observations. We further present a comprehensive panoptic view of modern core accretion planet formation scenarios, including dust growth and radial drift, planetesimal formation by the streaming instability, core growth by planetesimal accretion and pebble accretion. We discuss the key concepts and physical processes in each growth stage and elaborate on the connections between theoretical studies and observational revelations. Finally, we point out the critical questions and future directions of planet formation studies.  相似文献   

11.
We compute the growth of isolated gaseous giant planets for several values of the density of the protoplanetary disk, several distances from the central star and two values for the (fixed) radii of accreted planetesimals. Calculations were performed in the frame of the core instability mechanism and the solids accretion rate adopted is that corresponding to the oligarchic growth regime. We find that for massive disks and/or for protoplanets far from the star and/or for large planetesimals, the planetary growth occurs smoothly. However, notably, there are some cases for which we find an envelope instability in which the planet exchanges gas with the surrounding protoplanetary nebula. The timescale of this instability shows that it is associated with the process of planetesimals accretion. The presence of this instability makes it more difficult the formation of gaseous giant planets.  相似文献   

12.
Ja-Ren Lin  Taras V. Gerya 《Icarus》2011,213(1):24-42
It is suggested that a distinct population of Mars-sized planetary embryos can form by cold accretion in the outer part of the terrestrial zone. A possible radial structure for such embryos consists of an outer silicate-rich layer and an undifferentiated solid protocore. The protocore is divided in a cold undifferentiated central region, a layer of iron, and an outer shell of undifferentiated material. This structure is gravitationally unstable. We investigate the influence of the rheology of the silicate-rich material and of the thermal effects on the protocore destabilization and on the iron core formation. We use a 2D thermomechanical numerical model of a self-gravitating planetary body. The planetary surface is treated as a free surface by imposing a massless weak medium. Our calculations include a non-Newtonian temperature-, pressure-, and strain rate-dependent viscoplastic rheology and thermal contributions from shear heating. We explored the influence of rheology by varying the activation volume, friction angle, and the maximum yield strength of silicate-rich layers. We distinguished three different core formation regimes: exposure mode, fragmentation mode, and transition mode. Like in previous models with Newtonian rheology, the core experiences large deviations from the spherical shape and is temporarily exposed at the surface in the exposure mode. In contrast to the Newtonian models the destruction of the protocores in the fragmentation modes is driven by (i) the spontaneous strain localization along planetary-scale shear zones forming inside the protocore, and/or (ii) descending localized iron diapirs/sheets penetrating the protocore. Feedback from energy dissipation notably modifies the thermal structure of the deforming planetary body. In particular it causes a temperature increase of up to several hundred Kelvin (i) around the moving and deforming protocore and (ii) along planetary scale rupture zones that form inside the protocore. If the protocore is large and has a high viscosity, a large fraction of the dissipated heat is used to increase the temperature of iron.  相似文献   

13.
The theoreticl treatment of several geophysical problems presupposes the solution of field equations of the magnetic field in the Earth's mantle. The field equations are given in a scalar form for a spherical model of the Earth. It will be shown that analytical solutions are possible in all cases. The boundary conditions are discussed with regard to the dynamo process in the Earth's core and the existence of a field representation, which is investigated on the Earth's surface. The question is discussed, to what extend the mantle's field is given by this field representation, when some special assumptions about the Earth's model are made.  相似文献   

14.
The behavior of solid particles in a low-mass solar nebula during settling to the central plane and the formation of planetesimals is examined. Gravitational instability in a dust layer and collisional accretion are considered as possible mechanisms of planetesimal formation. Non-Keplerian rotation of the nebula results in shear between the gas and a dust layer. This shear produces turbulence within the layer which inhibits gravitational instability, unless the mean particle size exceeds a critical value, ~1 cm at 1 AU. The size requirement is less stringent at larger heliocentric distances, suggesting a possible difference in planetesimal formation mechanisms between the inner and outer nebula. Coagulation of grains during settling is expected in the solar nebula environment. Van der Waals forces appear adequate to produce centimeter-sized aggregates. Growth is primarily due to sweepup of small particles by larger ones due to size-dependent settling velocities. A numerical model for computing simultaneous coagulation and settling is described. Relative velocities are determined by gas drag and the non-Keplerian rotation of the nebula. The settling is very nonhomologous. Most of the solid matter reaches the central plane as centimeter-sized aggregates in a few times 103 revolutions, but some remains suspended in the form of fine dust. Drag-induced relative velocities result in collisions. The growth of bodies in the central plane is initially rapid. After sizes reach ~103 cm, relative velocities decrease and the growth rate declines. Gas drag rapidly damps the out-of-plane motions of these intermediate-sized bodies. They settle into a thin layer which is subject to gravitational instability. Kilometer-sized planetesimals are formed by this composite process.  相似文献   

15.
We develop a simple model for computing planetary formation based on the core instability model for the gas accretion and the oligarchic growth regime for the accretion of the solid core. In this model several planets can form simultaneously in the disc, a fact that has important implications especially for the changes in the dynamic of the planetesimals and the growth of the cores since we consider the collision between them as a source of potential growth. The type I and type II migration of the embryos and the migration of the planetesimals due to the interaction with the disc of gas are also taken into account. With this model we consider different initial conditions to generate a variety of planetary systems and analyse them statistically. We explore the effects of using different type I migration rates on the final number of planets formed per planetary system such as on the distribution of masses and semimajor axis of extrasolar planets, where we also analyse the implications of considering different gas accretion rates. A particularly interesting result is the generation of a larger population of habitable planets when the gas accretion rate and type I migration are slower.  相似文献   

16.
To date, there is no core accretion simulation that can successfully account for the formation of Uranus or Neptune within the observed 2–3 Myr lifetimes of protoplanetary disks. Since solid accretion rate is directly proportional to the available planetesimal surface density, one way to speed up planet formation is to take a full accounting of all the planetesimal-forming solids present in the solar nebula. By combining a viscously evolving protostellar disk with a kinetic model of ice formation, which includes not just water but methane, ammonia, CO and 54 minor ices, we calculate the solid surface density of a possible giant planet-forming solar nebula as a function of heliocentric distance and time. Our results can be used to provide the starting planetesimal surface density and evolving solar nebula conditions for core accretion simulations, or to predict the composition of planetesimals as a function of radius. We find three effects that favor giant planet formation by the core accretion mechanism: (1) a decretion flow that brings mass from the inner solar nebula to the giant planet-forming region, (2) the fact that the ammonia and water ice lines should coincide, according to recent lab results from Collings et al. [Collings, M.P., Anderson, M.A., Chen, R., Dever, J.W., Viti, S., Williams, D.A., McCoustra, M.R.S., 2004. Mon. Not. R. Astron. Soc. 354, 1133–1140], and (3) the presence of a substantial amount of methane ice in the trans-saturnian region. Our results show higher solid surface densities than assumed in the core accretion models of Pollack et al. [Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., Greenzweig, Y., 1996. Icarus 124, 62–85] by a factor of 3–4 throughout the trans-saturnian region. We also discuss the location of ice lines and their movement through the solar nebula, and provide new constraints on the possible initial disk configurations from gravitational stability arguments.  相似文献   

17.
Gas giant planets have been detected in orbit around an increasing number of nearby stars. Two theories have been advanced for the formation of such planets: core accretion and disk instability. Core accretion, the generally accepted mechanism, requires several million years or more to form a gas giant planet in a protoplanetary disk like the solar nebula. Disk instability, on the other hand, can form a gas giant protoplanet in a few hundred years. However, disk instability has previously been thought to be important only in relatively massive disks. New three-dimensional, "locally isothermal," hydrodynamical models without velocity damping show that a disk instability can form Jupiter-mass clumps, even in a disk with a mass (0.091 M middle dot in circle within 20 AU) low enough to be in the range inferred for the solar nebula. The clumps form with initially eccentric orbits, and their survival will depend on their ability to contract to higher densities before they can be tidally disrupted at successive periastrons. Because the disk mass in these models is comparable to that apparently required for the core accretion mechanism to operate, the models imply that disk instability could obviate the core accretion mechanism in the solar nebula and elsewhere.  相似文献   

18.
《Icarus》1987,70(1):52-60
Conditions under which accretion onto a nearby degenerate star, i.e., a white dwarf (WD) or neutron star (NS), could produce a sufficient flux of high-energy radiation to threaten the Earth's protective ozone layer are investigated. Both the case of a field star making a brief encounter with the Solar System and that of a degenerate solar companion (“Nemesis”) are considered. For steady accretion from the interstellar medium (ISM), no significant flux is expected from a WD or a low-mass NS, unless the closest approach is within ∼ 1000 AU and the ISM density at this time much higher than average. A 1M NS could deplete the ozone layer but only if either its closest approach is on the order of 1000 AU or the local ISM density is somewhat higher than average. A field star has a probability of about 2% of making such a close encounter over the lifetime of the Solar System. In the Nemesis case, an ellipticity of 0.99 is implied for a canonical period of 26 myr. In both cases, accretion of comets from the Oort cloud result in γ-ray bursts, whose fluence could reach a significant level if the star came near the inner edge of the comet cloud. A degenerate Nemesis, if now at the aphelion of its proposed orbit, could be potentially observable as an X-ray or γ-ray source.  相似文献   

19.
Hydromagnetic planetary-gravity waves propagating on a β-plane through a zonal flow and transverse magnetic field are examined for instability. Such instabilities may be related to same physical phenomena in the atmospheres of the Sun and planets and in the Earth's core. It is found that the onset of instability depends on the directions of the vertical and transverse wave-numbers and the zonal flow. It is also shown that as the magnetic field intensity is kept uniform instability can onset provided that the zonal flow strength does not exceed a certain factor, which depends on the parameters of the medium, and then the zonal wavenumbers that can become unstable are limited to a given range. If the basic Alfvén wave speed is allowed to vary whereas the zonal flow is kept uniform the zonal wavenumbers that can exhibit instability are again limited but the basic Alfvén wave speed can assume any value.  相似文献   

20.
《Icarus》1986,67(3):375-390
It is considered that some vertical convection as well as possible turbulence in an early phase of solar nebula soon terminates owing to diminution of the temperature dependence of dust opacity due to rapid growth of dust particles. We reexamine settling and growth of dust particles in the subsequent laminar phase of the solar nebula in detail, treating a dust layer as a two-component fluid composed of the dust and the gas. We obtain analytic expressions for the settling path, the growing size, and the settling time. The settling process is divided into two phases, i.e., an early gas-dominant phase and a later dust-dominant phase. So far, only the former phase, where the particle path finally turns from vertical to radial, has been investigated. In the latter phase, dust particles drag the gas, rather than the gas does dust particles. Consequently, the particle path turns from radial to vertical. Dust particles grow most appreciably and rapidly in a radially sweeping phase. The final radii of dust particles at the onset of gravitational instability of the dust layer are 20, 5.9, and 0.60 cm in the Earth's, Jupiter's, and Neptune's zones, respectively. These values are much smaller than those obtained previously by S.J. Weidenschilling [1980, Icarus44, 172–189] and Y. Nakagawa et al. [1981, Icarus45, 517–528]. The total settling times are 1.9 × 103, 4.6 × 103, and 2.8 × 104 years in the above-mentioned three zones, respectively. These are somewhat smaller than those obtained by the previous studies. Most of the settling time is spent in the early vertically settling phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号