首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
亚洲—太平洋夏季风系统的基本模态特征分析   总被引:5,自引:1,他引:4  
刘芸芸  丁一汇 《大气科学》2012,36(4):673-685
亚洲—太平洋季风区各季风子系统间的相互作用对季风区甚至全球的气候变化都有着显著的影响.整个亚洲—太平洋夏季风系统都处于高层辐散、低层辐合的庞大辐散环流中,从高层辐散中心流出的三支气流分别对推动印度夏季风、东亚副热带夏季风和南海夏季风起着重要的作用,很好地表现了亚洲—太平洋夏季风系统的整体性特征.季风区多种气象要素的基本模态在年代际和年际尺度上都表现出较为一致的变化特征:年代际尺度上亚洲—太平洋夏季风系统整体呈现减弱趋势;年际尺度上存在准2年和准4年的两个周期,其中准2年振荡特征表现为若印度西南季风偏强,则印度季风雨带偏强偏北,导致印度大陆中北部地区降水偏多;同时,由于西太平洋副热带高压的北移和偏强的印度西南季风显著向东延伸,10°N~30°N范围内的西北太平洋地区则表现为异常的气旋性环流,而30°N~50°N之间为反气旋性环流异常,对应东亚夏季风偏强,季风雨带能够北推至我国华北地区.也就是说,当亚洲夏季风中某一季风子系统表现为异常偏强时,另一季风子系统在这一年中也将表现为异常偏强,反之亦然.准2年的振荡周期可能是亚洲—太平洋夏季风系统的一种固有振荡,它从年际尺度上反映了亚洲—太平洋夏季风受热带太平洋—印度洋海温的强迫表现出明显的整体一致特征.  相似文献   

2.
利用1979-2013年夏季全球2.5°×2.5°逐日环流资料和中国气象站点降水观测资料,采用动力学因子(西南风)与热力学因子(Radiation Longwave covting,OLR)相结合定义了标准化的亚洲热带夏季风指数(Tropical Summer Monsoon Index,TSMI).结果 表明,该指数...  相似文献   

3.
有关东亚夏季风北边缘的定义及其特征   总被引:9,自引:1,他引:8  
采用欧洲中心(ECMWF)44年冉分析(ERA40)日总可降水量(TPW)资料,用标准化可降水量指数(NPWI)定义了夏季风北边缘,并进一步研究了亚洲夏季风北边缘的气候特征及其年际、年代际变化特征.结果表明,用标准化町降水量指数定义的夏季风北边缘在哑洲可以确定出印度夏季风系统和东亚夏季风系统;就夏季风北边缘的平均位置而言,其在100°E以西沿青藏高原南侧呈东一西走向,年际变化极小;在100°E以东呈东北-西南走向,从青藏高原东侧北上经西北地区东部、华北地区北部、东北地区西部延伸到东北亚地区,并存在明显的年际、年代际变化.  相似文献   

4.
亚洲热带夏季风的首发地区和机理研究   总被引:28,自引:5,他引:28  
文中分析了多年逐候平均 85 0hPa风场和黑体辐射温度等物理量的时空演变 ,结果表明 ,90°E以东的孟加拉湾、中南半岛和南海是亚洲热带夏季风首先爆发的地区 ,爆发时间在 2 7~ 2 8候 ,具有突发性和同时性。 90°E以西的印度半岛和阿拉伯海是热带夏季风爆发较晚的地区 ,季风首先在该区 10°N以南爆发 ,时间约在 30~ 31候 ,然后向北推进 ,6月末在全区建立 ,爆发过程具有渐进性。机制分析表明 ,由于 110~ 12 0°E的中高纬东亚大陆在春季和初夏地面感热通量、温度和气压的迅速变化 ,使热带低压带首先在该处冲破高压带 ,生成大陆低压 ,并引导西南气流在 90°E以东地区首先建立。在 90°E以西的印度半岛地区 ,地面感热通量在 4~ 5月间几乎没有明显变化 ,因而印度季风比南海季风晚爆发约 1个月。由此得出 ,90°E是东亚夏季风和南亚夏季风的分界线。此外 ,还着重探讨了南亚高压的季节变化与亚洲热带夏季风爆发的时间联系。发现南亚高压中心位置与亚洲热带夏季风爆发时间有较好的对应关系。南亚高压中心跳过 2 0°N时 ,南海夏季风爆发 ,跳过 2 5°N时 ,印度夏季风在其南部爆发。将用上述方法确定的爆发时间与用其他方法确定的爆发时间相比较 ,发现它们在南海地区有较好的一致性 ,在印度地区略有差异。  相似文献   

5.
东亚夏季风北界与我国夏季降水关系的研究   总被引:5,自引:1,他引:4  
李春  韩笑 《高原气象》2008,27(2):325-330
为了研究东亚夏季风北界与我国东部夏季降水异常的关系,本文利用夏季850 hPa上20°N以北105°~125°E之间平均南风风速2 m/s所在的纬度,定义了一个新的东亚夏季风北界指数。初步分析表明:东亚夏季风北界在1976年之前(含1976年)位置偏北,而1976年之后位置偏南,具有明显的年代际变化,较好地反映了我国东部夏季降水异常分布型的变化。对应于东亚夏季风北界的异常,东亚夏季风强度、西北太平洋副热带高压位置与面积、亚洲大陆热低压等也发生了相应的变化,它们之间的关系如下:东亚夏季风北界位置偏北(南)时,对流层低层亚洲大陆热低压偏强(弱),东亚夏季风偏强(弱),西北太平洋副热带高压位置偏北(南)、面积偏小(大),南亚高压偏弱(强),长江中下游地区气流以下沉(上升)为主,降水偏少(多);华北地区气流以上升(下沉)为主,降水偏多(少)。  相似文献   

6.
东亚夏季风强度的变化与中国雨带和旱涝分布密切相关。为了做好东亚夏季风强度的短期气候预测,采用小波分析、Lanczos滤波器、交叉检验等方法,研究了东亚夏季风强度的多尺度变化特征,在年际与年代际尺度上分别寻找了它在前冬海温场、200 hPa纬向风场上的前兆信号,并利用最优子集回归建立了东亚夏季风强度的多尺度统计物理预测模型。结果表明:东亚夏季风强度存在准4年、准13年和准43年的周期振荡。年际尺度上,前冬赤道东太平洋(10°N~10°S,160°W~80°W)海温与东亚夏季风强度有最强的显著负相关,且它与东亚夏季风强度在200 hPa纬向风场上的前兆信号有较强的负相关;年代际尺度上,南半球60°S与35°S附近200 hPa纬向风之差与东亚夏季风强度有最强的显著正相关,且它与东亚夏季风强度在热带印度洋、低纬度东南太平洋、低纬度南大西洋的海温及亚洲副热带200 hPa纬向风等前兆信号有强的正相关。通过探讨这两个前兆因子对东亚夏季风强度的预测意义,揭示了他们影响东亚夏季风强度年际和年代际变化的可能物理过程。所建立的东亚夏季风强度多尺度最优子集回归预测模型,不仅对东亚夏季风强度的年际变化具有较好的预测能力,而且对异常极值年份也具有一定的预测能力。  相似文献   

7.
利用NCEP/NCAR再分析资料,分析了夏季索马里急流和105°E越赤道气流变化的异同及它们与亚洲夏季风的关系.结果表明:两者强度的年际变化、年代际变化、突变时间及周期都明显不同;两者的年际变化在某些年代显示出很强的负相关关系;索马里急流与亚洲夏季风的南亚夏季风、东亚副热带夏季风和南海夏季风有很好的相关关系,而105°E越赤道气流仅与南海夏季风关系密切;两支越赤道气流对亚洲夏季风系统各成员的影响存在明显差异.  相似文献   

8.
利用NOAA向外长波辐射(OLR)、NCEP/NCAR再分析资料和CN05.1降水资料,研究了南亚和东亚热带夏季风强度年际变化关系,及其强弱不同配置对中国夏季降水的影响。结果表明:南亚和东亚热带夏季风强度变化之间存在同相和反相两种配置,定义的强度同相和反相变化指数可以很好地表征该关系。同相变化模态可能与海温异常时的强El Nino(La Nina)影响有关,其反相变化模态受El Nino(La Nina)以及印度洋海盆一致模的影响,同时西太平洋副热带高压和伊朗高压位置东西偏移和强度变化也影响着不同配置的出现。两者不同配置时,对中国夏季降水的影响不同。当变化呈同相偏强时,夏季中国东部地区降水为“中间少南北多”的雨型。当变化呈反相,东亚热带夏季风偏强南亚夏季风偏弱时,夏季中国东部地区降水为“一致偏少”雨型。  相似文献   

9.
水成物分析及在数值模式中的应用综述   总被引:3,自引:4,他引:3  
利用NCEP/NCAR逐候再分析资料,定义并计算了反映亚洲夏季风系统中各成员变化活动的指标参数,在此基础上用时滞相关分析方法,对亚洲夏季风系统诸成员与西太平洋副高面积指数的相关性进行了诊断分析,给出了夏季风系统成员之间相互影响、相互制约的基本作用过程。分析结果表明,亚洲夏季风系统成员与西太平洋副高指数之间存在着不同程度的显著时滞相关,各系统成员与西太平洋副高相互作用、互为反馈,构成了亚洲夏季风系统有机的活动整体。  相似文献   

10.
东亚夏季风指数的年际变化与东亚大气环流   总被引:66,自引:9,他引:66  
文中从夏季东亚热带、副热带环流系统特点出发 ,定义了能较好表征东亚夏季风环流年际变化的特征指数 ,并分析了东亚夏季风指数的年际变化与东亚大气环流及夏季中国东部降水的关系。文中定义的东亚夏季风指数既反映了夏季东亚大气环流风场的变化特征 ,也较好地反映了夏季中国东部降水的年际变化特征。此外 ,还探讨了东亚夏季风指数变化的先兆信号  相似文献   

11.
东亚冬季风异常的空间结构及与海陆热力差异的联系   总被引:7,自引:0,他引:7  
对NCEP/NCAR再分析资料采用经验正交函数和奇异谱分析方法研究东亚冬季风异常的空间结构和时间变率,在进行相关分析的基础上用奇异值分解方法研究东亚冬季风异常与海陆热力差异的联系。分析结果表明:在东亚季风区内冬季风异常有明显的地理差异,根据经向风的气修平均图及均方差图上极值中心的位置、形态,确定三个区域。WM1、WM2、WM3区为东亚冬季风的三个子系统,分别位于南海、东海、日本海上。三个子系统强度的年际、年代际变率都不同。近40aWM3区冬季风呈减弱趋势,而WM1、WM2区冬季风没有明显的减弱趋势,不同地区海陆热力差异明显不同子系统的强度,WM1、WM2区冬季风与热带西太平洋海温相关紧密,WM3区冬季风与高纬度海陆热力差异相关密切。  相似文献   

12.
热带太平洋印度洋海温异常对亚洲夏季风影响的数值研究   总被引:1,自引:1,他引:1  
利用L9R15气候谱模式,就热带太平洋-印度洋夏季海温异常对亚洲夏季风的影响进行了数值研究。结果表明,夏季热带太平洋和印度洋海温正异常时,不仅能造成热带地区大气环流和降水的同时性响应,还能导致东亚夏季风和南亚夏季风的一致减弱,两者的影响是同号的,但并不是两者单独影响的线性叠加,由此给出了亚洲夏季风与热带太平洋-印度洋海气系统的同期关系。  相似文献   

13.
Recent advances in studies on the interaction between the East Asian monsoon and the ENSO cycle are reviewed in this paper. Through the recent studies, not only have the responding features and processes of the East Asian winter and summer monsoon circulation anomalies and summer rainfall anomalies in East Asia to the ENSO cycle during its different stages been understood further, but also have the thermal and dynamic effects of the tropical western Pacific on the ENSO cycle been deeply analyzed from the observational facts and dynamic theories. The results of observational and theoretical studies showed that the dynamical effect of the atmospheric circulation and zonal wind anomalies in the lower troposphere over the tropical western Pacific on the ENSO cycle may be through the excitation of the equatorial oceanic Kelvin wave and Rossby waves in the equatorial Pacific. These studies demonstrated further that the ENSO cycle originates from the tropical western Pacific. Moreover, these recent studies also showed that the atmospheric circulation and zonal wind anomalies over the tropical western Pacific not only result from the air-sea interaction over the tropical western Pacific, but are also greatly influenced by the East Asian winter and summer monsoons. Additionally, the scientific problems in the interaction between the Asian monsoon and the ENSO cycle which should be studied further in the near future are also pointed out in this paper.  相似文献   

14.
用过程透雨量确定的东亚夏季风北边缘特征   总被引:11,自引:1,他引:10       下载免费PDF全文
利用1951—2006年全国715个站逐日降水资料及NCEP/NCAR逐日和月平均再分析资料, 以农作物生长角度为出发点, 采用过程透雨量 (20 mm) 标准确定4—10月出现6次及6次以上过程透雨量作为东亚夏季风区, 以北边缘历年波动范围确定夏季风边缘带, 根据连续透雨过程达到无旱标准来判断东亚夏季风的开始时间。主要分析了夏季风北边缘的年际、年代际变化特征和夏季风边缘带的变化范围以及夏季风边缘的推进过程和北边缘变化机制及其对我国降水的影响。结果表明:透雨标准较好地确定了边缘带位置, 夏季风北边缘呈现向南偏移的趋势, 边缘带范围有所扩大; 北边缘变化与偏南风强弱和水汽输送联系紧密, 并且对我国雨带的分布以及北方降水有一定影响, 北边缘偏北, 雨带偏北, 则华北降水偏多。  相似文献   

15.
In this study, the relationship between the subsystems of Asian summer monsoon is analyzed using U.S. National Centers for Environmental Protection/National Center for Atmospheric Research reanalysis and Climate Prediction Center Merged Analysis of Precipitation monthly mean precipitation data. The results showed that there is significant correlation between the subsystems of Asian summer monsoon. The changes of intensity over the same period show that weak large-scale Asian monsoon, Southeast Asia monsoon and South Asian monsoon are associated with strong East Asian monsoon and decreasing rainfall in related areas. And when the large-scale Asian monsoon is strong, Southeast Asia and South Asia monsoons will be strong and precipitation will increase. While the Southeast Asia monsoon is strong, the South Asia monsoon is weak and the rainfall of South Asia is decreasing, and vice versa. The various subsystems are significantly correlated for all periods of intensity changes.  相似文献   

16.
In order to better understand the evolution of the Afro-Asian monsoon in the early Holocene, we investigate the impact on boreal summer monsoon characteristics of (1) a freshwater flux in the North Atlantic from the surrounding melting ice sheets and (2) a remnant ice sheet over North America and Europe. Sensitivity experiments run with the IPSL_CM4 model show that both the meltwater flux and the remnant ice sheets induce a cooling of similar amplitude of the North Atlantic leading to a southward shift of the Inter-Tropical Convergence Zone over the tropical Atlantic and to a reduction of the African monsoon. The two perturbations have different impacts in the Asian sector. The meltwater flux results in a weakening of the Indian monsoon and no change in the East Asian monsoon, whereas the remnant ice sheets induce a strengthening of the Indian monsoon and a strong weakening of the East Asian monsoon. Despite the similar coolings in the Atlantic Ocean, the ocean heat transport is reduced only in the meltwater flux experiment, which induces slight differences between the two experiments in the role of the surface latent heat flux in the tropical energetics. In the meltwater experiment, the southward shift of the subtropical jet acts to cool the upper atmosphere over the Tibetan Plateau and hence to weaken the Indian monsoon. In the ice sheet experiment this effect is overwhelmed by the changes in extratropical stationary waves induced by the ice sheets, which are associated with a larger cooling over the Eurasian continent than in the meltwater experiment. However these sensitivity experiments suggest that insolation is the dominant factor explaining the relative changes of the African, Indian and East Asian monsoons from the early to the mid-Holocene.  相似文献   

17.
A 5-level spectral AGCM (ImPKU-5LAGCM) is used to examine the sensitivity of the simulated results of the summer monsoon rainfall and circulation in East Asia to different cumulus parameterization schemes in the climatological-mean case and in the cases of weak and strong Asian summer monsoons,respectively. The results simulated with the Arakawa-Schubert's(hereafter A-S's), Kuo's and Manabe's cumulus parameterization schemes show that these simulated distributions of the summer monsoon rainfall and circulation in East Asia depend strongly on the cumulus parameterization schemes either in the climatological-mean case or in the cases of weak and strong Asian summer monsoons. From the simulated results, it might be shown that the Kuo scheme appears to be more suitable for the simulation of the summer monsoon rainfall and circulation in East Asia than the A-S scheme or the Manabe scheme, although the A-S scheme is somewhat better in the simulations of the tropical rainfall. This might be due to that the Kuo's cumulus parameterization scheme is able to reflect well the characteristics of rainfall cloud system in the East Asian summer monsoon region, where the rainfall system used to be a mixing of cumulus and stratus.  相似文献   

18.
The Webster and Yang monsoon index (WYI)-the zonal wind shear between 850 and 200 hPa was calculated and modified on the basis of NCEP/NCAR reanalysis data. After analyzing the circulation and divergence fields of 150-100 and 200 hPa, however, we found that the 200-hPa level could not reflect the real change of the upper-tropospheric circulation of Asian summer monsoon, especially the characteristics and variation of the tropical easterly jet which is the most important feature of the upper-tropospheric circulation. The zonal wind shear U850-U(150 100) is much larger than U850-U200, and thus it can reflect the strength of monsoon more appropriately. In addition, divergence is the largest at 150 hPa rather than 200 hPa, so 150 hPa in the upper-troposphere can reflect the coupling of the monsoon system. Therefore, WYI is redefined as DHI, i.e., IDH=U850* - U(150 100)*, which is able to characterize the variability of not only the intensity of the center of zonal wind shear in Asia, but also the monsoon system in the upper and lower troposphere. DHI is superior to WYI in featuring the long-term variation of Asian summer monsoon as it indicates there is obvious interdecadal variation in the Asian summer monsoon and the climate abrupt change occurred in 1980. The Asian summer monsoon was stronger before 1980 and it weakened after then due to the weakening of the easterly in the layer of 150-100 hPa, while easterly at 200 hPa did not weaken significantly. After the climate jump year in general, easterly in the upper troposphere weakened in Asia, indicating the weakening of summer monsoon; the land-sea pressure difference and thermal difference reduced, resulting in the weakening of monsoon; the corresponding upper divergence as well as the water vapor transport decreased in Indian Peninsula, central Indo-China Peninsula, North China, and Northeast China, indicating the weakening of summer monsoon as well. The difference between NCEP/NCAR and ERA-40 reanalysis data in studying the intensity and long-term variation of Asian summer monsoon is also compared in the end for reference.  相似文献   

19.
In terms of the NCAR Community Climate Model (CCM3),the effect of the Indian Peninsula on the course of the Asian tropical summer monsoon is simulated in this paper,and numerical experimental results show that the Indian Peninsula plays a critical role in the establishment process of the Asian tropical summer monsoon.When the CCM3 includes the Indian Peninsula,the model successfully simulates out the course of the Asian tropical summer monsoon,i.e.the South China Sea (SCS) summer monsoon at first bursts in middle May,while the Indian monsoon just establishes until middle June.However when the Indian Peninsula topography is deleted in the model,the Indian and SCS summer monsoons almost simultaneously establish in late May.Numerical results further indicate that in the former experiment the sensible heating of the Indian Peninsula warms the air above and produces evident temperature contrast between the peninsula and its adjacent SCS and Bay of Bengal (BOB).which results in the strengthening and maintenance of the BOB trough in the low-middle layer of the troposphere in the end of spring and early summer and thus the earliest establishment of the Asian tropical summer monsoon in the SCS in middle May.However,the Indian summer monsoon just establishes until middle June when the strong west wind over the Arabian Sea shifts northwards and cancels out the influence of the northwest flow behind the BOB trough.In the latter experiment the effect of Tibetan Plateau only produces a very weak BOB trough,and thus the SCS and Indian summer monsoons almost simultaneously establish.  相似文献   

20.
In terms of the NCAR Community Climate Model (CCM3),the effect of the Indian Peninsulaon the course of the Asian tropical summer monsoon is simulated in this paper,and numericalexperimental results show that the Indian Peninsula plays a critical role in the establishmentprocess of the Asian tropical summer monsoon.When the CCM3 includes the Indian Peninsula,the model successfully simulates out the course of the Asian tropical summer monsoon,i.e.theSouth China Sea (SCS) summer monsoon at first bursts in middle May,while the Indian monsoonjust establishes until middle June.However when the Indian Peninsula topography is deleted in themodel,the Indian and SCS summer monsoons almost simultaneously establish in late May.Numerical results further indicate that in the former experiment the sensible heating of the IndianPeninsula warms the air above and produces evident temperature contrast between the peninsulaand its adjacent SCS and Bay of Bengal (BOB).which results in the strengthening and maintenanceof the BOB trough in the low-middle layer of the troposphere in the end of spring and early summerand thus the earliest establishment of the Asian tropical summer monsoon in the SCS in middleMay.However,the Indian summer monsoon just establishes until middle June when the strongwest wind over the Arabian Sea shifts northwards and cancels out the influence of the northwestflow behind the BOB trough.In the latter experiment the effect of Tibetan Plateau only produces avery weak BOB trough,and thus the SCS and Indian summer monsoons almost simultaneouslyestablish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号