首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Radio and X-ray observations are presented for three flares which show significant activity for several minutes prior to the main impulsive increase in the hard X-ray flux. The activity in this ‘pre-flash’ phase is investigated using 3.5 to 461 keV X-ray data from the Solar Maximum Mission, 100 to 1000 MHz radio data from Zürich, and 169 MHz radio-heliograph data from Nançay. The major results of this study are as follows:
  1. Decimetric pulsations, interpreted as plasma emission at densities of 109–1010 cm?3, and soft X-rays are observed before any Hα or hard X-ray increase.
  2. Some of the metric type III radio bursts appear close in time to hard X-ray peaks but delayed between 0.5 and 1.5 s, with the shorter delays for the bursts with the higher starting frequencies.
  3. The starting frequencies of these type III bursts appear to correlate with the electron temperatures derived from isothermal fits to the hard X-ray spectra. Such a correlation is expected if the particles are released at a constant altitude with an evolving electron distribution. In addition to this effect we find evidence for a downward motion of the acceleration site at the onset of the flash phase.
  4. In some cases the earlier type III bursts occurred at a different location, far from the main position during the flash phase.
  5. The flash phase is characterized by higher hard X-ray temperatures, more rapid increase in X-ray flux, and higher starting frequency of the coincident type III bursts.
  相似文献   

2.
Wang  Shujuan  Yan  Yihua  Zhao  Ruizhen  Fu  Qijun  Tan  Chengming  Xu  Long  Wang  Shijin  Lin  Huaan 《Solar physics》2001,204(1-2):153-164
25 MHz–7.6 GHz global and detailed (fine structure – FS) radio spectra are presented, which were observed in the NOAA 9077 active region for the Bastille Day (14 July 2000) flare at 10:10–11:00 UT. Besides broadband radio bursts, high-resolution dynamic spectra reveal metric type II burst, decimetric type IV burst and various decimetric and microwave FSs, such as type III bursts, type U bursts, reverse-slope (RS)-drifting burst, fiber bursts, patch and drifting pulsation structure (DPS). The peak-flux-density spectrum of the radio bursts over the range 1.0–7.6 GHz globally appears as a U-shaped signature. Analyzing the features of backbone and herringbones of the type II burst, the speeds of shock and relevant energetic electron beams were estimated to be 1100 km s−1 and 58 500 km s−1, respectively. Also the time sequence of the radio emission is analyzed by comparing with the hard X-rays (HXRs) and the soft X-rays (SXRs) in this flare. After the maxima of the X-rays, the radio emission in the range 1.0–7.6 GHz reached maxima first at the higher frequency, then drifted to the lower frequency. This comparison suggested that the flare included three successive processes: firstly the X-rays rose and reached maxima at 10:10–10:23 UT, accompanied by fine structures only in the range 2.6–7.6 GHz; secondly the microwave radio emission reached maxima accompanied by many fine structures over the range 1.0–7.6 GHz at 10:23–10:34 UT; then a decimetric type IV burst and its associated FSs (fibers) in the range 1.0–2.0 GHz appeared after 10:40 UT.  相似文献   

3.
We present a broad range of complementary observations of the onset and impulsive phase of a fairly large (1B, M1.2) but simple two-ribbon flare. The observations consist of hard X-ray flux measured by the SMM HXRBS, high-sensitivity measurements of microwave flux at 22 GHz from Itapetinga Radio Observatory, sequences of spectroheliograms in UV emission lines from Ov (T ≈ 2 × 105 K) and Fexxi (T ≈ 1 × 107 K) from the SMM UVSP, Hα and Hei D3 cine-filtergrams from Big Bear Solar Observatory, and a magnetogram of the flare region from the MSFC Solar Observatory. From these data we conclude:
  1. The overall magnetic field configuration in which the flare occurred was a fairly simple, closed arch containing nonpotential substructure.
  2. The flare occurred spontaneously within the arch; it was not triggered by emerging magnetic flux.
  3. The impulsive energy release occurred in two major spikes. The second spike took place within the flare arch heated in the first spike, but was concentrated on a different subset of field lines. The ratio of Ov emission to hard X-ray emission decreased by at least a factor of 2 from the first spike to the second, probably because the plasma density in the flare arch had increased by chromospheric evaporation.
  4. The impulsive energy release most likely occurred in the upper part of the arch; it had three immediate products:
  1. An increase in the plasma pressure throughout the flare arch of at least a factor of 10. This is required because the Fexxi emission was confined to the feet of the flare arch for at least the first minute of the impulsive phase.
  2. Nonthermal energetic (~ 25 keV) electrons which impacted the feet of the arch to produce the hard X-ray burst and impulsive brightening in Ov and D3. The evidence for this is the simultaneity, within ± 2 s, of the peak Ov and hard X-ray emissions.
  3. Another population of high-energy (~100keV) electrons (decoupled from the population that produced the hard X-rays) that produced the impulsive microwave emission at 22 GHz. This conclusion is drawn because the microwave peak was 6 ± 3 s later than the hard X-ray peak.
  相似文献   

4.
A detailed comparison is made between hard X-ray spikes and decimetric type III radio bursts for a relatively weak solar flare on 1981 August 6 at 10: 32 UT. The hard X-ray observations were made at energies above 30 keV with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission and with a balloon-born coarse-imaging spectrometer from Frascati, Italy. The radio data were obtained in the frequency range from 100 to 1000 MHz with the analog and digital instruments from Zürich, Switzerland. All the data sets have a time resolution of 0.1 s or better. The dynamic radio spectrum shows many fast drift type III radio bursts with both normal and reverse slope, while the X-ray time profile contains many well resolved short spikes with durations of 1 s. Some of the X-ray spikes appear to be associated in time with reverse-slop bursts suggesting either that the electron beams producing the radio bursts contain two or three orders of magnitude more fast electrons than has previously been assumed or that the electron beams can trigger or occur in coincidence with the acceleration of additional electrons. One case is presented in which a normal slope radio burst at 600 MHz occurs in coincidence with the peak of an X-ray spike to within 0.1 s. If the coincidence is not merely accidental and if it is meaningful to compare peak times, then the short delay would indicate that the radio signal was at the harmonic and that the electrons producing the radio burst were accelerated at an altitude of 4 × 109 cm. Such a short delay is inconsistent with models invoking cross-field drifts to produce the electron beams that generate type III bursts but it supports the model incorporating a MASER proposed by Sprangle and Vlahos (1983).  相似文献   

5.
We present observations of the solar flare on 1980 June 27, 16:14–16:33 UT, which was observed by a balloon-borne 300 cm2 phoswich hard X-ray detector and by the IKARUS radio spectrometer. This flare shows intense hard X-ray (HXR) emission and an extreme productivity of (at least 754) type III bursts at 200–400 MHz. A linear correlation was found between the type III burst rate and the HXR fluence, with a coefficient of 7.6 × 1027 photons keV–1 per type III burst at 20 keV. The occurrence of 10 type III bursts per second, and also the even higher rate of millisecond spikes, suggests a high degree of fragmentation in the acceleration region. This high quantization of injected beams, assuming the thick-target model, shows up in a linear relationship between hard X-ray fluence and the type III rate, but not as fine structures in the HXR time profile.The generation of a superhot isothermal HXR component in the decay phase of the flare coincides with the fade-out of type III production.Universities Space Research Associates.ST Systems Corporation.  相似文献   

6.
C. Mercier 《Solar physics》1976,46(2):499-500
On 1 July 1971, about ten groups of type III bursts were observed with high time resolution (10?1 sec) with the 169 MHz Nançay radioheliograph. Each group consists of two or several bursts, appearing successively from E to W in all cases, with very short delays. The analysis of successive E-W profiles allowed us to show that, for each event:
  1. the delay between maximum times of the sources was in the range 0.3–0.8 s and that their time profiles were very similar.
  2. the mutual distance between sources was ~1.5 × 105 km.
Explanations by simultaneous emission at the fundamental and harmonic of the local plasma frequency, or by reflexion of electromagnetic radiations at boundary at a dense region are shown to be inconsistent with the observations. We suggest that distinct exciters are simultaneously accelerated at low levels in very close regions and propagate upward along very widely diverging magnetic field lines. This divergence could be related to the existence of large scale magnetic connexions in the corona as revealed by XUV observations. We stress the point that this kind of structure in type III bursts groups, visible only with high time resolution, may have led in the past to erroneous conclusions concerning diameter and decay time of type III bursts because of both spatial and temporal overlapping.  相似文献   

7.
We study a solar flare that occurred on 10 September 2002, in active region NOAA 10105, starting around 14:52 UT and lasting approximately 5 minutes in the radio range. The event was classified as M2.9 in X-rays and 1N in Hα. Solar Submillimeter Telescope observations, in addition to microwave data, give a good spectral coverage between 1.415 and 212 GHz. We combine these data with ultraviolet images, hard and soft X-ray observations, and full-disk magnetograms. Images obtained from Ramaty High Energy Solar Spectroscopic Imager data are used to identify the locations of X-ray sources at different energies, and to determine the X-ray spectrum, while ultraviolet images allow us to characterize the coronal flaring region. The magnetic field evolution of the active region is analyzed using Michelson Doppler Imager magnetograms. The burst is detected at all available radio frequencies. X-ray images (between 12 keV and 300 keV) reveal two compact sources. In the 212 GHz data, which are used to estimate the radio-source position, a single compact source is seen, displaced by 25″ from one of the hard X-ray footpoints. We model the radio spectra using two homogeneous sources, and we combine this analysis with that of hard X-rays to understand the dynamics of the accelerated particles. Relativistic particles, observed at radio wavelengths above 50 GHz, have an electron index evolving with the typical soft–hard–soft behavior.  相似文献   

8.
A major radio burst at decametric frequencies at 1638 UT on June 9, 1959 is apparently a Type-IV continuum burst of the kind that drifts from high to low frequencies. We present observations of flux variations and East-West positions of the emission at both 18 and 38 MHz. The burst moves outward at a speed of about 4700 km·sec?1 at each frequency to a height of about 3 R from the sun's center and then returns to the sun. This behavior is not simultaneous at 18 MHz and 38 MHz; the outward moving phase of 18 MHz emission occurs during the return phase of 38 MHz. We suspect that a solitary Alfvén wave or shock traverses the outer corona at the time of this burst. Relativistic electrons created low in the solar atmosphere travel freely along radial lines of force up to the coronal-streamer heights of the Type-IV burst. Upon encountering the shock, the electrons emit locally intense synchrotron emission, and pass through the shock on out into interplanetary space. This model appears to be consistent with other shock front phenomena in interplanetary space and the corona. Finally, the Razin effect (Boischot and Clavelier, 1967) suggests that low-frequency cut-offs in Type-IV bursts ought to be quite constant in frequency, and not higher than between 0.4 to 4 MHz.  相似文献   

9.
A high-speed, halo-type coronal mass ejection (CME), associated with a GOES M4.6 soft X-ray flare in NOAA AR 0180 at S12W29 and an EIT wave and dimming, occurred on 9 November 2002. A complex radio event was observed during the same period. It included narrow-band fluctuations and frequency-drifting features in the metric wavelength range, type III burst groups at metric – hectometric wavelengths, and an interplanetary type II radio burst, which was visible in the dynamic radio spectrum below 14 MHz. To study the association of the recorded solar energetic particle (SEP) populations with the propagating CME and flaring, we perform a multi-wavelength analysis using radio spectral and imaging observations combined with white-light, EUV, hard X-ray, and magnetogram data. Velocity dispersion analysis of the particle distributions (SOHO and Wind in situ observations) provides estimates for the release times of electrons and protons. Our analysis indicates that proton acceleration was delayed compared to the electrons. The dynamics of the interplanetary type II burst identify the burst source as a bow shock created by the fast CME. The type III burst groups, with start times close to the estimated electron-release times, trace electron beams travelling along open field lines into the interplanetary space. The type III bursts seem to encounter a steep density gradient as they overtake the type II shock front, resulting in an abrupt change in the frequency drift rate of the type III burst emission. Our study presents evidence in support of a scenario in which electrons are accelerated low in the corona behind the CME shock front, while protons are accelerated later, possibly at the CME bow shock high in the corona.  相似文献   

10.
On 13 December 2006, some unusual radio bursts in the range 2.6?–?3.8 GHz were observed during an X3.4 flare/CME event from 02:30 to 04:30 UT in active region NOAA 10930 (S06W27) with the digital spectrometers of the National Astronomical Observatories of China (NAOC). During this event many spikes were detected with the high temporal resolution of 8 ms and high frequency resolution of 10 MHz. Many of them were found to have complex structures associated with other radio burst types. The new observational features may reflect certain emission signatures of the electron acceleration site. In this paper, we present the results of the analysis of the new observational features of the complex spikes. According to the observed properties of the spikes, we identify five classes. Their observational parameters, such as duration, bandwidth, and relative bandwidth, were determined. Most spikes had negative polarization, but spikes with positive polarization were observed during a short time interval and were identified as a separate class. Based on the analysis of observations with Hinode/SOT (Solar Optical Telescope) we suggest that the sources of the spikes with opposite polarizations were different. Combined observations of spikes and fiber bursts are used to estimate the magnetic field strength in the source.  相似文献   

11.
The radio emission of a selected number of solar active regions has been investigated with high angular resolution at two frequencies: 10 and 17 GHz. By comparing the results of the two observations the following conclusions can be drawn:
  1. The brightness temperature distribution of an active region is often composed of very bright cores of small dimension (angular extent θ?20″) imbedded in extended halos of lower brightness.
  2. The radio emission of such structures as well as the degree of polarization can be explained with a thermal process. The halos can originate by pure thermal bremsstrahlung while in the case of the very bright cores found at 10 GHz (brightness temperature T b?1–9 × 106K) the emission at the harmonics of the gyrofrequency is needed.
  相似文献   

12.
A solar flare occurring on 26 February, 1981 at 19:32 UT was observed simultaneously in hard X-rays and microwaves with a time resolution of a fraction of a second. The X-ray observations were made with the Hard X-ray Monitor on Hinotori, and the microwave observations were made at 22 GHz with the 13.7 m Itapetinga mm-wave antenna. Timing accuracy was restricted to 62.5 ms, the best time resolution obtained in hard X-rays for this burst. We find that: (a) all 22 GHz flux structures were delayed by 0.2–0.9 s relative to similar structures in hard X-rays throughout the burst duration; (b) different burst structures showed different delays, suggesting that they are independent of each other; (c) the time structures of the degree of polarization at 22 GHz precede the total microwave flux time structures by 0.1–0.5 s; (d) The time evolutions of time delays of microwaves with respect to hard X-rays and also the degree of microwave polarization show fluctuations with are not clearly related to any other time structures. If we take mean values for the 32 s burst duration, we find that hard X-ray emission precedes the degree of microwave polarization by 450 ms, which in turn precedes the total microwave flux by 110 ms.  相似文献   

13.
During March 20, 1993, from 12:00 to 16:00 UT, repeated radio burst activity was observed in the 0.8–1.2 GHz frequency range. Periods in intervals 0.1–0.5, 0.7–1.0, 2.8–3.9, 75–170 s, and 15–25 min were recognized. This long-lasting narrowband activity consisted mainly of pulsations and continua. In some intervals it was accompanied not only by spikes, broadband pulsations, and fibers in the 1–2 GHz frequency range, but also by type III and U burst activity at lower frequencies as well as by hard X-ray bursts. From several radio bursts, two characterized by different fine structures were selected and compared. The observed differences are explained by different distribution functions of superthermal electrons. The position of the 0.8–1.2 GHz radio source above the photosphere and the magnetic field in the fiber burst source were estimated to be 66 000–75 000 km and 120–135 G, respectively.Presented at te CESRA-Workshop on Coronal Magnetic Energy Release at Caputh near Potsdam in May 1994.  相似文献   

14.
C. De Jager 《Solar physics》1967,2(3):327-346
A hard solar X-ray burst was observed by J-P. Legrand on 18 September 1963, 13:56 UT, at balloon altitude. It lasted a few minutes; a steep increase was followed by an exponential decay. During its declining phase a weak radio burst was observed on 3 and 10 cm, not on longer wavelengths.Maximum radio intensity occurred two minutes after that of the X-ray burst. The X-ray and radio bursts ended almost simultaneously. Optically a small shortlived (some minutes) flare point occurred simultaneously with the X-ray burst in a magnetically interesting part of the active region of September 1963. The X-burst photons seem to have had an energy of about 0.5 MeV. The burst was therefore of a fairly rare type, since very few other bursts with similar photon energies have been detected up to now.It is suggested that a mass of gas, magnetically confined to a volume of about 5·1025 cm3 in the low corona, containing about 3·1035 electrons was accelerated to energies of about 0.5 MeV. The gas gradually expanded, partly also to higher levels. The gyro-synchrotron radiation, emitted by the plasma became observable after about two minutes. At the lower radio frequencies the radiation was absorbed by overlying undisturbed coronal matter. Quantitative computations justify this model. A detailed summary of the events, and some numerical data are given in the concluding Section 8 and in Table V.  相似文献   

15.
Correlation and spectral analysis of solar radio flux density and sunspot number near the maximum of the sunspot cycle has indicated the existence of
  1. long period amplitude modulation of the slowly varying component (SVC) of radio emission
  2. coronal storage over a period of the order of three solar rotations
  3. fast decay (one solar rotation period or less) of gyromagnetic emissions from radio sources
  4. shift in location of chromospheric sources compared to those of either the upper corona or the photosphere.
  相似文献   

16.
Kundu  M. R.  Gergely  T. E.  Kane  S. R.  Sawant  H. S. 《Solar physics》1986,103(1):153-164
We present the results of a study of the relationship of a complex meter-decameter wavelength radio burst observed with the Clark Lake E-W and N-S interferometers, with a hard X-ray burst observed with the X-ray spectrometer aboard ISEE-3. The radio burst consisted of several type III's, reverse drift type III's, a U burst, and type II and type IV bursts. The X-ray emission was also complex. The radio as well as hard X-ray emissions were observed before the flash phase of the flare; they were not always associated and we conjecture that this may constitute evidence for acceleration of electrons high in the corona. On the other hand, all components of the reverse drift burst were associated with hard X-ray subpeaks, indicating multiple injection of electron beams along field lines with different density gradients. While the type II burst appeared to be related to the hard X-ray burst, a detailed correspondence between individual features of the radio and hard X-ray burst emissions could not be found. The type IV burst started after all hard X-ray emissions ceased. Its source appeared to be a magnetic arch, presumably containing energetic electrons responsible for the gyrosynchrotron radiation of type IV.Presently at INPE/CRAAM, São Paulo, Brazil.  相似文献   

17.
J. Huang  Y. H. Yan  Y. Y. Liu 《Solar physics》2008,253(1-2):143-160
We have selected 27 solar microwave burst events recorded by the Solar Broadband Radio Spectrometer (SBRS) of China, which were accompanied by M/X class flares and fast CMEs. A total of 70.4% of radio burst events peak at 2.84 GHz before the peaks of the related flares’ soft X-ray flux with an average time difference of about 6.7 minutes. Almost all of the CMEs start before or around the radio burst peaks. At 2.6?–?3.8 GHz bandwidth, 234 radio fine structures (FSs) were classified. More often, some FSs appear in groups, which can contain several individual bursts. It is found that many more radio FSs occur before the soft X-ray maxima and even before the peaks of radio bursts at 2.84 GHz. The events with high peak flux at 2.84 GHz have many more radio FSs and the durations of the radio bursts are independent of the number of radio FSs. Parameters are given for zebra patterns, type III bursts, and fiber structures, and the other types of FSs are described briefly. These radio FSs include some special types of FSs such as double type U bursts and W-type bursts.  相似文献   

18.
We present a new method of estimating the energy of microwave-emitting electrons from the observed rate of increase of the microwave flux relative to the hard X-ray flux measured at various energies during the rising phase of solar flares. A total of 22 flares observed simultaneously in hard X-rays (20–400 keV) and in microwaves (17 GHz) were analyzed in this way and the results are as follows:
  1. The observed energy of X-rays which vary in proportion to the 17 GHz emission concentrates mostly below 100 keV with a median energy of 70 keV. Since the mean energy of electrons emitting 70 keV X-rays is ?130 keV or ?180 keV, depending on the assumed hard X-ray emission model (thin-target and thick-target, respectively), this photon energy strongly suggests that the 17 GHz emission comes mostly from electrons with an energy of less than a few hundred keV.
  2. Correspondingly, the magnetic field strength in the microwave source is calculated to be 500–1000 G for the thick-target case and 1000–2000 G for the thin-target case. Finally, judging from the values of the source parameters required for the observed microwave fluxes, we conclude that the thick-target model in which precipitating electrons give rise to both X-rays and microwaves is consistent with the observations for at least 16 out of 22 flares examined.
  相似文献   

19.
The temporal association between the kinematic parameters of chromospheric dark features (DF) and the production of radio type-III bursts is investigated during a period of five months. The Doppler shifts inside six different DF are measured by means of the Meudon Multichannel Subtracting Double Pass Spectrograph (MSDP) during periods of some minutes around 24 type-III bursts. The position of the radio bursts has been checked to be associated with the same active region observed by MSDP, by using the Nançay Radioheliograph. It appears that 23 out of 24 bursts take place when the DF is totally or predominantly blue-shifted. In 18 out of 21 cases, a maximum of the outward velocity is observed in the optical image closest in time to the radio burst. The following peculiarities are also shown by the analyzed DF:
  1. All of them present a lengthened shape, in most cases pointing toward a sunspot: a bright region coinciding with a parasitic polarity is observed in between.
  2. Horizontal velocities along the DF major axis are often observed, always in a direction opposite to the sunspots.
This association is interpreted by assuming that a shock wave, generated by the moving chromospheric material, is able to accelerate coronal electrons (according to a mechanism proposed by Leroy and Mangeney, 1984) thus producing type-III bursts.  相似文献   

20.
This article describes the observations of a type III radio burst observed at 103 MHz simultaneously by the two radio telescopes situated at Rajkot (22.3°N, 70.7°E) and Thaltej (23°N, 72.4°E). This event occurred on September 30, 1993 at about 0430 UT and lasted for only half a minute. The event consisted of several sharp spikes in a group. The rise and fall time of these are comparable, however the peaks of individual spikes varied by a factor of four. The comparison of these observations with the data of solar radio spectrograph HiRAS indicates that this was a metric radio burst giving highest emission at about 103 MHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号