首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Icarus》1987,70(1):1-12
An array spectrometer was used on the nights of 1985 May 30–June 1 to observe the disks of Uranus and Neptune in the spectral regions 7–14 and 17–23 μm with effective resolution elements ranging from 0.23 to 0.87 μm. In the long-wavelength region, the spectra are relatively smooth with the broad S(1) H2 collision-induced rotation line showing strong emission for Neptune. In the short-wavelength spectrum of Uranus, an emission feature attributable to C2H2 with a maximum stratospheric mixing ratio of 9 × 10−9 is apparent. An upper limit of 2 × 10−8 is placed on the maximum stratospheric mixing ratio of C2H6. The spectrum of Uranus is otherwise smooth and quantitatively consistent with the opacity provided by H2 collision-induced absorption and spectrally continuous stratospheric emission, as would be produced by aerosols. Upper limits to detecting the planet near 8 μm indicate a CH4 stratospheric mixing ratio of 1 × 10−5 or less, below a value consistent with saturation equilibrium at the temperature minimum. In the short-wavelength spectrum of Neptune, strong emission features of CH4 and C2H6 are evident and are consistent with local saturation equilibrium with maximum stratospheric mixing ratios of 0.02 and 6 × 10−6, respectively. Emission at 8–10 μm is most consistent with a [CH3D]/[CH4] volume abundance ratio of 5 × 10−5. The spectrum of Neptune near 13.5 μm is consistent with emission by stratospheric C2H2 in local saturation equilibrium and a maximum mixing ratio of 9 × 10−7. Radiance detected near 10.5 μm could be attributed to stratospheric C2H4 emission for a maximum mixing ratio of approximately 3 × 10−9. Quantitative results are considered preliminary, as some absolute radiance differences are noted with respect to earlier observations with discrete filters.  相似文献   

2.
It is shown that Titan's surface and plausible atmospheric thermal opacity sources—gaseous N2, CH4, and H2, CH4 cloud, and organic haze—are sufficient to match available Earth-based and Voyager observations of Titan's thermal emission spectrum. Dominant sources of thermal emission are the surface for wavelenghts λ ? 1 cm, atmospheric N2 for 1 cm ? λ ? 200 μm,, condensed and gaseous CH4 for 200 μm ? λ ? 20 μm, and molecular bands and organic haze for λ ? 20 μm. Matching computed spectra to the observed Voyager IRIS spectra at 7.3 and 52.7° emission angles yields the following abundances and locations of opacity sources: CH4 clouds: 0.1 g cm? at a planetocentric radius of 2610–2625 km, 0.3 g cm?2 at 2590–2610 km, total 0.4 ± 0.1 g cm–2 above 2590 km; organic haze: 4 ± 2 × 10?6, g cm, ?2 above 2750 km; tropospheric H2: 0.3 ± 0.1 mol%. This is the first quantitative estimate of the column density of condensed methane (or CH4/C2H6) on Titan. Maximum transparency in the middle to far IR occurs at 19 μm where the atmospheric vertical absorption optical depth is ?0.6 A particle radius r ? 2 μm in the upper portion of the CH4 cloud is indicated by the apparent absence of scattering effects.  相似文献   

3.
We have studied the possible synthesis of organic molecules by the absorption of galactic cosmic rays in an N2CH4H2 Titan model atmosphere. The cosmic-ray-induced ionization results in peak electron densities of 2 × 103 cm?3, with NH4+, C3H9+, and C4H9+ being among the important positive ions. Details of the ion and neutral chemistry relevant to the production of organic molecules are discussed. The potential importance of N(2D) reactions with CH4 and H2 is also demonstrated. Although the integrated production rate of organic matter due to the absorption of the cosmic ray cascade is much less than that by solar ultraviolet radiation, the production of nitrogen-bearing organic molecules by cosmic rays may be greater.  相似文献   

4.
Far-IR (25-50 μm, 200-400 cm−1) nadir and limb spectra measured during Cassini's four year prime mission by the Composite InfraRed Spectrometer (CIRS) instrument have been used to determine the abundances of cyanogen (C2N2), methylacetylene (C3H4), and diacetylene (C4H2) in Titan's stratosphere as a function of latitude. All three gases are enriched at northern latitudes, consistent with north polar subsidence. C4H2 abundances agree with those derived previously from mid-IR data, but C3H4 abundances are about 2 times lower, suggesting a vertical gradient or incorrect band intensities in the C3H4 spectroscopic data. For the first time C2N2 was detected at southern and equatorial latitudes with an average volume mixing ratio of 5.5±1.4×10−11 derived from limb data (>3-σ significance). This limb result is also corroborated by nadir data, which give a C2N2 volume mixing ratio of 6±3×10−11 (2-σ significance) or alternatively a 3-σ upper limit of 17×10−11. Comparing these figures with photochemical models suggests that galactic cosmic rays may be an important source of N2 dissociation in Titan's stratosphere. Like other nitriles (HCN, HC3N), C2N2 displays greater north polar relative enrichment than hydrocarbons with similar photochemical lifetimes, suggesting an additional loss mechanism for all three of Titan's main nitrile species. Previous studies have suggested that HCN requires an additional sink process such as incorporation into hazes. This study suggests that such a sink may also be required for Titan's other nitrile species.  相似文献   

5.
Altitude profiles for the number densities of NO, NO2, NO3, N2O5, HNO2, CH3O, CH3O2, H2CO, OH, and HO2 are calculated as a function of time of day with a steady-state photochemical model in which the altitude profiles for the number densities of H2O, CH4, H2, CO, O3, and the sum of NO and NO2 are fixed at values appropriate to a summer latitude of 34°. Average daily profiles are calculated for the long-lived species, HNO3, H2O2, and CH3O2H.The major nitrogen compound HNO3 may have a number density approaching 5 × 1011 molecules cm?3 at the surface, although an effective loss path due to collisions with particulates could greatly reduce this value.The number density of OH remains relatively unchanged in the first 6 km and reaches 1 × 107 molecules cm?3 at noon, while the number density of HO2 decreases throughout the lower troposphere from its noontime value of 8 × 108 molecules cm?3 at the surface.H2O2 and H2CO both have number densities in the ppb range in the lower troposphere.Owing to decreasing temperature and water concentration, the production of radicals and their steady-state number densities decrease with altitude, reaching a noontime minimum of 1 × 108 molecules cm?3 for OH and 3 × 107 molecules cm?3 for HO2 at the tropopause. The related minor species show even sharper decreases with increasing altitude.The primary path for interconverting OH and HO2 serves as the major sink for CO and leads to a tropospheric lifetime for CO of ~0.1 yr.Another reaction cycle, the oxidation of CH4, is quite important in the lower troposphere and leads to the production of H2CO along with the destruction of CH4 for which a tropospheric lifetime of ~2 yr is estimated.The destruction of H2CO that was produced in the CH4 oxidation cycle provides the major source of CO and H2 in the atmosphere.  相似文献   

6.
The Mariner 9 infrared spectrometer obtained data over a large part of Mars for almost a year beginning late in 1971. Mars' infrared emission spectrum was measured from 200 to 2000 cm?1 with an apodized resolution of 2.4 cm?1. No significant deviation from terrestrial ratios of carbon (12C/13C) or oxygen (16O/18O; 16O/17O) isotopes was observed on Mars. The 12C/13C isotopic ratio was found to be terrestrial with an uncertainty of 15%. Upper limits have been calculated for several minor constituents. With an effective noise equivalent radiance of 1.2 × 10?9 W cm?2 sr?1/cm?1, new upper limits in centimeter-atmospheres of 2 × 10?5 for C2H2, 4 × 10?3 for C2H4, 3 × 10?3 for C2H6, 2 × 10?4 for CH4, 1 × 10?3 for N2O, 1 × 10?4 for NO2, 4 × 10?5 for NH3, 1 × 10?3 for PH3, 7 × 10?4 for SO2, and 1 × 10?4 for OCS have been derived.  相似文献   

7.
The formation of methylamine (CH3NH2) in the upper troposphere and lower stratosphere of Jupiter is investigated. Translationally hot hydrogen atoms are produced in the photolysis of ammonia, phosphine, and acetylene which react with methane to produce methyl (CH3) radicals; the latter recombine with NH2 to form CH3NH2. Also, methane is catalytically dissociated to CH3 + H by the species C2 and C2H produced in the photolysis of acetylene. It is shown that the combined production of CH3NH2 and subsequent photolysis to HCN is unlikely to account for the HCN observed near Jupiter's tropopause. Recombination of NH2 and C2H5N followed by photolysis to HCN is the preferred path. Production of C2H6 by these two processes is negligible in comparison to the downward flux of C2H6 from the Lyman α photolysis region of CH4. An upper limit column density on CH3PH2 is estimated to be ~1013 cm?2 as compared to 1015 cm?2 for CH3NH2. Hot H atoms account for a negligible fraction of the total ortho-para conversion by the reaction H + H2  相似文献   

8.
The combined observations of Saturn's moon Enceladus by the Cassini CAPS, INMS and UVIS instruments detected water vapor geysers in which were present molecular nitrogen (N2), carbon dioxide (CO2), methane (CH4), propane (C3H8), acetylene (C2H2), and several other species, together with all of the decomposition products of water. We propose that the presence of N2 in the plume indicates thermal decomposition of ammonia, and hence high temperatures in the interior of the moon (e.g., 500 to 800 K). Such an environment also appears to be suitable for the production of methane (CH4) from carbon monoxide (CO), or carbon dioxide (CO2). The presence of C2H2 and C3H8 strongly suggest that catalytic reactions took place within a very hot environment. The internal environment of Enceladus is inferred to be or have been favorable for aqueous, catalytic chemistry. This permits the synthesis of many complex organic compounds that could be detected in future Cassini observations.  相似文献   

9.
A model is presented for the photochemistry of PH3 in the upper troposphere and lower stratosphere of Saturn that includes the effects of coupling with NH3 and hydrocarbon photochemistry, specifically the C2H2 catalyzed photodissociation of CH4. PH3 is rapidly depleted with altitude (scale height ~35 km) in the upper troposphere when K~104cm2sec?1; an upper limit for K at the tropopause is estimated at ~105cm2sec?1. If there is no gas phase P2H4 because of sublimation, P2 and P4 formation is unlikely unless the rate of the spin-forbidden recombination reaction PH + H2 + M → PH3 + M is exceedingly slow. An upper limit P4 column density of ~2×1015cm?2 is estimated in the limit of no recombination. If sublimation does not remove all gas phase P2H4, P2 and P4 may be produced in potentially larger quantities, although they would be restricted almost entirely to the lowest levels of our model, where T?100°K. Potentially observable amounts of the organophosphorus compounds CH3P2H2 and HCP are predicted, with column densities of >1017 cm?2 and production rates of ~2×108cm?2sec?1. The possible importance of electronically excited states of PHx and additional PH3/hydrocarbon photochemical coupling paths are also considered.  相似文献   

10.
Ethane (C2H6), methylacetylene (CH3C2H or C3H4) and diacetylene (C4H2) have been discovered in Spitzer 10-20 μm spectra of Uranus, with 0.1-mbar volume mixing ratios of (1.0±0.1)×10−8, (2.5±0.3)×10−10, and (1.6±0.2)×10−10, respectively. These hydrocarbons complement previously detected methane (CH4) and acetylene (C2H2). Carbon dioxide (CO2) was also detected at the 7-σ level with a 0.1-mbar volume mixing ratio of (4±0.5)×10−11. Although the reactions producing hydrocarbons in the atmospheres of giant planets start from radicals, the methyl radical (CH3) was not found in the spectra, implying much lower abundances than in the atmospheres of Saturn or Neptune where it has been detected. This finding underlines the fact that Uranus' atmosphere occupies a special position among the giant planets, and our results shed light on the chemical reactions happening in the absence of a substantial internal energy source.  相似文献   

11.
A spectrum of Jupiter between 6000 and 12 000 cm? at high resolution (0.05 cm?) was recorded with a Michelson interferometer at Palomar Mountain in October 1974. An analysis of the R branch of the 3ν3CH4 band with the reflecting-layer model, taking into account the H2 absorption which occurs in the same spectral range, leads to a Lorentzian half-width of 0.09 ± 0.02 cm?1, a rotational temperature of 175 ± 10° K, and a CH4 abundance of order 52m atm. Five lines of the 13CH43ν3 band have been identified; a comparison with new laboratory spectra indicates that the 13CH4/12CH4 ratio in the Jupiter atmosphere is close to the terrestrial ratio.  相似文献   

12.
A radiative seasonal model which incorporates a multilayer radiative transfer treatment at wave-lengths longward of 7 μm is presented and applied to Saturn's stratosphere. Opacities due to H2-He, CH4, C2H2, and C2H6 are included. Season-dependent insolation is shown to produce a strong hemispheric asymmetry decreasing with depth at the Voyager encounter times, and seasonal amplitudes of 30°K at the poles are predicted in the high stratosphere. The ring-modulated dependence of the insolation and the orbital eccentricity are shown to have a significant effect. Calculations agree closely with the Voyager 1 and 2 radio occultation ingress profiles recorded at 76°S and 36.5°S for CH4/H2 = 3.5 + 1.4/? 1.0 × 10?3;the estimated errors include modeling systematic errors and uncertainties in the occultations profiles. The possible role of aerosols in the stratospheric heating is analyzed. The Voyager 2 egress profile recorded at 31°S cannot be reproduced by calculations. Some constraints on the C2H2 and C2H6 abundances are derived. The upper portion of the occultation profiles (p < 3mbar) can be matched for C2H2/H2 = 1.0 + 1.3/?0.6 × 10?7, C2H6/H2 = 1.5 + 1.8/?0.9 × 10?6 at 76°S and C2H2/H2 = 4 + 6/?4 × 10?8, C2H6/H2 = 6 + 9/?6 × 10?7 at 36.5°N. At the northern occultation latitude, the discrepancy with the concentrations derived from analysis of IRIS spectra by R. Courtin, D. Gautier, A. Marten, B. Bézard, and R. Hanel (1984, Astrophys. J.287) can be explained by a sharp variation of the mixing ratios of these gases with altitude in the upper stratosphere. Other interpretations are discussed.  相似文献   

13.
We present the first spectra of Neptune taken with the Spitzer Space Telescope, highlighting the high-sensitivity, moderate-resolution 10-20 μm (500-1000 cm−1) spectra. We report the discovery of methylacetylene (CH3C2H) and diacetylene (C4H2) with derived 0.1-mbar volume mixing ratios of (1.2±0.1)×10−10 and (3±1)×10−12 respectively.  相似文献   

14.
The goal of this study was to explore prebiotic chemistry in a range of plausible early Earth and Mars atmospheres. To achieve this laboratory continuous flow plasma irradiation experiments were performed on N2/H2/CO/CO2 gas mixtures chosen to represent mildly reducing early Earth and Mars atmospheres derived from a secondary volcanic outgassing of volatiles in chemical equilibrium with magmas near present day oxidation state. Under mildly reducing conditions (91.79% N2, 5.89% H2, 2.21% CO, and 0.11% CO2), simple nitriles are produced in the gas phase with yield (G in molecules per 100 eV), for the key prebiotic marker molecule HCN at G∼1×10−3 (0.1 nmol J−1). In this atmosphere localized HCN concentrations possibly could approach the 10−2 M needed for HCN oligomerization. Yields under mildly oxidizing conditions (45.5% N2, 0.1% H2, 27.2% CO, 27.2% CO2) are significantly less as expected, with HCN at G∼3×10−5 (). Yields in a Triton atmosphere which can be plausibly extrapolated to represent what might be produced in trace CH4 conditions (99.9% N2, 0.1% CH4) are significant with HCN at G∼1×10−2 (1 nmol J−1) and tholins produced. Recently higher methane abundance atmospheres have been examined for their greenhouse warming potential, and higher abundance hydrogen atmospheres have been proposed based on a low early Earth exosphere temperature. A reducing (64.04% N2, 28.8% H2, 3.60% CO2, and 3.56% CH4), representing a high CH4 and H2 abundance early Earth atmosphere had HCN yields of G∼5×10−3 (0.5 nmol J−1). Tholins generated in high methane hydrogen gas mixtures is much less than in a similar mixture without hydrogen. The same mixture with the oxidizing component CO2 removed (66.43% N2, 29.88% H2, 0% CO2, and 3.69% CH4) had HCN yields of G∼1×10−3 (0.1 nmol J−1) but more significant tholin yields.  相似文献   

15.
Photoionization of the upper atmosphere of Titan by sunlight is expected to produce a substantial ionospheric layer. We have solved one-dimensional forms of the mass, momentum, and energy conservation equations for ions and electrons and have obtained electron number densities of about 103 cm?3, using various model atmospheres. The significant ions in a CH4H2 atmosphere are H+, H3+, CH5+, CH5+, CH3+, and C2H5+. Electron temperatures may be as high as 1000°K, depending on the abundance of hydrogen in the high atmosphere. Interaction of the solar wind with the ionosphere is also discussed.  相似文献   

16.
Nearly ten years ago Kwan and Krolik (1979, 1981) published the firstsuccessful photoionization model of the Broad Line Region of Active Galactic Nuclei, the so-called ‘Standard Model’. Since then several efforts have been made to obtain better results using more sophisticated models. Anopen issue is that photoionization models are generally computed startingfrom the assumption that the emission line spectrum is produced by a single-slab cloud with a ‘standard’ hydrogen density nH = 109.5 cm-3, but it seems more likely that a range of densities is present in the Broad Line Region. Purpose of this paper is to review the results given by single-cloud models using the most recent photoionization code, Cloudy 84, and to investigate if the addition of one or more components with different densities does affect the line ratios. To this aim we compute the emission line ratios produced by photoionized single-slab clouds for a wide range of hydrogen densities (nH = 109.5−1013 cm−3), ionization parameters (U = 10−4− 10−0.5) and column densities (NH = 1023−1025 cm−2). Two or more populations of clouds are then combined and the resulting emission line spectrum is compared with a sample of mean observed line ratios. We find that the addition to the standard component of clouds having different densities and located at different positions from the central source introduces many changes in the line ratios, and that these changes are in the direction of a better agreement with the observed emission line ratios.  相似文献   

17.
In this paper we review the relevant literature and investigate conditions likely to lead to melting of H2O ice, methanol (CH3OH) ice, ethane (C2H6) ice and other volatile ices in cometary nuclei. On the basis of a heat balance model which takes account of volatiles loss, we predict the formation of occasional aqueous and hydrocarbon liquid phases in subsurface regions at heliocentric distances, rh of 1–3 AU, and 5–12 AU, respectively. Low triple-point temperatures and low vapour pressures of C2H6, C3H8, and some higher-order alkanes and alkenes, favour liquid phase formation in cometary bodies at high rh. Microporosity and the formation of a stabilization crust occluding the escape of volatiles facilitate liquid-phase formation. Characteristics of the near-surface which favour subsurface melting include; low effective surface emissivity (at low rh), high amorphous carbon content, average pore sizes of ~10 μm or less, presence of solutes (e.g. CH3OH), mixtures of C2–C6 hydrocarbons (for melting at high rh), diurnal thermal cycling, and slow rotation rate. Applying the principles of soil mechanics, capillary forces are shown to initiate pre-melting phenomena and subsequent melting, which is expected to impart considerable strength of ~104 Pa in partially saturated layers, reducing porosity and permeability, enhancing thermal conductivity and heat transfer. Diurnal thermal cycling is expected to have a marked effect on the composition and distribution of H2O ice in the near-surface leading to frost heave-type phenomena even where little if any true melting occurs. Where melting does take place, capillary suction in the wetted zone has the potential to enhance heat transfer via capillary wetting in a low-gravity environment, and to modify surface topography creating relatively smooth flat-bottomed features, which have a tendency to be located within small depressions. An important aspect of the “wetted layer” model is the prediction that diurnal melt–freeze cycles alter the mixing ratio vs. depth of solutes present, or of other miscible components, largely through a process of fractional crystallization, but also potentially involving frost heave. Wetted layers are potentially durable and can involve significant mass transport of volatile materials in the near-surface, increasing in extent over many rotations of the nucleus prior to and just after perihelion passage, and causing stratification and trapping of the lowest-melting mixtures at depths of several metres. A possible mechanism for cometary outbursts is proposed involving a heat pulse reaching the liquid phase in the deepest wetted zone, leading to supersaturation and triggering the sudden release under pressure of dissolved gases, in particular CO2, CO, CH4 or N2, contained beneath a consolidated near-surface layer. This study indicates that liquid water can persist for long periods of time in the near-surface of some intermediate-sized bodies (102–103 km radius) within protoplanetary discs.  相似文献   

18.
The 14 May 1971 occultation β Scorpi C by Io was successfully observed in ultraviolet light near Kingston, Jamaica. Within the limits established by time resolution and the signal-to-noise ratio, both the disappearance and reappearance were found to be instantaneous. Upper limits for the surface pressure for N2, CH4, and H2 atmospheres are 0.09, 0.13, and 44.ubar, respectively. The corresponding number densities are 6.2 × 1012, 9.4 × 1012, and 3.2 × 1015 cm−3. An isothermal atmosphere at a temperature of 100°K was assumed.  相似文献   

19.
M.H. Moore  R.L. Hudson 《Icarus》2003,161(2):486-500
Infrared spectra and radiation chemical behavior of N2-dominated ices relevant to the surfaces of Triton and Pluto are presented. This is the first systematic IR study of proton-irradiated N2-rich ices containing CH4 and CO. Experiments at 12 K show that HCN, HNC, and diazomethane (CH2N2) form in the solid phase, along with several radicals. NH3 is also identified in irradiated N2 + CH4 and N2 + CH4 + CO. We show that HCN and HNC are made in irradiated binary ice mixtures having initial N2/CH4 ratios from 100 to 4, and in three-component mixtures have an initial N2/(CH4 + CO) ratio of 50. HCN and HNC are not detected in N2-dominated ices when CH4 is replaced with C2H6, C2H2, or CH3OH.The intrinsic band strengths of HCN and HNC are measured and used to calculate G(HCN) and G(HNC) in irradiated N2 + CH4 and N2 + CH4 + CO ices. In addition, the HNC/HCN ratio is calculated to be ∼1 in both icy mixtures. These radiolysis results reveal, for the first time, solid-phase synthesis of both HCN and HNC in N2-rich ices containing CH4.We examine the evolution of spectral features due to acid-base reactions (acids such as HCN, HNC, and HNCO and a base, NH3) triggered by warming irradiated ices from 12 K to 30-35 K. We identify anions (OCN, CN, and N3−) in ices warmed to 35 K. These ions are expected to form and survive on the surfaces of Triton and Pluto. Our results have astrobiological implications since many of these products (HCN, HNC, HNCO, NH3, NH4OCN, and NH4CN) are involved in the syntheses of biomolecules such as amino acids and polypeptides.  相似文献   

20.
The reactivity of C2(X1Σ+g) with simple saturated (CH4, C2H6 and C3H8) and unsaturated (C2H2 and C2H4) hydrocarbons has been studied in the gas phase over the temperature range 24-300 K using the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in a Uniform Supersonic Flow) technique. All reactions have been found to be very rapid in this temperature range and the rate coefficients are typically ?10−10 cm3 molecule−1 s−1 with the exception of methane for which the rate coefficient is one order of magnitude lower: ∼10−11 cm3 molecule−1 s−1. These results have been analyzed in terms of potential destruction sources of C2(X1Σ+g) in the atmospheres of Titan and the Giant Planets. It appears that the rate coefficient of the reaction 1C2 + CH4 should be updated with our new data and that reactions with C2H2, C2H4 and C2H6 should also be included in the existing photochemical models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号