首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
积雪季节变化特征的数值模拟及其敏感性试验   总被引:4,自引:0,他引:4  
陈海山  孙照渤 《气象学报》2004,62(3):269-284
文中利用综合陆面模式 (ComprehensiveLandSurfaceModel,CLSM )对法国ColdePorte 1 993/ 1 994 ,1 994 / 1 995年及BOREASSSA OJP 1 994 / 1 995年积雪个例进行了模拟试验 ,通过模拟结果与观测资料的对比 ,检验了CLSM对积雪变化特征的模拟能力 ,并通过敏感性试验探讨了降雪密度、积雪持水量等积雪参数化方案及植被对积雪模拟可能产生的影响。结果表明 :(1 )CLSM能够准确地模拟出积雪的变化过程 ,对积雪的演变特征作出了合理的描述 ;(2 )降雪密度、积雪持水量参数化方案对积雪模拟结果均具有一定的影响 :降雪密度参数化主要对积雪深度的模拟产生影响 ;而积雪持水量参数化方案对积雪的演变过程 ,尤其是积雪的消融 ,具有重要的作用 ;(3)有、无植被存在的情况下 ,积雪 土壤系统的变化过程存在显著的差别 ,植被通过改变积雪 /土壤表面的能量平衡 ,对积雪及土壤的变化过程产生重要影响 :植被的存在有利于积雪的维持 ,使得积雪融化进程推迟 ,冻结土壤的增温明显偏慢  相似文献   

2.
用于气候研究的雪盖模型参数化方案敏感性研究   总被引:7,自引:0,他引:7       下载免费PDF全文
孙菽芬  李敬阳 《大气科学》2002,26(4):558-576
为了得到一个适用于气候研究简化的季节性雪盖模式最佳方案,必须对雪盖内部的重要物理过程、其与上大气相互作用、相应模型的参数化方案和有关的参数选取以及模型的分层结构进行深入研究.利用作者的雪盖模型(SAST),对其中的一些关键性过程的有关参数化方案(如压实、相变、融化雪水流动及分层方案考虑等)及关键的参数(如雪面反照率、有效热传导系数及持水能力等)进行了分析和敏感性试验,得到若干有意义的结论,为雪盖模式改进提供有用的结论.  相似文献   

3.
The Cloud Processes of a Simulated Moderate Snowfall Event in North China   总被引:1,自引:0,他引:1  
The understanding of the cloud processes of snowfall is essential to the artificial enhancement of snow and the numerical simulation of snowfall. The mesoscale model MM5 is used to simulate a moderate snowfall event in North China that occurred during 20–21 December 2002. Thirteen experiments are performed to test the sensitivity of the simulation to the cloud physics with different cumulus parameterization schemes and different options for the Goddard cloud microphysics parameterization schemes. It is shown that the cumulus parameterization scheme has little to do with the simulation result. The results also show that there are only four classes of water substances, namely the cloud water, cloud ice, snow, and vapor, in the simulation of the moderate snowfall event. The analysis of the cloud microphysics budgets in the explicit experiment shows that the condensation of supersaturated vapor, the depositional growth of cloud ice, the initiation of cloud ice, the accretion of cloud ice by snow, the accretion of cloud water by snow, the deposition growth of snow, and the Bergeron process of cloud ice are the dominant cloud microphysical processes in the simulation. The accretion of cloud water by snow and the deposition growth of the snow are equally important in the development of the snow.  相似文献   

4.
云微物理参数化对华北降雪影响的数值模拟   总被引:7,自引:3,他引:7  
对发生在华北地区的一次降雪过程进行了中尺度数值模拟。结果表明,高纬强冷空气南下和低纬倒槽的水汽输送是造成这次长时间降雪过程的主要原因。采用混合方案的中尺度数值模拟表明,这次降雪天气不是对流云造成的,而是稳定性的非对流云降雪。敏感性试验也表明,采用其他积云参数化方案对模拟的降雪量基本没有影响。控制试验模拟的24h降雪量与实际观测比较吻合。模拟结果表明,当采用Dudhia简单冰相方案时,会有过多的云冰、过冷却水及雪;当采用Reisner 1混合相方案时,会有过多的云冰和雪;修改的各个Reisner 2方案对此次降雪的预报改进不大,但各个Reisner 2方案的敏感性试验中云冰混合比、过冷却水混合比和雪混合比稍微有差异。  相似文献   

5.
有关雪盖模型内部及界面过程的参数化方案的敏感试验   总被引:4,自引:0,他引:4  
In order to develop a seasonal snow model of land surface process as accurately as possible for climatic study, it is necessary to fully understand the effects of important snow internal processes and interaction with air and to get an insight into influence of several relevant parameterization schemes with parameters' uncertainty to some degree. Using the snow model (SAST) developed by first author and other one and some useful field observation data, this paper has conducted a series of sensitivity studies on the parameterization schemes. They are relative to compaction process, snow thermal conduction, methodology of layering snow pack and to key parameters such as snow albedo, water holding capacity. Then, based on the results from the sensitivity studies, some useful conclusions for snow cover model improvement are ob tained from the analysis of the results.  相似文献   

6.
张海宏  肖建设  陈奇  姜海梅 《气象》2019,45(8):1093-1103
利用青海省甘德两次降雪过程的微气象观测数据,探讨了两场降雪过程雪深、雪密度、雪中含冰量、雪中含水量和雪面温度的变化情况,分析了地表反照率与雪密度、雪中含冰量及雪中含水量的关系,结合降雪过程近地面温、湿、风廓线特征分析了积雪对近地面温、湿、风梯度的影响。结果表明:积雪覆盖会导致地表反照率显著增加,降雪过后正午时地表反照率可高达0.8~0.9。随着积雪的消融,地表反照率逐渐减小;积雪反照率与雪密度和雪中含冰量呈正相关,与雪中含水量呈负相关;地表积雪覆盖会导致近地面温度梯度绝对值减小,相对湿度梯度绝对值在凌晨减小、午后增大,地表积雪覆盖对近地面风速梯度变化并无特定的影响。  相似文献   

7.
Treatment of frozen soil and snow cover in the land surface model SEWAB   总被引:3,自引:0,他引:3  
Summary  The land surface model SEWAB (Surface Energy and Water Balance) is designed to be coupled to both, atmospheric and hydrological models. Its application in mid and high latitudes requires the inclusion of freezing and thawing processes within the soil and the accumulation and ablation of a snow cover. These winter processes are parameterised with a minimum number of empirical formulations in order to assure reasonable computation times for an application in climate and sensitivity studies yet accounting for all important processes. Meteorological forcing data and measurements of snow depth, soil temperature and liquid soil water content at two locations in the mid-west of North America are used to test the model. Generally the simulated snow depth matches the measurements, remaining differences in snow depth can be explained by uncertainties in snow density, blowing snow and errors in precipitation measurements. The simulated soil temperature and liquid soil water content compare well with the measurements, showing the isolating effect of the snow cover. Received August 25, 2000 Revised January 19, 2001  相似文献   

8.
Summary A moderate snowfall event in North China is simulated using the high-resolution mesoscale model MM5. A fourfold-nest experiment, with a minimum horizontal grid size of 2 km, is run. In order to study the cloud microphysics processes associated with the snowfall, two experiments were conducted in two inner domains, one using the Goddard scheme (Goddard experiment), and the other using the Reisner scheme (Reisner experiment). The analysis focused on the comparison of the cloud microphysics processes which occurred in the experiments. It is shown that there is no implicit precipitation of cumulus parameterization in the domain of grid scale 18 km. The snowfall distribution patterns in the experiments are slightly different, but the microphysical characteristics and processes may have considerable differences between the two experiments: (1) The water substances in the cloud have cloud water, cloud ice and snow, but no rainwater and graupel in the Goddard experiment. However, the water substances in the cloud have cloud ice, snow, and graupel, but no cloud water and rainwater in the Reisner experiment. (2) The cloud ice mixing ratios in the Goddard experiment are larger than those in the Reisner experiment. (3) In the Goddard experiment, the dominant cloud microphysical processes include the growth of cloud water by the condensation of supersaturated vapor, the depositional growth of cloud ice, the initiation of cloud ice, the accretion of cloud ice by snow, the accretion of cloud water by snow, the deposition growth of snow and the Bergeron process of cloud ice. In the Reisner experiment, the dominant cloud microphysical processes include the depositional growth of cloud ice, the conversion of cloud ice to snow, the deposition of snow, and the deposition growth of graupel. (4) There is only snowfall in the Goddard experiment. Meanwhile, there is ice fall, snow fall, and graupel in the Reisner experiment. But the ice fall and graupel in the Reisner experiment is very slight and can be ignored.  相似文献   

9.
利用WRF模式中三种云微物理参数化方案(Lin、Eta和WSM6)对青藏高原一次强降水过程进行模拟试验,将模拟降水结果与实测资料进行对比,以评估不同云微物理参数化方案对该区域降水过程的模拟性能。结果表明:三种方案均能够模拟出此次降水天气过程的发生,但在主要降水区域和降水强度两方面仍与实测资料存在偏差;在水凝物方面,三种方案对冰粒子的模拟较接近,Lin和WSM6方案模拟的雪粒子差异较大,但霰粒子无明显差异。进一步对比分析了Lin和WSM6方案模拟的云微物理转化过程,结果表明:这两种方案都表现出了霰向雨水转化的特点。在Lin方案中,通过水汽向霰粒子凝华、霰碰并水汽凝华生成的雪粒子以及霰碰并云水这三种过程生成的霰粒子最终融化为雨水。而在WSM6方案中,一方面水汽凝结成云水,云水被雪和霰粒子碰并收集转化为霰,之后霰融化为雨水;另一方面水汽凝华为冰粒子,一部分冰转化为雪,雪直接融化为雨水或转化为霰融化为雨水,另一部分冰转化为霰,霰融化为雨水。   相似文献   

10.
We investigate the response of a climate system model to two different methods for estimating snow cover fraction. In the control case, snow cover fraction changes gradually with snow depth; in the alternative scenarios (one with prescribed vegetation and one with dynamic vegetation), snow cover fraction initially increases with snow depth almost twice as fast as the control method. In cases where the vegetation was fixed (prescribed), the choice of snow cover parameterization resulted in a limited model response. Increased albedo associated with the high snow caused some moderate localized cooling (3–5°C), mostly at very high latitudes (>70°N) and during the spring season. During the other seasons, however, the cooling was not very extensive. With dynamic vegetation the change is much more dramatic. The initial increases in snow cover fraction with the new parameterization lead to a large-scale southward retreat of boreal vegetation, widespread cooling, and persistent snow cover over much of the boreal region during the boreal summer. Large cold anomalies of up to 15°C cover much of northern Eurasia and North America and the cooling is geographically extensive in the northern hemisphere extratropics, especially during the spring and summer seasons. This study demonstrates the potential for dynamic vegetation within climate models to be quite sensitive to modest forcing. This highlights the importance of dynamic vegetation, both as an amplifier of feedbacks in the climate system and as an essential consideration when implementing adjustments to existing model parameters and algorithms.  相似文献   

11.
Varga  Ákos János  Breuer  Hajnalka 《Climate Dynamics》2020,55(9-10):2849-2866

In this study, the Weather Research and Forecasting (WRF) model is used to produce short-term regional climate simulations with several configurations for the Carpathian Basin region. The goal is to evaluate the performance of the model and analyze its sensitivity to different physical and dynamical settings, and input data. Fifteen experiments were conducted with WRF at 10 km resolution for the year 2013. The simulations differ in terms of configuration options such as the parameterization schemes, the hydrostatic and non-hydrostatic dynamical cores, the initial and boundary conditions (ERA5 and ERA-Interim reanalyses), the number of vertical levels, and the length of the spin-up period. E-OBS dataset 2 m temperature, total precipitation, and global radiation are used for validation. Temperature underestimation reaches 4–7 °C for some experiments and can be reduced by certain physics scheme combinations. The cold bias in winter and spring is mainly caused by excessive snowfall and too persistent snow cover, as revealed by comparison with satellite-based observations and a test simulation without snow on the surface. Annual precipitation is overestimated by 0.6–3.8 mm day−1, with biases mainly accumulating in the period driven by large-scale weather processes. Downward shortwave radiation is underestimated all year except in the months dominated by locally forced phenomena (May to August) when a positive bias prevails. The incorporation of downward shortwave radiation to the validation variables increased the understanding of underlying problems with the parameterization schemes and highlighted false model error compensations.

  相似文献   

12.
Both observational and numerical studies suggest that the Eurasian winter snow cover has a strong influence on the subsequent summer monsoon in Asia. An updated version of the ARPEGE climate model of Météo-France, including a simple but physically-based snow parameterization, is used to test the impact of an increased snow mass prescribed at the beginning of March on the simulated summer monsoon circulation and rainfall. The large-scale features of the Asian monsoon are reproduced in a realistic way in the control integration, which is a necessary premise of such a sensitivity test. In the heavy snow cover experiment, the anomalous persistence of the winter snow pack delays the springtime continental heating. This weakens the thermal low over northern India and Persia as well as the southwesterly winds over the monsoon area. There is also a significant decrease in the rainfall over western India and Bengal-Burma, which usually represent the centers of maximum precipitation. Radiative, turbulence transfer and hydrological processes seem to be involved in the snow-monsoon relationship. The changes in the monsoon precipitation are strongly related to changes in the atmospheric circulation and are not reinforced by a local evaporation/convection feedback in our experiment. Received: 17 May 1995 / Accepted: 27 November 1995  相似文献   

13.
利用耦合了陆面过程模式(CLM4.5)的区域气候模式(RegCM4)分别对青藏高原的一个多雪年和少雪年进行了数值模拟.通过对比模拟雪深与遥感雪深、土壤温湿度的模拟值与观测值、多雪年与少雪年的土壤温湿度模拟值,结果表明,RegCM4-CLM4.5可以有效模拟出高原的多雪年与少雪年特征,模拟雪深大值中心比遥感雪深高10~2...  相似文献   

14.
利用WRFv3.9.1中尺度数值模式,采用Lin、WSM6、Thompson、WDM6四种微物理过程参数化方案对2007年3月4日辽宁特大暴雪过程进行了数值模拟研究。使用61个国家级气象站降水观测资料,评估了模式对此次降水过程的模拟能力,对比分析了不同微物理过程参数化方案模拟降雪过程中相态变化和水成物空间分布的差异。结果表明:4种微物理过程参数化方案均能模拟出与CloudSat卫星反演反射率分布相接近的结果,其中Thompson方案模拟的回波顶更高,向北伸展的范围也更大,其他3种方案回波顶高均在8 km附近。4种方案对降水落区的模拟略有差异,整体来看WSM6方案对本次降水的极值中心位置,以及不同降水量级的TS评分整体都优于其他3种参数化方案。降水相态模拟与观测的对比分析发现,WSM6、Lin和WDM6三种方案均能够模拟出雨雪分界线不断南压的过程且雨雪分界线位置准确,而Thompson方案对辽宁南部地区雨转雪时间模拟偏晚。从云微物理特征上看,4种方案均能模拟出大气低层存在的雨水粒子,其中WDM6方案模拟的雨水含量明显较其他3种方案更多,Thompson方案模拟出更多的雪粒子和最少的霰粒子,Lin方案霰粒子南北范围广、伸展高度高,WSM6和WDM6两种方案模拟出较少的霰粒子,这两种方案模拟的云冰高度也更低,正是各种水成物空间分布的差异决定了不同微物理过程参数化方案对降水量和降水相态模拟的差异。   相似文献   

15.
陆面模式CLSM的设计及性能检验II.模式检验   总被引:5,自引:1,他引:4  
陈海山  孙照渤 《大气科学》2005,29(2):272-282
利用BOREAS,HEIFE,ARME,GAME-TIPEX等大量的陆面外场观测资料,针对不同类型的陆面过程,对所发展的陆面模式CLSM的性能进行检验.模拟结果与观测资料的对比分析表明:一方面,CLSM能够对积雪变化、干旱/半干旱地区的水热交换等特殊的陆面过程进行合理的描述;另一方面,CLSM对热带雨林地区的植被-大气相互作用、高原地气交换过程同样具有很强的模拟能力.CLSM解决了陆面模式对上述特殊下垫面描述能力有限的实际问题,保证了对特殊下垫面进行合理描述的同时,又保证了对其他不同陆面状况的模拟能力.CLSM改善了陆面模式对全球范围内不同下垫面条件下的陆面过程及地-气交换过程的模拟能力.  相似文献   

16.
 The effect of a snow cover on sea ice accretion and ablation is estimated based on the ‘zero-layer’ version sea ice model of Semtner, and is examined using a coupled atmosphere-sea ice model including feedbacks and ice dynamics effects. When snow is disregarded in the coupled model the averaged Antarctic sea ice becomes thicker. When only half of the snowfall predicted by the atmospheric model is allowed to land on the ice surface sea ice gets thicker in most of the Weddell and Ross Seas but thinner in East Antarctic in winter, with the average slightly thicker. When twice as much snowfall as predicted by the atmospheric model is assumed to land on the ice surface sea ice also gets much thicker due to the large increase of snow-ice formation. These results indicate the importance of the correct simulation of the snow cover over sea ice and snow-ice formation in the Antarctic. Our results also illustrate the complex feedback effects of the snow cover in global climate models. In this study we have also tested the use of a mean value of 0.16 Wm-1 K-1 instead of 0.31 for the thermal conductivity of snow in the coupled model, based on the most recent observations in the eastern Antarctic and Bellingshausen and Amundsen Seas, and have found that the sea ice distribution changes greatly, with the ice becoming much thinner by about 0.2 m in the Antarctic and about 0.4 m in the Arctic on average. This implies that the magnitude of the thermal conductivity of snow is of considerable importance for the simulation of the sea ice distribution. An appropriate value of the thermal conductivity of snow is as crucial as the depth of the snow layer and the snowfall rate in a sea ice model. The coupled climate models require accurate values of the effective thermal conductivity of snow from observations for validating the simulated sea ice distribution under the present climate conditions. Received: 20 November 1997/Accepted: 27 July 1998  相似文献   

17.
使用NCEP (National Centerfor Environmental Prediction) FNL (Final Operational Global Analysis)资料作为初始场和边界条件,用WRF(Weather Research and Forecasting model)模式对西太平洋超强台风“彩云”(0914)进行数值模拟,结合CloudSat卫星数据产品评估Lin、WSM6、Thompson和WDM6四种云微物理参数化方案对热带气旋模拟的适用性。结果表明:不同参数化方案模拟的环流形式区别不大,但对于热带气旋中心的最低气压模拟有差别。WSM6与WDM6模拟的热带气旋云量最多,Lin方案最少。但不同参数化方案模拟的热带气旋云系位置比较一致。不管从模拟的云冰剖面图还是剖面平均的云冰含量看,Thompson方案对云冰的模拟效果都是最优。雷达反射率强回波区域与云冰含量的高值区相对应,但高值区的强度、中心高度均大于CloudSat观测。水成物分布特征表明,Lin方案模拟的冰晶粒子与雪粒子较其他方案分布高度更高且含量偏小,雪粒子大部分由冰晶粒子碰并过程形成; Thompson方案中冰晶粒子快速向雪粒子转换导致冰晶含量非常小; WSM6方案与WDM6方案模拟的水成物分布接近,但WSM6的垂直速度明显大于WDM6方案,由雪粒子、霰粒子融化形成的雨水含量更高。   相似文献   

18.
This work analyzes the consequences of climate change in the distribution of the Mediterranean high-mountain vegetation. A study area was chosen at the Sierra de Guadarrama, in the center of the Iberian Peninsula (1,795 to 2,374 m asl). Climate change was analyzed from the record of 18 variables regarding temperature, rainfall and snowfall over the period 1951–2000. The permanence of snow cover (1996–2004), landforms stability and vegetation distribution in 5 years (1956, 1972, 1984, 1991 and 1998) were all analyzed. The Nival Correlation Level of the different vegetation classes was determined through their spatial and/or temporal relationship with several climatologic variables, snow cover duration and landforms. In order to quantify trends and major change processes, areas and percent changes were calculated, as well as Mean Annual Transformation Indices and Transition Matrices. The findings reveal that in the first part of the study period (up to the first half of the 1970s) the temperature rise in the mid-winter months caused the reduction of some classes of nival vegetation, while others expanded, favored by high rainfall, decrease in both maximum temperatures and summer aridity, and longer snow cover duration. The second part of the study period was characterized by the consolidation of the increase in all thermal variables, along with an important reduction in rainfall volume and snow cover duration. As a result, herbaceous plants, which are highly correlated with a long snow permanence and abundance of melting water, have been replaced by leguminous shrubs which grow away from the influence of snow, and which are steadily becoming denser.  相似文献   

19.
We performed a modeling study of the cloud processes in a heavy snowfall event occurring in North China on 20–22 December 2004. The nonhydrostatic Mesoscale Model (MM5) was used to carry out experiments with the Reisner-2 explicit microphysical parameterizations in four nested domains to test the sensitivity of simulated heavy snowfall to different snow intercept parameters. Results show that while the different intercept parameters do not significantly affect the accumulated snowfall amounts at the surface in either total amount or location, some microphysical characteristics of the modeled heavy snowfall event are impacted. The budget of cloud microphysics is analyzed to determine the dominant cloud processes. In the control experiment (CTL) with the snow intercept (N os) specified as a function of temperature, the primary simulated hydrometeor is snow, and its mixing ratio is an order of magnitude larger than that of the other cloud species. Relative to CTL, the experiment with a fixed intercept (CON3E6) produced lower snow mixing ratios, more cloud water and graupel mixing ratios. Among the two experiments, while snowfall is slightly smaller in CON3E6, other processes like the rate of graupel fall, condensation and evaporation of cloud water, deposition and sublimation of graupel are all larger in CON3E6 than in CTL. Among CTL, CON3E6, and two more experiments (CON2E7: with a smaller fixed intercept; and NOSQS: N os a function of snow mass mixing ratio), the budget shows that CON3E6 produces the smallest deposition and sublimation of snow, the largest deposition of cloud ice, and the largest conversion from cloud ice to snow.  相似文献   

20.
Abstract

Most water balance studies in the High Arctic indicate that the weather stations underestimate annual precipitation, but the magnitude of such error is unknown. Based on up to seven years of field measurements, this study provides a comparison of snowfall at weather stations with the winter snow accumulation in their nearby drainage basins.

Snowfall is the major form of precipitation in the polar region for nine months every year. Without vegetation, snowdrift is controlled by the local terrain. By establishing the snow characteristics for different terrain types, total basin snow storage can be obtained by areally weighting the snow cover for various terrain units in the basin. Such a method was successfully employed to compute total winter snowfall in the drainage basins near Resolute, Eureka and Mould Bay. Results show that the basins had 130 to 300per cent more snow than the weather stations recorded. Using revised snowfall values that are reinforced by Koerner's snow core measurements from ice‐caps, it is hoped that a more realistic precipitation map can be provided for the High Arctic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号