首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methyl tert -butyl ether (MTBE) and benzene have been measured since 1993 in a shallow, sandy aquifer contaminated by a mid-1980s release of gasoline containing fuel oxygenates. In wells downgradient of the release area, MTBK was detected before benzene, reflecting a chromatographic-like separation of these compounds in the direction of ground water flow. Higher concentrations of MTBE and benzene were measured in the deeper sampling ports of multilevel sampling wells located near the release area, and also up to 10 feet (3 m) below the water table surface in nested wells located farther from the release area. This distribution of higher concentrations at depth is caused by recharge events that deflect originally horizontal ground water flowlines. In the laboratory, microcosms containing aquifer material incubated with uniformly labeled 14C-MTBE under aerobic and anaerobic. Fe(III)-reducing conditions indicated a low but measurable biodegradation potential (<3%14C-MTBW as 14CO2) after a seven-month incubation period, Tert -butyl alcohol (TBA), a proposed microbial-MTBE transformation intermediate, was detected in MTBE-contaminated wells, but TBA was also measured in unsaturated release area sediments. This suggests that TBA may have been present in the original fuel spilled and does not necessarily reflect microbial degradation of MTBE. Combined, these data suggest that milligram per liter to microgram per liter decreases in MTBE concentrations relative to benzene are caused by the natural attenuation processes of dilution and dispersion with less-contaminated ground water in the direction of flow rather than biodegradation at this point source gasoline release site.  相似文献   

2.
Natural fractures in reservoirs play an important role in determining fluid flow during production and knowledge of the orientation and density of fractures is required to optimize production. Variations in reflection amplitude versus offset (AVO) are sensitive to the presence of fractures but current models used to invert the seismic response often make simplified assumptions that prevent fractured reservoirs from being characterized correctly. For example, many models assume a single set of perfectly aligned fractures, whereas most reservoirs contain several fracture sets with variable orientation within a given fracture set. In addition, many authors only consider the azimuthal variation in the small offset amplitude versus offset and azimuth response (the variation in AVO gradient with azimuth), while the effect of fractures on amplitude versus offset and azimuth increases with increasing offset. In this paper, the variation in the reflection coefficient of seismic P -waves as a function of azimuth and offset due to the presence of multiple sets of fractures with variable orientation within any fracture set is used to determine the components of a second-rank fracture compliance tensor  α ij   . The variation in the trace of this tensor as a function of position in the reservoir can be used to estimate the variation in fracture density with position in the reservoir and may be used to choose the location of infill wells in the field. The principal axes of  α ij   reveal the most compliant direction within the reservoir and may be used to optimize the trajectory of deviated wells. The determination of the principal axes of  α ij   requires wide azimuth acquisition and the use of the small-offset amplitude versus offset and azimuth (the azimuthal variation of the AVO gradient) may give misleading results.  相似文献   

3.
Ground water samples for a hydrochemical investigation were collected from 92 observation wells completed in a shallow, unconfined aquifer in southeastern North Dakota. The samples showed predominantly an increase in HCO3- (positive bias) and both a pH decrease (positive bias) and a pH increase (negative bias) from field to lab. Positive pH bias generally was associated with ground water characterized by dissolved-solids concentrations less than 400 mg/L. Negative pH bias generally was associated with ground water characterized by dissolvedsolids concentrations greater than 400 mg/L.
Observed HCO3- bias from field to lab slightly distorted ion balance distribution. Excess anions greater than 2 percent generally corresponded to increased HCO3- from field to lab.
Observed HCO3- and pH bias significantly distorted the distribution of calcite saturation indices. Samples with dissolved-solids concentrations less than 400 mg/L that generally showed a positive pH bias had a mean change in calcite saturation index of -0.214 (toward undersaturation). Samples with dissolved-solids concentrations greater than 400 mg/L that generally showed a negative pH bias had a mean change in calcite saturation of +0.132 (toward over saturation).
Calcite saturation indices were much more sensitive to observed pH bias than to observed HCO3- bias. Linear regression analysis indicates % percent of the variability in calcite saturation index change from field to lab is attributed to change in pH from field to lab. Field pH should be used to compute calcite saturation index.  相似文献   

4.
Benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons are typically the most abundant carbon source for bacteria in gasoline-contaminated ground water. In situ bioremediation strategies often involve stimulating bacterial heterotrophic production in an attempt to increase carbon demand of the assemblage. This may, in turn, stimulate biodegradation of contaminant hydrocarbons. In this study, ground water circulation wells (GCWs) were used as an in situ treatment for a fuel-contaminated aquifer to stimulate bacterial production, purportedly by increasing oxygen transfer to the subsurface, circulating limiting nutrients, enhancing bioavailability of hydrocarbons, or by removing metabolically inhibitory volatile organics. Bacterial production, as measured by rates of bacterial protein synthesis, was stimulated across the zone of influence (ZOI) of a series of GCWs. Productivity increased from ∼102 to >105 ng C/L hour across the ZOI, suggesting that treatment stimulated overall biodegradation of carbon sources present in the ground water. However, even if BTEX carbon met all bacterial carbon demand, biodegradation would account for <4.3% of the total estimated BTEX removed from the ground water. Although bacterial productivity measurements alone cannot prove the effectiveness of in situ bioremediation, they can estimate the maximum amount of contaminant that may be biodegraded by a treatment system.  相似文献   

5.
An estimation of the volume of light nonaqueous phase liquids (LNAPL) is often required during site assessment, remedial design, or litigation. LNAPL volume can be estimated by a strictly empirical approach whereby core samples, distributed throughout the vertical and lateral extent of LNAPL, are analyzed for LNAPL content, and these data are then integrated to compute a volume. Alternatively, if the LNAPL has obtained vertical equilibrium, the thickness of LNAPL in monitoring wells can be used to calculate of LNAPL in monitoring wells can be used to calculate LNAPL volume at the well locations if appropriate soil and LNAPL properties can be estimated.
A method is described for estimating key soil and LNAPL properties by nonlinear regression of vertical profiles of LNAPL saturation. The methods is relatively fast, cost effective, and amenable to quantitative analysis of uncertainty. Optionally, the method allows statistical determination of best-fit values for the Van Genuchten capillary parameters (n, αoil-water and αoil-air), residual water saturation and ANAPL density. The sensitivity of the method was investigated by fitting field LNAPL saturation profiles and then determining the variation in misfit (mean square residual) as a function of parameter value for each parameter. Using field data from a sandy aquifer, the fitting statistics were found to be highly sensitive to LNAPL density, αoil-water and αoil-air moderately sensitive to the Van Genuchten n value, and weakly sensitive to residual water saturation. The regression analysis also provides information that can be used to estimate uncertainty in the estimated parameters, which can then be used to estimate uncertainty in calculated values of specific volume.  相似文献   

6.
Electro-osmosis (EO), the movement of water through porous media in response to an electric field, offers a means for extracting contaminated ground water from fine-grained sediments, such as clays, that are not easily amenable to conventional pump-and-treat approaches. The EO-induced water flux is proportional to the voltage gradient in a manner analogous to the flux dependence on the hydraulic gradient under Darcy's law. The proportionality constant, the soil electro-osmotic conductivity or keo, is most easily measured in soil cores using bench-top tests, where flow is one-dimensional and interfering effects attributable to Darcy's law can be directly accounted for. In contrast, quantification of EO fluxes and keo in the field under deployment conditions can be difficult because electrodes are placed in ground water wells that may be screened across a heterogeneous mixture of lithologies. As a result, EO-induced water fluxes constitute an approximate radial flow system that is superimposed upon a Darcy flow regime through permeable pathways that may or may not be coupled with hydraulic head differences created by the EO-induced water fluxes. A single well comparative tracer test, which indirectly measures EO fluxes by comparing wellbore tracer dilution rates between background and EO-induced water fluxes, may provide a means for routinely quantifying the efficacy of EO systems in such settings. EO fluxes measured in field tests through this technique at a ground water contamination site were used to estimate a mean keo value through a semianalytic line source model of the electric field. The resulting estimate agrees well with values reported in the literature and with values obtained with bench-top tests conducted on a soil core collected in the test area.  相似文献   

7.
Experimental hydraulic heads and electrical (self-potential) signals associated with a pumping test were used in an inverse model to estimate the transmissivity distribution of a real aquifer. Several works reported in the literature show that there is a relatively good linear relationship between the hydraulic heads in the aquifer and electrical signals measured at the ground surface. In this experimental test field, first, the current coupling coefficient was determined by the best fit between experimental and modeled self-potential signals at the end of the pumping phase. Soon afterward, with the hydraulic heads obtained from the self-potential signals, the transmissivity distribution of the aquifer was conditioned by means an inverse model based on the successive linear estimator (SLE). To further substantiate the estimated T field from the SLE analysis, we analyzed the drawdown rate, the derivative of the drawdown with respect to the ln(t), because the drawdown rate is highly sensitive to the variability in the transmissivity field. In our opinion, these results show that self-potential signals allow the monitoring of subsurface flow in the course of pumping experiments, and that electrical potentials serve as a good complement to piezometric observations to condition and characterize the transmissivity distribution of an aquifer.  相似文献   

8.
Abstract Self-potential variations were measured to estimate the magnitude of electrokinetic and hydrological parameters (zeta potential and permeability) of the Nojima Fault zone in Awaji, Japan. The study observed self-potential variations that seemed to be associated with water flow from the injection well to the fracture zone, which were induced by turning the injection on and off. Amplitudes of the variations were a few to 0.03 V across 320–450 m dipoles. These variations can be explained well with an electrokinetic model. The quantity k/ζ (permeability/zeta potential) is in the range 1.6 × 10−13− 5.4 × 10−13 m2/V. Permeability of the Nojima fault zone can be estimated as approximately 10−16–10−15 m2 on the assumption that the zeta potential is in the range –0.01 to –0.001 V.  相似文献   

9.
Large differences in chemistry between sampling points separated In short vertical intervals are often observed in contaminant plumes in both granular and fractured aquifers. However, most regional models assume that such differences will be reduced by dispersive mixing during transport. At a field site located in a discharge area on the Oak Ridge Reservation, Tennessee, ground water flows along discrete flowpaths, as evidenced by the presence of four distinct water types—Ca-HCO3, Ca-Na-HCO3, and Na-Ca-HCO3, and Na-Ca-HCO3-S04—in samples collected from shallow (< 3D in) multilevel wells. The preservation of distinct chemical signatures suggests that ground water must he contained in discrete flow zones during much of its transport time. The chemical composition of the water types can be explained primarily by strata-bound flow over varying flowpath lengths and secondarily by mixing of waters during cross-formational flow in a discharge zone. The hydrochemical facies identified by correlation of water types between the boreholes indicate the general orientation of ground water How paths. These inferred flowpaths are oblique to the orientation of the measured hydraulic gradient and are more closely aligned with bedding and the calculated flow direction. Results of this study indicate that discrete multilevel sampling for analysis of major ions, in addition to information gathered from tracer tests, borehole flow tests. and visual core observations, can provide valuable information on flow directions and preferential flowpaths for contaminant transport.  相似文献   

10.
Pumped waters from 14 Pennsylvania wells, located in shallow sandstone, siltstone and shale aquifers, were continuously monitored for dissolved oxygen (D. O.), nitrate (NO3), pH, electrical conductivity (EC) and water temperature in a discharge manifold at the well head. The amount of pumping or purging required to stabilize these parameter readings varied by well site and parameter being analyzed. However, the purging required was generally greatest for D. O. and least for water temperature where: D. O. < NO3 pH < EC < water temperature. Wells located near the siltstone-shale interface generally required far more purging than did wells located elsewhere. Although parameter stability was often achieved within purging one bore volume, the complexity, diversity, and variability in the data and these well-ground water systems, suggest that no single purging rule is appropriate. Instead, the extent of purging required before sampling these shallow aquifers should be determined by incorporating on-site monitoring of target or related parameters into the purging process.
From a sampling perspective, the relationship between NO3 and D. O. concentrations during purging were analyzed relative to aquifer type. For most wells located in sandstone or siltstone, NO3 concentrations remained relatively constant during purging irrespective of changes in D. O. For most wells located in shale, these two were positively and similarly correlated, suggesting that a general relationship exists.  相似文献   

11.
Accurate estimation of aquifer parameters, especially from crystalline hard rock area, assumes a special significance for management of groundwater resources. The aquifer parameters are usually estimated through pumping tests carried out on water wells. While it may be costly and time consuming for carrying out pumping tests at a number of sites, the application of geophysical methods in combination with hydro-geochemical information proves to be potential and cost effective to estimate aquifer parameters. Here a method to estimate aquifer parameters such as hydraulic conductivity, formation factor, porosity and transmissivity is presented by utilizing electrical conductivity values analysed via hydro-geochemical analysis of existing wells and the respective vertical electrical sounding (VES) points of Sindhudurg district, western Maharashtra, India. Further, prior to interpolating the distribution of aquifer parameters of the study area, variogram modelling was carried out using data driven techniques of kriging, automatic relevance determination based Bayesian neural networks (ARD-BNN) and adaptive neuro-fuzzy neural networks (ANFIS). In total, four variogram model fitting techniques such as spherical, exponential, ARD-BNN and ANFIS were compared. According to the obtained results, the spherical variogram model in interpolating transmissivity, ARD-BNN variogram model in interpolating porosity, exponential variogram model in interpolating aquifer thickness and ANFIS variogram model in interpolating hydraulic conductivity outperformed rest of the variogram models. Accordingly, the accurate aquifer parameters maps of the study area were produced by using the best variogram model. The present results suggest that there are relatively high value of hydraulic conductivity, porosity and transmissivity at Parule, Mogarne, Kudal, and Zarap, which would be useful to characterize the aquifer system over western Maharashtra.  相似文献   

12.
A main purpose of groundwater inverse modeling lies in estimating the hydraulic conductivity field of an aquifer. Traditionally, hydraulic head measurements, possibly obtained in tomographic setups, are used as data. Because the groundwater flow equation is diffusive, many pumping and observation wells would be necessary to obtain a high resolution of hydraulic conductivity, which is typically not possible. We suggest performing heat tracer tests using the same already installed pumping wells and thermometers in observation planes to amend the hydraulic head data set by the arrival times of the heat signals. For each tomographic combinations of wells, we recommend installing an outer pair of pumping wells, generating artificial ambient flow, and an inner well pair in which the tests are performed. We jointly invert heads and thermal arrival times in 3-D by the quasi-linear geostatistical approach using an efficiently parallelized code running on a mid-range cluster. In the present study, we evaluate the value of heat tracer versus head data in a synthetic test case, where the estimated fields can be compared to the synthetic truth. Because the sensitivity patterns of the thermal arrival times differ from those of head measurements, the resolved variance in the estimated field is 6 to 10 times higher in the joint inversion in comparison to inverting head data only. Also, in contrast to head measurements, reversing the flow field and repeating the heat-tracer test improves the estimate in terms of reducing the estimation variance of the estimate. Based on the synthetic test case, we recommend performing the tests in four principal directions, requiring in total eight pumping wells and four intersecting observation planes for heads and temperature in each direction.  相似文献   

13.
To assess the vulnerability of ground water to contamination in the karstic Upper Floridan aquifer (UFA), age-dating tracers and selected anthropogenic and naturally occurring compounds were analyzed in multiple water samples from a public supply well (PSW) near Tampa, Florida. Samples also were collected from 28 monitoring wells in the UFA and the overlying surficial aquifer system (SAS) and intermediate confining unit located within the contributing recharge area to the PSW. Age tracer and geochemical data from the earlier stage of the study (2003 through 2005) were combined with new data (2006) on concentrations of sulfur hexafluoride (SF6), tritium (3H), and helium-3, which were consistent with binary mixtures of water for the PSW dominated by young water (less than 7 years). Water samples from the SAS also indicated mostly young water (less than 7 years); however, most water samples from monitoring wells in the UFA had lower SF6 and 3H concentrations than the PSW and SAS, indicating mixtures containing high proportions of older water (more than 60 years). Vulnerability of the PSW to contamination was indicated by predominantly young water and elevated nitrate-N and volatile organic compound concentrations that were similar to those in the SAS. Elevated arsenic (As) concentrations (3 to 19 μg/L) and higher As(V)/As(III) ratios in the PSW than in water from UFA monitoring wells indicate that oxic water from the SAS likely mobilizes As from pyrite in the UFA matrix. Young water found in the PSW also was present in UFA monitoring wells that tap a highly transmissive zone (43- to 53-m depth) in the UFA.  相似文献   

14.
A pumping test in a granite aquifer provides information about the interaction between the upper weathered zone and lower fractured zone. A radial flow numerical model is used to interpret the test and estimate aquifer parameters. This model successfully reproduces both the fractured zone response and the shallow weathered zone response which is characterised by increasing drawdown even after abstraction ceases. When the deep fractured aquifer was exploited, a serious decline in groundwater heads and yields occurred; this behaviour can be reproduced by the model. The model is then used to investigate the effective long-term exploitation of the aquifer and the results indicate that dug-cum-bore wells can be used for the safe and efficient exploitation of the aquifer resources.  相似文献   

15.
Machida I  Lee SH 《Ground water》2008,46(4):532-537
We observed long-term changes in the concentrations of dissolved ions in ground water caused by leachate from new volcanic ejecta deposited on the ground surface of the volcanic Miyakejima Island, Japan. Water samples were collected from nine wells and two rain collectors over a period of more than 10 years, and samples of runoff water were collected periodically. The samples were analyzed for temperature, pH, alkalinity, Cl, and SO42−; some of the samples were also analyzed for δ13C. Because the leachate from the volcanic ejecta contained sulfate, we recorded an increase in SO42 concentrations in the (unconfined) well water. The increase in SO42 was initially detected between less than 1.4 and 5.2 years after the eruption, showing peak concentrations from 2.4 to 6.4 years after the eruption. This delayed response reflects the transit time of downward-moving SO42 in the vadose zone, corresponding to an apparent movement rate of 0.4 to 7.2 cm/d. The rate relates to the mean recharge, represented as a fraction of local mean rainfall, and is calculated using the Cl balance method. The magnitude of the recorded increases reflects the volume of volcanic mudflow on the ground surface within the basin. For the management of ground water after an eruption, it is therefore important to know the chemical properties of the volcanic ejecta and the spatial distribution of mudflow to estimate the magnitude of the effect of ejecta on ground water quality.  相似文献   

16.
An important quantity in groundwater protection is the residence time of water in an aquifer. It relates to both the travel time of a pollutant to arrive at a well and the time span required for self-purification of a polluted aquifer after removal of pollutant inputs. Time scales for aquifers can be gained from artificial tracer experiments or from environmental tracer data, the latter offering the only realistic alternative if time scales of years or decades have to be taken into account.

Different tracers show different time scales due to their different transport mechanisms especially in the unsaturated zone. While solute tracers are moved advectively with the seepage water, gas tracers pass the unsaturated zone diffusively through the air phase. Depending on the properties of the unsaturated zone (hydraulic properties, thickness) this difference in behavior can be used to separate the subsurface transport process into the unsaturated and the saturated parts.

In a field study in Germany, SF6 and 3H were used as environmental tracers. Both have a relatively well-known input function. Interpretation of data from observation wells by a box model approach led to spatially and temporally varying residence times. This was an indication that the influence of the unsaturated zone could not be neglected. While the gas tracer SF6 shows only residence times in the saturated zone, the tracer 3H reflects the whole travel time of water including both the unsaturated and saturated zones. Using a one-dimensional plug-flow model for the unsaturated zone combined with a detailed two-dimensional flow and transport model for the saturated zone leads to a holistic and consistent interpretation of the measured tracer concentrations. The observed pattern of old water under thick loess cover and younger water under areas where the fractured basalt aquifer crops out is reproduced after adjusting only two parameters: the effective porosity of the saturated aquifer and the product of field capacity and thickness of the unsaturated zone. While the effective porosity of the saturated zone is adjusted by means of the SF6 data, the field capacity of the loess layer is adjusted by means of the 3H observations. The thickness of the unsaturated zone is deduced from geological and pedological maps. All flow data are obtained from a calibrated flow model, which is based on geological data, observed heads and pumping tests only.

The transport model for the saturated zone was calibrated by fitting the porosity by means of gaseous tracer concentrations (SF6). The combined saturated–unsaturated zone model was then calibrated by fitting the field capacity of the unsaturated zone by means of 3H concentrations. With this model it was possible to verify the observed NO3 concentrations at the drinking water wells and to develop predictions for their future development under various scenarios of fertilizer input reduction in specific areas.  相似文献   


17.
A fully instrumented physical model was designed and built to reproduce development by surging and monitor its effects during surging and after development. The model simulates a horizontal layer in a confined aquifer with control of vertical overburden pressure. An automatic apparatus produced development by surging in successive phases up to 24 hours. Aquifer tests in steady-state conditions were performed between successive phases. The paper reports the main results of three experiments performed with Johnson screens 200 mm in diameter; they had slot sizes between the D54 and D70 of the aquifer soil. This soil was placed under controlled conditions, and initial homogeneity was obtained as confirmed by initial control tests. Pore pressures (and thus hydraulic heads) were continuously monitored during development phases and aquifer tests by 22 electronic piezometers at distances between 0 and 1 m from the screen. These piezometers measured water pressures every 0.1 s when required. Solid particles passing through the screen were recovered to study the solid yield and the gradation of particles. Positive and negative values of local gradients reached values up to 400 close to the screen at the beginning of development and decreased with time of development. These high values produced high seepage forces displacing particles in the aquifer. The well yield was increased by a factor of 6 after development. These model test results confirmed empirical criteria on entrance velocity, internal stability criteria, and field values of "sand" production by development. In addition, they enabled a quantification of skin effects to be considered in interpreting an aquifer test.  相似文献   

18.
中国大陆井水温度潮汐动态的统计与调和分析   总被引:1,自引:0,他引:1  
马玉川 《地震》2014,34(2):55-64
用收集到的全国356个井水温度测点的数据, 分析了水温对地球固体潮汐的响应, 统计出 35个存在水温潮汐现象的测点。 利用Baytap-G调和分析方法, 计算了水温潮汐分波的振幅、 振幅比和相位差。 结果表明: 水温潮汐现象是一类较普遍的地球物理现象, 其机制与水位潮汐相关, 可用水动力学模式解释; 水温潮汐变化特征还受太阳辐射热、 含水层和地温的影响, 自流井水温记录潮汐现象的能力高于非自流井、 东部地区水温测点记录潮汐现象的能力高于西部, 与太阳辐射热的影响有关, 在含水层附近的水温测点, 其潮汐动态比其他井段显著, 在受地温影响较大的井段, 水温的潮汐变化幅度与水温梯度成正比; 水温的应力-应变灵敏度量级为0.01~10℃/10-6m·s-2。  相似文献   

19.
Treatability tests and cost analyses were conducted to provide objective criteria for selection of a surfactant formulation to be used for surfactant enhanced aquifer remediation (SEAR) of a tetrachloroethene (PCE)-contaminated site in Oscoda, Michigan. Two surfactant formulations, 4% Tween 80 + 500 mg/L CaCl2 and 8% Aerosol MA/IPA +15,000 mg/L NaCl + 1000 mg/L CaCl2, were considered based on their capacity to solubilize PCE and prior use in SEAR applications. Results of a two-dimensional aquifer cell experiment indicated that 53% of the released PCE was recovered after flushing with approximately 8 pore volumes of 4% Tween 80. In contrast, only 3 pore volumes of 8% Aerosol MA/IPA solution were required to recover 78% of the PCE from the two-dimensional aquifer cell, although the greater recovery of PCE was attributed, in large part, to the higher concentration of Aerosol MA. However, mobilization of PCE as free product was observed during the 8% Aerosol MA/IPA flood, which was consistent with total trapping number (NT) calculations. At the pilot-scale, SEAR treatment costs were estimated to be $222,000 and $244,000 for 4% Tween 80 and 8% Aerosol MA/IPA, respectively, which compared favorably to the estimated pump-and-treat cost of $316,000. Projected full-scale costs, based on a line-drive flushing system, were $382,000 for 4% Tween 80 and $443,000 for 8% Aerosol MA/IPA. In contrast, full-scale pump-and-treat costs were estimated to be $1,167,000. Surfactant recycling was shown to be logistically and economically infeasible at the pilot scale, and provided only a minimal cost benefit for 4% Tween 80 at the full scale. Based on the similarities in solubilization capacity and treatment cost, but substantially lower risk of PCE displacement, Tween 80 was recommended over Aerosol MA/IPA for pilot-scale testing of SEAR.  相似文献   

20.
AGalerkin finite-element model coupled with a particle tracking routine was developed to analyze the flow and transport dynamics near a high-capacity irrigation well. The model was used to compute the head distribution around the pumping well, to determine the area of influence, and to define ground water flowlines during short-term pumping periods typical of those used to collect water quality samples from high-capacity wells. In addition to hypothetical example results, the model was used to qualitatively analyze data obtained from pump-and-sample experiments conducted in an unconfined alluvial aquifer within the Platte River valley of south-central Nebraska where nitrate-nitrogen (NO3-N) contamination is prevalent.
Simulation results of both the hypothetical and field cases suggest that short-term pumping events, impact a limited volume of aquifer. The area of influence and flowlines are affected by aquifer anisotropy, pumping rate, and well construction characteristics). Ground water above or below the screened intervals does not enter a partially penetrating well in anisotropic aquifers. In aquifers where NO3-N concentration varies vertically and horizontally, waler quality samples from an irrigation, or other high-capacity, well provide only limited information about ground water contamination. A numerical model is thus recommended for calculating the area of influence and determining flowlines around high-capacity wells so that information derived from water quality samples collected at the wellhead can be better interpreted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号