首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results of electron microprobe and microthermometric studies of samples collected from the Bouvet Triple Junction Region (BTJR) during a joint Russian-Italian geological expedition on the R/V Academician Nikolaj Strakhov (1994) have revealed new data on the composition of basaltic magmas and oceanic hydrothermal fluids connected with magmatic processes. Detailed analysis of basaltic glasses shows that the modem Mid-Atlantic Ridge (MAR) rift valley is composed of normal mid-ocean ridge basalts with low concentrations of K2 O and TiOz (N-MORB), while its flanks are more enriched with these components approaching E-MORB. A marked influence of the Bouvet hot spot volcanism on magma generation on the South-West Indian Ridge (SWIR) near Bouvet Island is observed. Basaltic melts in this area belong to alkalic and transitional series and have maximum contents of K2O, TiO2, H2O.
Microthermometric analyses of fluid inclusions in the samples from the BTJR have revealed major differences in the oceanic hydrothermal fluid systems on the MAR and near SWIR, which depends on the peculiarities of magma. In the area of the MAR (with dry melts) only H2O solution inclusions in quartz were found; thus, seawater is probably the only primary source of hydrothermal fluids (NaCl + MgCl2+ H2O; T = 170–200°C). In the SWIR area (with the high content of water in melts) syngenetic liquid CO2 and H2O solution inclusions in quartz indicate the influence of the magmatic fluid component on the ore-forming water/carbon dioxide solutions (NaCl + CaC12+ H2O + CO2; T = 200–310 °C; P = 900–1700 bar).  相似文献   

2.
Calc-silicate granulites from the Bolingen Islands, Prydz Bay, East Antarctica, exhibit a sequence of reaction textures that have been used to elucidate their retrograde P–T path. The highest temperature recorded in the calc-silicates is represented by the wollastonite- and scapolite-bearing assemblages which yield at least 760°C at 6 kbar based on experimental results. The calc-silicates have partially re-equilibrated at lower temperatures (down to 450°C) as evidenced by the successive reactions: (1) wollastonite + scapolite + calcite = garnet + CO2, (2) wollastonite + CO2= calcite + quartz, (3) wollastonite + plagioclase = garnet + quartz, (4) scapolite = plagioclase + calcite + quartz, (5) garnet + CO2+ H2O = epidote + calcite + quartz, and (6) clinopyroxene + CO2+ H2O = tremolite + calcite + quartz.
The reaction sequence observed indicates that a CO2 was relatively low in the wollastonite-bearing rocks during peak metamorphic conditions, and may have been further lowered by local infiltration of H2O from the surrounding migmatitic gneisses on cooling. Fluid activities in the Bolingen calc-silicates were probably locally variable during the granulite facies metamorphism, and large-scale CO2 advection did not occur.
A retrograde P–T path, from the sillimanite stability field ( c. 760°C at 6 kbar) into the andalusite stability field ( c. 450°C at <3 kbar), is suggested by the occurrence of secondary andalusite in an adjacent cordierite–sillimanite gneiss in which sillimanite occurs as inclusions in cordierite.  相似文献   

3.
The equilibrium constant, K a, of the association reaction to form ion pairs from charged solute species in supercritical solutions can be calculated from a model based on published equations. Log K a at constant pressure is a linear function of the inverse in the dielectric constant of the fluid times temperature. The dielectric properties of H2O and CO2 at supercritical pressures and temperatures can also be evaluated using the Kirkwood equation. Using Looyenga mixing rules, the dielectric constant of H2O–CO2 mixtures can be obtained and the change in log K a with addition of CO2 in aqueous solutions evaluated. These changes in log K a with addition of CO2 are consistent with measured changes of log K a with addition of Ar in supercritical H2O–Ar solutions.
Log K a of KCl and NaCl increase to an increasing extent as the mole fraction of CO2 increases in H2O–CO2 solutions. For instance, at 2 kbar and constant temperature between 400 and 600° C, log K a of KCl increases by about two orders of magnitude whilst that of NaCl increases by over four orders of magnitude as the CO2 mole fraction increases from 0.0 to 0.35. Such changes in log K a will have dramatic effects on the solubility of minerals in CO2-rich environments.  相似文献   

4.
Abstract. Laser Raman microprobe analysis was performed on the fluid inclusions from the Honko-Sanjin zone in the Hishikari epithermal gold deposit, southern Kyushu, Japan. Gas concentrations of fluid inclusions through the zone were below detection limits (e.g., 5 mmole/kg H2O for CO2), with an exception at shallow portion in which the CO2/N2 mole ratio was determined to be 5.3. Boiling of hydrothermal solutions probably separated gases from ore fluids at the deep portion of the deposit, and migration of gases to shallow portion resulted in CO2-rich steam-heated water and related acid alteration.  相似文献   

5.
Abstract Late Archaean orthogneisses and aluminous and iron-rich metasedimentary rocks intruded by anorthosite and a ferrodiorite-granite suite were completely recrystallized during Proterozoic granulite facies metamorphism. Geobarometry and geothermometry indicate P-T conditions of around 7.5kbar. 700°C, with a CO2-rich fluid phase and logfO2 at or below -16. A two-stage high-grade history of near isochemical corona growth is preserved in metasediments with the reaction cycle opx + plag + H2O → hbl+gar+SiO2→ opx+plag+H2O. End product compositions resemble those of the initial phases, and the only mobile components were SiO2 and/or H2O. The coronas reflect shortlived fluctuations in chemical activity at essentially constant P and T, contrary to simple progressive change in equilibrium parameters recorded by most corona-bearing textures.  相似文献   

6.
Abstract Two Archaean synvolcanic stocks with contact aureoles occur in the Wawa greenstone belt near Wawa, Ontario, Canada. The Gutcher Lake and Jubilee stocks consist mainly of granitoid trondhjemite with feldspar laths mottled by white mica + calcite + epidote and rimmed by clear albite. Biotite is partly or wholly pseudomorphosed by chlorite + sphene; some epidote is partly altered to calcite + chlorite. The granitoid phase grades into a foliated phase of quartz + albite + white mica + calcite + chlorite near fracture zones traversing the stocks.
The alteration of the Gutcher Lake stock along its foliated margin involved addition of K2O, H2O + CO2, MnO, plus Rb; loss of CaO plus Sr; and a shift in Fe+2/Fet from 0.66 to 0.81. The alteration of the Jubilee stock along the Darwin Shear involved addition of H2O + CO2; loss of Sr; and no significant shift in Fe+2/Fet. The greenschist alteration also modified the contact aureoles bordering both stocks.
One interpretation is that regional metamorphism in the Archaean overprinted a greenschist assemblage on both stocks. The alteration was intense near fracture zones and sporadic remote from fractures. Lower integrated water to rock ratios along the Darwin Shear compared to the margin of the Gutcher Lake stock may explain the comparatively lower perturbation of the element abundances and redox state of iron.  相似文献   

7.
Abstract Andalusite-bearing veins formed during contact metamorphism in the aureole of the Vedrette di Ries tonalite. In the veins, quartz crystals that are completely armoured by andalusite or that occur in strain shadow areas contain three generations of fluid inclusions: low-salinity H2O-CO2-CH4 mixtures with CH4/(CO2+ CH4) ± 0.35 (type A); low-salinity aqueous fluids (type B); H2O-free, CO2-CH4 fluids with the same carbonic speciation as A (type C). Carbonic types A and C typically have a dark appearance, which is attributed to graphite coatings on inclusion walls. Microstructural analysis of the host quartz and calculated densities indicate that type A inclusions were likely trapped during vein formation. These inclusions underwent strain-assisted re-equilibration during cooling that resulted in density increases without change of composition. After the rocks had cooled below about 350 ° C, type C inclusions appear to have formed from one of the immiscible fractions after unmixing of the H2O-CO2-CH4 fluid mixtures. Aqueous type B inclusions, apparently trapped between 225 and 350 ° C, could represent an independent fluid, or could be the H2O-rich fraction of unmixed type A fluids. Taking account of the uncertainties, the composition and density of the complex type A inclusion fluids are in good agreement with the properties of primary fluids calculated from the petrological data. The fluid inclusion data support the model of vein formation by hydrofracturing as a result of dehydration of graphitic metapelites. These new results also demonstrate the importance of considering strain in the interpretation of metamorphic fluid inclusions.  相似文献   

8.
High-density CO2-rich fluid inclusions from a sapphirine-bearing granulite (Hakurutale, Sri Lanka) have been studied by microthermometry, Raman spectrometry and SEM analysis. Based on textural evidence, two groups of inclusions can be identified: primary, negative crystal shaped inclusions (group I) and pseudo-secondary inclusions, which experienced a local, limited post-trapping modification (group II). Both groups contain magnesite as a daughter mineral, occurring in a relatively constant fluid/solid inclusion volume ratio (volsolid =0.15 total volume). CO2 densities for group I and II differ only slightly. Both groups contain a fluid, which was initially trapped at peak metamorphic conditions as a homogeneous (CO2+MgCO3) mixture. Thermodynamic calculations suggest that such a fluid (CO2+15 vol% MgCO3) is stable under granulite facies conditions. After trapping, magnesite separated upon cooling, while the remaining CO2 density suffered minor re-adjustments. A model isochore based on the integration of the magnesite molar volume in the CO2 fluid passes about 1.5–2 kbar below peak metamorphic conditions. This remaining discrepancy can be explained by the possible role of a small quantity of additional water.  相似文献   

9.
Abstract Quartz-hosted, synthetic CO2-H2O fluid inclusions behave as open systems with respect to diffusional transfer of hydrogen during laboratory-simulated metamorphic re-equilibration at 650, 750 and 825°C and 1.5 kbar total pressure with fO2 defined by the C-CH4 buffer. Microthermometry and Raman spectroscopy show that the initial CO2-H2O inclusions become CO2-CH4-H2-H2O
inclusions after diffusive influx of hydrogen from the reducing confining medium. Measurable changes are observed in inclusion compositions after only 15 days of re-equilibration, implying significant hydrogen mobility at still lower temperatures over geological time spans. Results of synthetic inclusion re-equilibrium experiments have profound implications for the interpretation of natural fluid-inclusion data; failure to account for potential hydrogen migration in inclusions from high-temperature geological environments may lead to erroneous estimates of P-T, and/or the compositions of metamorphic fluids.  相似文献   

10.
Calcite and quartz veins have formed, and are forming, in steeply dipping fissures in the actively rising Alpine Schist metamorphic belt of New Zealand. The fluids that deposited these minerals were mostly under hydrostatic pressure almost down to the brittle-ductile transition, which has been raised to 5-6 km depth by rapid uplift. Some fluids were trapped under lithostatic pressures. Fluids in the fissure veins were immiscible H2O + NaCl-CO2 mixtures at 200-350 C. Bulk fluid composition is 15-20 mol% CO2 and <4.3 total mol CH4+ N2+ Ar/100mol H2O. Water hydrogen isotopic ratio δDH2O in the fissure veins spans -29 to -68‰, δ18OH2O -0.7 to 8.5‰, and bulk carbon isotopic ratio δ13C ranges from -3.7 to -11.7‰. The oxygen and hydrogen isotopic data suggest that the water has a predominantly meteoric source, and has undergone an oxygen isotope shift as a result of interaction with the host metamorphic rock. Similar fluids were present during cooling and uplift. Dissolved carbon is not wholly derived from residual metamorphic fluids; part may be generated by oxidation of graphite.  相似文献   

11.
Abstract Scapolite, wollastonite, calcite, diopside, grossular-andradite garnet and sphene occur in calc-silicate rocks in the granulite terrain of the Arunta Block, central Australia. This assemblage buffers the CO2 activity at a low value, so that any coexisting fluid phase must be H2O rich and CO2 poor ( X co2 = 0.2-0.3). In contrast, the H2O activity in the surrounding felsic and mafic granulites was low. Thus fluid activities during granulite facies metamorphism were locally buffered in various rock units and fluid flow appears to have been restricted or fluid may have been absent. Late retrograde rims of garnet and garnet-quartz separate phases formed in the high-grade stage. Formation of these rims would have required either an influx of water-rich fluid or a decrease in pressure. Evidence from the surrounding granulites shows that in one locality, the calc-silicate rocks had undergone late isobaric hydration; in another locality, minor uplift had occurred soon after peak P-T conditions. In both, scapolite had partly broken down to plagioclase-calite. A calc silicate rock from the granulite terrain of Enderby Land, Antarctica, contains scapolite, wollastonite, calcite, diopside, quartz and sphene; this assemblage also indicates low CO2 activities. In this rock, wollastonite has broken down to calcite-quartz, to indicate isobaric cooling without influx of hydrous fluid.  相似文献   

12.
Abstract. Primary fluid inclusions in quartz and carbonates from the Kanggur gold deposit are dominated by aqueous inclusions, with subsidiary CO2-H2O inclusions that have a constant range in CO2 content (10–20 vol %). Microthermometric results indicate that total homogenization temperatures have a wide but similar range for both aqueous inclusions (120 to 310C) and CO2-H2O inclusions (140 to 340C). Estimates of fluid salinity for CO2-H2O inclusions are quite restricted (5.9∼10.3 equiv. wt% NaCl), whereas aqueous inclusions show much wider salinity ranging from 2.2 to 15.6 equivalent wt %NaCl.
The 6D values of fluid inclusions in carbonates vary from -45 to -61 %, in well accord with the published δD values of fluid inclusions in quartz (-46 to -66 %). Most of the δ18O and δD values of the ore-forming fluids can be achieved by exchanged meteoric water after isotopic equilibration with wall rock by fluid/rock interaction at a low water/rock ratio. However, the exchanged meteoric water alone cannot explain the full range of δ18O and δD values, magmatic and/or meta-morphic water should also be involved. The wide salinity in aqueous inclusions may also result from mixing of meteoric water and magmatic and/or metamorphic water.  相似文献   

13.
A sequence of regional metamorphic isograds indicating a range from prehnite-pumpellyite to lower amphibolite facies was mapped in metabasites near Flin Flon, Manitoba. The lowest grade rocks contain prehnite + pumpellyite and are cut by younger brittle faults containing epidote + chlorite + calcite. Isobaric temperature- X CO2 and pressure-temperature (constant X CO2) diagrams were calculated to quantify the effects of CO2 in the metamorphic fluid on the stability of prehnite-pumpellyite facies minerals in metabasites containing excess quartz and chlorite. Prehnite and, to a lesser extent, pumpellyite are stable only in fluids with X co2 <0.002. For X co2>0.002, epidote + chlorite + calcite assemblages are stable. Our calculated phase relations are consistent with regional metamorphism in the Flin Flon area in the presence of an H2O-rich fluid and a more CO2-rich fluid in the later fault zones. We believe that the potential effects of small amounts of CO2 in the metamorphic fluid should be assessed when considering the pressure-temperature implications of mineral assemblages in low-grade metabasites.  相似文献   

14.
Calcsilicate granulites of probable Middle Proterozoic age ( c .1000–1100  Ma) in the vicinity of Battye Glacier, northern Prince Charles Mountains, East Antarctica, contain prograde metamorphic assemblages comprising various combinations of wollastonite, scapolite, clinopyroxene, An-rich plagioclase, calcite, quartz, titanite and, rarely, orthoclase, ilmenite, phlogopite and graphite. Comparison of the prograde assemblages with calculated and experimentally determined phase relations in the simple CaO–Al2O3–SiO2–CO2–H2O system suggests peak metamorphism at ≥835 °C in the presence (in wollastonite-bearing assemblages at least) of a CO2-bearing fluid ( X CO≥0.3) at a probable pressure of 6–7  kbar.
Well-preserved retrograde reaction textures represent: (1) breakdown of scapolite to anorthite+calcite±quartz; (2) formation of grossular–andradite garnet and, locally, (3) epidote, both principally by reactions involving scapolite breakdown products and clinopyroxene; (4) local coupled replacement of clinopyroxene and ilmenite by hornblende and titanite, respectively; and finally (5) local sericitization of prograde and retrograde plagioclase. These retrograde reactions are interpreted to be the result of cooling and variable infiltration by H2O-rich fluids, possibly derived from crystallizing pegmatitic intrusions and segregations that may be partial melts, which are common throughout the area.  相似文献   

15.
On the basis of fluid inclusion evidence, pervasive influx of deep-seated CO2-rich fluids has been invoked to account for mid- to upper amphibolite facies (M2B) metamorphism on the island of Naxos (Cyclades, Greece). In this paper, mineral devolatilization and melt equilibria are used to constrain the composition of both syn- and post-peak-M2B fluids in the deepest exposed levels of the metamorphic complex. The results indicate that peak-M2B fluids were spatially and compositionally heterogeneous throughout the high-grade core of the complex, whereas post-peak-M2B fluids were generally water-rich. The observed heterogeneities in syn-M2B fluid composition are inconsistent with pervasive CO2-flushing models invoked by previous workers on the basis of fluid inclusion evidence. It is likely that few CO2-rich fluid inclusions on Naxos preserve fluids trapped under peak metamorphic conditions. It is suggested that many of these inclusions have behaved as chemically open systems during the intense deformation that accompanied the uplift of the metamorphic complex. A similar process may explain the occurrence of some CO2-rich fluid inclusions in granulite facies rocks.  相似文献   

16.
Two impure ultrahigh-pressure (UHP) marbles, a calcite marble with the peak assemblage Grt + Phe + Cpx + Rt + (Arg) and a dolomite marble with the peak assemblage Crn + Chl + Rt + Dol (±Arg), from the same lens from the polymetamorphic complex of the Brossasco-Isasca Unit (BIU) (southern Dora-Maira Massif) have been petrologically investigated and modelled by calculating P – T phase-diagram projections for H2O–CO2 mixed-volatile systems. Thermobarometric data obtained from the calcite marble suggest Alpine peak conditions in the diamond stability field (4.0 GPa at 730 °C), and allow reconstruction of the earlier portion of the Alpine retrograde P – T path, which is characterized by a significant decompression coupled with a moderate and continuous cooling to 650 °C at 2.50 GPa. The modelled fluid compositions at peak conditions point to 0.025 ≤  X (CO2) ≤ 0.10 and X (CO2) ≤ 0.0012 in the calcite marble and dolomite marble, respectively, suggesting fluid heterogeneity at the local scale and an internally buffered fluid evolution of the studied impure marbles. The lack of micro-diamond in the BIU marbles is explained by the very-low X (CO2) values, which favoured relatively high f O2-conditions, preventing the formation of diamond at the UHP peak metamorphic conditions.  相似文献   

17.
A reaction producing jadeitic pyroxene in metagreywackes of the northern Diablo Range has been identified on the basis of mineral distribution, isograd patterns and composition of coexisting minerals. The appearance of jadeitic pyroxene (∼Jd80) is closely followed by the disappearance of pumpellyite, which indicates that pumpellyite plays a major role in the pyroxene-producing reaction. A new projection from hematite, lawsonite, chlorite, quartz and H2O on to the NaAlO2-FeO-MgO ternary confirms the role of pumpellyite in pyroxene production and suggests a reaction of the form: 1.00 pumpellyite + 0.31 chlorite + 8.71 albite + 0.70 hematite + 2.00 H2O = 8.54 jadeite + 0.57 glaucophane + 3.09 lawsonite + 5.26 quartz. Metagreywackes of the northern Diablo Range were metamorphosed under conditions of P H2O= P total at 200-300 °C and 7.5-10.0 kbar. Despite the low temperatures attained during metamorphism, the assumption of equilibrium yields results consistent with field observations and phase relations.  相似文献   

18.
Abstract In metapelitic schists of the north-eastern Weekeroo Inliers, Olary Block, Willyama Supergroup, South Australia, syn-S1 and syn-S2 assemblages involving staurolite, garnet, biotite and another mineral, most probably cordierite, were overgrown by large syn-S3 andalusite porphyroblasts, owing to isobaric heating from metamorphic conditions that existed during the development of S2. Conditions during the development of S3 probably just reached the andalusite—sillimanite transition. During the development of S4, at somewhat lower temperatures than those that accompanied the development of S3, the following reaction occurred:
staurolite + chlorite + muscovite ± biotite + andalusite + quartz + H2O.
The amount of retrogression is controlled primarily by the amount of H2O added by infiltration. As the syn-S3 matrix assemblage was stable during the development of S4, but the andalusite porphyroblasts were no longer stable with the matrix when H2O was added, the retrogression is focused in and around the porphyroblasts. With enough H2O available, and if quartz was consumed before biotite in a porphyroblast, then the following reaction occurred:
staurolite + chlorite + muscovite + corundum ± biotite + andalusite + H2O.
This reaction allowed corundum inclusions in the andalusite to grow, regardless of the presence of quartz in the matrix assemblage.  相似文献   

19.
Abstract Deformed quartz veins in garnet-zone schist adjacent to the active Alpine Fault, New Zealand, have fluid inclusions trapped along quartz grain boundaries. Textures suggest that the inclusions formed in their present shapes during annealing of the deformed veins. Many of the inclusions are empty, but some contain carbon dioxide with densities that range from 0.16 to 0.80 g cm−3. No water, nitrogen or methane was detected. The inclusions are considerably more CO2-rich than either the primary metamorphic fluid (<5% CO2) or fluids trapped in fracture-related situations in the same, or related, rocks (<50% CO2). Enrichment of CO2 is inferred to have resulted from selective migration (wicking) of saline water from the inclusions along water-wet grain boundaries after cooling-induced immiscibility of a water-CO2 mixture. Inclusion volumes changed after loss of water. Non-wetting CO2 remained trapped in the inclusions until further percolation progressively removed CO2 in solution. This mechanism of fluid migration dominated in ductile quartz-rich rocks near, but below, the brittle-ductile transition. At deeper levels, hydraulic fracturing is also an important mechanism for fluid migration, whereas at shallower levels advection through open fractures dominates the fluid flow regime.  相似文献   

20.
The 5-km deep Chinese Continental Scientific Drilling Main Hole penetrated a sequence of ultrahigh pressure (UHP)-metamorphic rocks consisting mainly of eclogite, gneiss and garnet-peridotite with minor schist and quartzite. Zircon separates taken from thin layers of schist and gneiss within eclogite were investigated. Cathodoluminescence images of zircon grains show that they have oscillatory zoned magmatic cores and unzoned to patchy zoned metamorphic rims. Zircon rims contain rare coesite and calcite inclusions whereas cores contain inclusions of both low- P minerals (e.g. feldspar, biotite and quartz) and coesite and other eclogite-facies minerals such as phengite and jadeite. The zircon cores give highly variable 206Pb/238U ages ranging from 760 to 431 Ma for schist and from 698 to 285 Ma for gneiss, and relatively high but variable Th/U ratios (0.16–1.91). We suggest that the coesite and other eclogite facies mineral inclusions in zircon cores were not magmatic but formed through metasomatic processes caused by fluids during UHP metamorphism, and that the fluids contain components of SiO2, Al2O3, K2O, FeO, MgO, Na2O and H2O. Metasomatism of the Sulu UHP rocks during continental subduction to mantle depths has partly altered magmatic zircon cores and reset isotopic systems. This study provides key evidence that mineral inclusions within magmatic zircon domains are not unequivocal indicators of the formation conditions of the respective domain. This finding leads us to conclude that the routine procedure for dating of metamorphic events solely based on the occurrence of mineral inclusions in zoned zircon could be misleading and the data should be treated with caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号