首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New analytical and experimental data constrain the storage and equilibration conditions of the magmas erupted in 1912 from Novarupta in the 20th century's largest volcanic event. Phase relations at H2O+CO2 fluid saturation were determined for an andesite (58.7 wt% SiO2) and a dacite (67.7 wt%) from the compositional extremes of intermediate magmas erupted. The phase assemblages, matrix melt composition and modes of natural andesite were reproduced experimentally under H2O-saturated conditions (i.e., PH2O=PTOT) in a negatively sloping region in T-P space from 930 °C/100 MPa to 960 °C/75 MPa with fO2~NNO+1. The H2O-saturated equilibration conditions of the dacite are constrained to a T-P region from 850 °C/50 MPa to 880 °C/25 MPa. If H2O-saturated, these magmas equilibrated at (and above) the level where co-erupted rhyolite equilibrated (~100 MPa), suggesting that the andesite-dacite magma reservoir was displaced laterally rather than vertically from the rhyolite magma body. Natural mineral and melt compositions of intermediate magmas were also reproduced experimentally under saturation conditions with a mixed (H2O + CO2) fluid for the same range in PH2O. Thus, a storage model in which vertically stratified mafic to silicic intermediate magmas underlay H2O-saturated rhyolite is consistent with experimental findings only if the intermediates have XH2Ofl=0.7 and 0.9 for the extreme compositions, respectively. Disequilibrium features in natural pumice and scoria include pristine minerals existing outside their stability fields, and compositional zoning of titanomagnetite in contact with ilmenite. Variable rates of chemical equilibration which would eliminate these features constrain the apparent thermal excursion and re-distribution of minerals to the time scale of days.  相似文献   

2.
Phenocryst zoning patterns are used to identify open-systemmagmatic processes in the products of the 2001 eruption of ShiveluchVolcano, Kamchatka. The lavas and pumices studied are hornblende–plagioclaseandesites with average pre-eruptive temperatures of 840°Cand fO2 of 1·5–2·1 log units above nickel–nickeloxide (NNO). Plagioclase zoning includes oscillatory and patchyzonation and sieve textures. Hornblendes are commonly unzoned,but some show simple, multiple or patchy zoning. Apatite microphenocrystsdisplay normal and reverse zoning of sulphur. The textural similarityof patchy hornblende and plagioclase, together with Ba–Srsystematics in patchy plagioclase, indicate that the cores ofthese crystals were derived from cumulate material. Plagioclase–liquidequilibria suggest that the patchy texture develops by resorptionduring H2O-undersaturated decompression. When H2O-saturatedcrystallization recommences at lower pressure, reduced pH2Oresults in lower XAn in plagioclase, causing more Al-rich hornblendeto crystallize. Plagioclase cores with diffuse oscillatory zoning,and unzoned hornblende crystals, probably represent a populationof crystals resident in the magma chamber for long periods oftime. In contrast, oscillatory zoning in the rims of plagioclasephenocrysts may reflect eruption dynamics during decompressioncrystallization. Increasing Fe/Al in oscillatory zoned rimssuggests oxidation as a result of degassing of H2O during decompression.A general lack of textural overlap between phenocryst typessuggests that different phenocryst populations were spatiallyor temporally isolated during crystallization. We present evidencethat the host andesite has mixed with both more felsic and moremafic magmas. Olivine and orthopyroxene xenocrysts with reactionor overgrowth rims and strong normal zoning indicate mixingwith basalt. Sieve-textured plagioclase resulted from mixingof a more felsic magma with the host andesite. The mineralogyand mineral compositions of a mafic andesite enclave are identicalto those of the host magma, which implies efficient thermalquenching, and thus small volumes of intruding magma. Mixingof this magma with the host andesite results in phenocryst zoningbecause of differences in dissolved volatile contents. We suggestthat small magma pulses differentiated at depth and ascendedintermittently into the growing magma chamber, producing incrementalvariations in whole-rock compositions. KEY WORDS: patchy zoning; magma mixing; Shiveluch  相似文献   

3.
The 1995–1999 eruption of the Soufriere Hills volcano,Montserrat, has produced a crystal-rich andesite containingquench-textured mafic inclusions, which show evidence of havingbeen molten when incorporated into the host magma. Individualcrystals in the andesite record diverse histories. Amphibolephenocrysts vary from pristine and unaltered to strongly oxidizedand pseudomorphed by anhydrous reaction products. Plagioclasephenocrysts are commonly reverse zoned, often with dusty sievetextures. Reverse zoned rims are also common on orthopyroxenephenocrysts. Pyroxene geothermometry gives an average temperatureof 858 ± 20°C for orthopyroxene phenocryst cores,whereas reverse zoned rims record temperatures from about 880to 1050°C. The heterogeneity in mineral rim compositions,zoning patterns and textures is interpreted as reflecting non-uniformreheating and remobilization of the resident magma body by intrusionof hotter mafic magma. Convective remobilization results inmixing together of phenocrysts that have experienced differentthermal histories, depending on proximity to the intruding maficmagma. The low temperature and high crystallinity are interpretedas reflecting the presence of a cool, highly crystalline magmabody beneath the Soufriere Hills volcano. The petrological observations,in combination with data on seismicity, extrusion rate and SO2fluxes, indicate that the current eruption was triggered byrecent influx of hot mafic magma. KEY WORDS: Montserrat; eruption; magma mixing; mafic inclusion; sieve texture  相似文献   

4.
The Oto-Zan lava in the Setouchi volcanic belt is composed ofphenocryst-poor, sparsely plagioclase-phyric andesites (sanukitoids)and forms a composite lava flow. The phenocryst assemblagesand element abundances change but Sr–Nd–Pb isotopiccompositions are constant throughout the lava flow. The sanukitoidat the base is a high-Mg andesite (HMA) and contains Mg- andNi-rich olivine and Cr-rich chromite, suggesting the emplacementof a mantle-derived hydrous (7 wt % H2O) HMA magma. However,Oto-Zan sanukitoids contain little H2O and are phenocryst-poor.The liquid lines of descent obtained for an Oto-Zan HMA at 0·3GPa in the presence of 0·7–2·1 wt % H2Osuggest that mixing of an HMA magma with a differentiated felsicmelt can reasonably explain the petrographical and chemicalcharacteristics of Oto-Zan sanukitoids. We propose a model wherebya hydrous HMA magma crystallizes extensively within the crust,resulting in the formation of an HMA pluton and causing liberationof H2O from the magma system. The HMA pluton, in which interstitialrhyolitic melts still remain, is then heated from the base byintrusion of a high-T basalt magma, forming an H2O-deficientHMA magma at the base of the pluton. During ascent, this secondaryHMA magma entrains the overlying interstitial rhyolitic melt,resulting in variable self-mixing and formation of a zoned magmareservoir, comprising more felsic magmas upwards. More effectiveupwelling of more mafic, and hence less viscous, magmas througha propagated vent finally results in the emplacement of thecomposite lava flow. KEY WORDS: high-Mg andesite; sanukitoid; composite lava; solidification; remelting  相似文献   

5.
High-magnesian andesite occurs at Hachimantai, northern Honshu,Japan. Disequilibrium zoning features indicate that the phenocrystminerals were derived from three different magmas. Chemicalcompositions and zoning profiles are accounted for by two-stagemagma mixing: the first mixing occurred between a crystal-freebasalt magma and a more differentiated olivine basalt magma;the second stage occurred by mixing between the resultant ofthe first-stage mixing and a hypersthene–augite andesitemagma. Mass balance of phenocryst crystals shows that end-membercompositions were c. 52·0 wt % SiO2 and 10·1 wt% MgO for the mafic end-member and 57·0 wt % SiO2 forthe felsic end-member of the second-stage mixing. Phenocrystminerals of the first-stage mixing end-member indicate the similarityof the end-member composition to that of basalts from nearbyvolcanoes. The counterpart aphyric magma in the first-stagemixing was more magnesian than the estimated mafic end-member.Calculations of the phase equilibria of similar basalts fromnearby volcanoes and comparison of results with previous phaseequilibrium experiments showed that the olivine basalt end-memberof the first stage was hydrous and situated at a depth wherethe pressure was less than 2 kbar. Two-pyroxene thermometryestimates are about 1050°C for the pyroxenes derived fromthe felsic end-member of the second-stage mixing, and about1180°C for groundmass pyroxenes. Crystallization temperaturesof 1170–1230°C are estimated for minerals from themafic end-member of the second-stage mixing based on phase equilibriumcalculations. These similar temperature estimates between thegroundmass and the mafic end-member imply achievement of thermalequilibrium between end-members preceding crystallization. Themagma plumbing system of the eastern Hachimantai is illustratedby a recent volcanic event, involving lateral dike intrusiontoward a pressure source. The encounter of a laterally migratingbasalt dike and an andesite magma chamber triggered the magmamixing that produced the high-magnesian andesite. The modelcan account for the relation between the petrological modeland surface distribution of volcanic rocks. The infrequencyof such mixing-derived high-magnesian andesite stems from therarity of high-magnesian basalt as a potential mixing end-memberin northern Honshu. KEY WORDS: high-magnesian andesite; Hachimantai; Northern Honshu; high-magnesian basalt; two-stage magma mixing  相似文献   

6.
AUDETAT  A.; PETTKE  T. 《Journal of Petrology》2006,47(10):2021-2046
The magmatic processes leading to porphyry-Cu mineralizationat Santa Rita are reconstructed on the basis of petrographicstudies, thermobarometry, and laser-ablation inductively-coupled-plasmamass-spectrometry analyses of silicate melt and sulfide inclusionsfrom dikes ranging from basaltic andesite to rhyodacite. Combinedresults suggest that magma evolution at Santa Rita is similarto that of sulfur-rich volcanoes situated above subduction zones,being characterized by repeated injection of hot, mafic magmainto an anhydrite-bearing magma chamber of rhyodacitic composition.The most mafic end-member identified at Santa Rita is a shoshoniticbasaltic andesite that crystallized at 1000–1050°C,1–3 kbar and log fO2 = NNO + 0·7 to NNO + 1·0,whereas the rhyodacite crystallized at 730–760°C andlog fO2 = NNO + 1·3 to NNO + 1·9. Mixing betweenthe two magmas caused precipitation of 0·1–0·2wt % magmatic sulfides and an associated decrease in the Cucontent of the silicate melt from 300–500 ppm to lessthan 20 ppm. Quantitative modeling suggests that temporal storageof ore-metals in magmatic sulfides does not significantly enhancethe amount of copper ultimately available to ore-forming hydrothermalfluids. Magmatic sulfides are therefore not vital to the formationof porphyry-Cu deposits, unless a mechanism is required thatholds back ore-forming metals until late in the evolution ofthe volcanic–plutonic system. KEY WORDS: porphyry-Cu; sulfur; sulfides; magma mixing; LA-ICP-MS  相似文献   

7.
Volcán Popocatépetl has been the site of voluminousdegassing accompanied by minor eruptive activity from late 1994until the time of writing (August 2002). This contribution presentspetrological investigations of magma erupted in 1997 and 1998,including major-element and volatile (S, Cl, F, and H2O) datafrom glass inclusions and matrix glasses. Magma erupted fromPopocatépetl is a mixture of dacite (65 wt % SiO2, two-pyroxenes+ plagioclase + Fe–Ti oxides + apatite, 3 wt % H2O, P= 1·5 kbar, fO2 = NNO + 0·5 log units) and basalticandesite (53 wt % SiO2, olivine + two-pyroxenes, 3 wt % H2O,P = 1–4 kbar). Magma mixed at 4–6 km depth in proportionsbetween 45:55 and 85:15 wt % silicic:mafic magma. The pre-eruptivevolatile content of the basaltic andesite is 1980 ppm S, 1060ppm Cl, 950 ppm F, and 3·3 wt % H2O. The pre-eruptivevolatile content of the dacite is 130 ± 50 ppm S, 880± 70 ppm Cl, 570 ± 100 ppm F, and 2·9 ±0·2 wt % H2O. Degassing from 0·031 km3 of eruptedmagma accounts for only 0·7 wt % of the observed SO2emission. Circulation of magma in the volcanic conduit in thepresence of a modest bubble phase is a possible mechanism toexplain the high rates of degassing and limited magma productionat Popocatépetl. KEY WORDS: glass inclusions; igneous petrology; Mexico; Popocatépetl; volatiles  相似文献   

8.
A petrological study was carried out on Mg-skarn-bearing dunitecumulates that are part of the Neo-Proterozoic Ioko-Dovyrenintrusion (North Baikal region, Russia). Skarn xenoliths containbrucite pseudomorphs after periclase, forsterite and Cr-poorspinel. Fine-grained forsterite–spinel skarns occur withthe brucite skarns or as isolated schlieren. Field relationshipsreveal that the Mg-skarns formed from silica-poor dolomiticxenoliths by interaction with the mafic magma of the Ioko-Dovyrenintrusion. Rapid heating of dolomitic xenoliths by the maficmagma caused the decomposition of dolomite into calcite + periclase,releasing much CO2. Further heating quantitatively melted thecalcite. A periclase-rich restite was left behind after extractionof the low-density, low-viscosity calcite melt. The extractedcalcite melt mixed with the surrounding mafic melt. This resultedin crystallization of olivine with CaO contents up to 1·67wt %. A local decrease in the silica concentration stabilizedCaAl2SiO6-rich clinopyroxene. Brucite/periclase-free forsterite–spinelskarns probably originated by crystallization from the maficmelt close to the xenoliths at elevated fO2. The high fO2 wascaused by CO2-rich fluids released during the decompositionof the xenoliths. The above case study provides the first evidencefor partial melting of dolomite xenoliths during incorporationby a mafic magma. KEY WORDS: dunite; dolomite assimilation; partial melting  相似文献   

9.
Fukujin Seamount is a large, active, submarine volcano on thevolcanic front in the northernseamount province (NSP) of theMariana island arc (MIA). Five dredge hauls from the summitand upper flanks of Fukujin recovered mainly highly porphyriticbasaltic andesites. A few nearly aphyric samples are medium-Ksiliceous andesites (SiO2 = 62%, K2O = 1•5%). Fukujin andmost other large arc-front volcanoes of the northern MIA havetholeiitic (iron-enrichment) fractionation trends. This contrastswith the calc-alkaline trends of many smaller seamounts. A negativecorrelation of modal plagioclase content with bulk-rock SiO2,as well as bulk-rock major and trace element variation trends,and glass analyses, suggests that lavas with >30 vol.% phenocrystsand <55 wt.% SiO2 are partial cumulates. The presence ofbimodal phenocryst populations along with reversed to normalzoning of phenocrysts is explained by magma mixing of andesiticand basaltic liquids. Hybrid basaltic andesites probably formedby the accumulation of plagioclase in a tholeiitic magma chamberundergoing replenishment and mixing at a shallow crustal level.A petrogenetic model is presented for the origin of basalticandesite by combined magma mixing and fractional crystallization.Aphyric siliceous andesites can be modelled by simple fractionationof basaltic andesite. The early fractionating assemblage consistedmainly of plagioclase and clinopyroxene, with lesser olivineand minor magnetite, but plagioclase remained suspended in themelt. The later fractionating assemblage was dominated by plagioclasewith orthopyroxene instead of olivine. *Present address: 2260 rue Panet, Montreal, Quebec, H2L 3A6, Canada.  相似文献   

10.
The 1.3 Ma Purico complex is part of an extensive Neogene-Pleistocene ignimbrite province in the central Andes. Like most other silicic complexes in the province, Purico is dominated by monotonous intermediate ash-flow sheets and has volumetrically minor lava domes. The Purico ignimbrites (total volume 80-100 km3) are divided into a Lower Purico Ignimbrite (LPI) with two extensive flow units, LPI I and LPI II; and a smaller Upper Purico Ignimbrite (UPI) unit. Crystal-rich dacite is the dominant lithology in all the Purico ignimbrites and in the lava domes. It is essentially the only lithology present in the first LPI flow unit (LPI I) and in the Upper Purico Ignimbrite, but the LPI II flow unit is unusual for its compositional diversity. It constitutes a stratigraphic sequence with a basal fall-out deposit containing rhyolitic pumice (68-74 wt% SiO2) overlain by ignimbrite with dominant crystal-rich dacitic pumice (64-66 wt% SiO2). Rare andesitic and banded pumice (60-61 wt% SiO2) are also present in the uppermost part of the flow unit. The different compositional groups of pumice in LPI II flow unit (rhyolite, andesite, dacite) have initial Nd and Sr isotopic compositions that are indistinguishable from each other and from the dominant dacitic pumice ()Nd=-6.7 to -7.2 and 87Sr/86Sr=0.7085-0.7090). However, two lines of evidence show that the andesite, dacite and rhyolite pumices do not represent a simple fractionation series. First, melt inclusions trapped in sequential growth zones of zoned plagioclase grains in the rhyolite record fractionation trends in the melt that diverge from those shown by dacite samples. Second, mineral equilibrium geothermometry reveals that dacites from all ignimbrite flow units and from the domes had relatively uniform and moderate pre-eruptive temperatures (780-800 °C), whereas the rhyolites and andesites yield consistently higher temperatures (850-950 °C). Hornblende geobarometry and pressure constraints from H2O and CO2 contents in melt inclusions indicate upper crustal (4-8 km) magma storage conditions. The petrologic evidence from the LPI II system thus indicates an anomalously zoned magma chamber with a rhyolitic cap that was hotter than, and chemically unrelated to, the underlying dacite. We suggest that the hotter rhyolite and andesite magmas are both related to an episode of replenishment in the dacitic Purico magma chamber. Rapid and effective crystal fractionation of the fresh andesite produced a hot rhyolitic melt whose low density and viscosity permitted ascent through the chamber without significant thermal and chemical equilibration with the resident dacite. Isotopic and compositional variations in the Purico system are typical of those seen throughout the Neogene ignimbrite complexes of the Central Andes. These characteristics were generated at moderate crustal depths (<30 km) by crustal melting, mixing and homogenization involving mantle-derived basalts. For the Purico system, assimilation of at least 30% mantle-derived material is required.  相似文献   

11.
Voluminous andesite and dacite lavas of Daisen volcano, SW Japan,contain features suggesting the reverse of normal fractionation(anti-fractionation), in the sense that magma genesis progressedfrom dacite to andesite, accompanied by rises in temperature.A positive correlation exists between phenocryst content (0–40vol. %) and wt % SiO2 (61–67%). Phenocryst-rich dacitescontain hornblende and plagioclase that are generally unaltered,clear, and euhedral. However, phenocryst-poor rocks containsieve-textured plagioclase, resorbed plagioclase, and opacitein which hornblendes are pseudomorphed. Some Daisen rocks containtwo coexisting pyroxenes. Many orthopyroxene phenocrysts fromtwo-pyroxene lavas have high-Ca overgrowth rims (up to 50 µm),a feature consistent with crystallization from a higher-temperaturemagma than the core. Rim compositions are similar from phenocrystto phenocryst in individual samples. Temperatures of 800–900°Care obtained from the cores, whereas temperatures of 1000–1100°Care indicated for the rims. Lavas ranging from aphyric andesite(  相似文献   

12.
The Fish Canyon Tuff, Colorado, forms one of the largest (3000km3 known silicic eruptions in Earth history. The tuff is ahomogeneous quartz latite consisting of 40% phenocrysts (plagioclase,sanidine, biotite, hornblende, quartz, magnetite, apatite, sphene,and ilmenite) in equilibrium with a highly evolved rhyoliticmelt now represented by the matrix glass. Melt inclusions trappedin hornblende and quartz phenocrysts are identical to the newlyanalyzed matrix glass composition indicating that hornblendeand quartz crystallized from a highly evolved magma that subsequentlyexperienced little change. This study presents experimentalphase equilibrium data which are used to deduce the conditions(P, T, fO2, fH2O, etc.) in the Fish Canyon magma chamber priorto eruption. These new data indicate that sanidine and quartzare not liquidus phases until 780?C temperatures are achieved,consistent with Fe-Ti oxide geothermometry which implies thatthe magmatic temperature prior to eruption was 760?30?C. NaturalFe-Ti oxide pairs also suggest that log fO2 was -12.4 (intermediatebetween the Ni-NiO and MnO-Mn3O4 oxygen buffers) in the magmachamber. This fO2.102 is supported by the experimentally determinedvariations in hornblende and melt Mg-numbers as functions offO2 A new geobarometer based on the aluminum content of hornblendesin equilibrium with the magmatic assemblage hornblende, biotite,plagioclase, quartz, sanidine, sphene, ilmenite or magnetite,and melt is calibrated experimentally, and yields pressuresaccurate to ?0.5 kb. Total pressure in the Fish Canyon magmachamber is inferred to have been 2.4 kb (equivalent to a depthof 7.9 km) based on the Al-content of natural Fish Canyon hornblendesand this new calibration. This depth is much shallower thanhas been proposed previously for the Fish Canyon Tuff. Variationsin experimental glass (melt) composition indicate that the magmawas water-undersaturated prior to eruption. XH2O in the fluidphase that may have coexisted with the Fish Canyon magma isestimated to have been 0.5 by comparing the An-content of naturalplagioclases to experimental plagioclases synthesized at differentXH2O and Ptotals. This ratio corresponds to about 5 wt.% waterin the melt at depth. The matrix glass chemistry is reproducedexperimentally under these conditions: 760?C, 2.4 kb, XH2O=0.5,and log fo2=NNO+2 log units. The fugacity of SO2 (91 b) is calculatedfrom the coexistence of pyrrhotite and magnetite. Maximum CO2fugacity (2520 b) is inferred assuming the magma was volatilesaturated at 2.4 kb.  相似文献   

13.
Volcanic activity in Askja central volcano and its fissure swarmin 1875 occurred in response to a crustal rifting episode inIceland, resulting in up to 70 km lateral flow of magma withinthe crust, caldera collapse and a plinian eruption of acid magma(0·2 km3 dense-rock equivalent). Petrologic studies ofthe predominantly rhyolitic and crystal-poor ejecta reveal thata complex array of other liquid compositions was also present,including icelandite (0.75 per cent) and basalt (1.9 per cent),as well as leucocratic xenoliths of trondhjemite type. Mineralgeothermometers indicate that the rhyolite evolved at 990 to1010 °C and 0·5 Kb PH2O, the icelandite at 1005 to1020 °C and at fO2 10–10 atm. and the basalt at 1140to 1170 °C. A petrologic model of Askja in 1875 consists of a density-stratifiedmagma chamber with a rhyolitic upper part and a lower part offerrobasalt, with an intervening layer of icelandite. The modelcalculations show that the icelandite can be derived from ferrobasaltby 50 per cent fractional crystallization, but one-stage fractionalcrystallization models cannot account for generation of theacid magma. Simple partial or complete fusion of the field-associatedtrondhjemite xenoliths cannot produce the acid magma. Instead,a more complex fusion, hybridization and fractional crystallizationmodel is presented, which is consistent with the available petrologicevidence. This model involves large-scale fusion of pre-existingtrondhjemite intrusions or reactivation of previously consolidatedroof-rock in the magma chamber followed by hybridization ofthe acid magma with 7 to 14 per cent basaltic magma. Finally,10 to 11 per cent fractional crystallization of the dacite hybridis required to produce the observed compositional range withinthe rhyolite ejecta. The 1875 explosive eruption was causedby the ascent of tholeiitic basalt magma from depth during crustalrifting. Influx of new basalt magma in 1874–75 triggeredconvective mixing and hybridization in the compositionally zonedmagma chamber.  相似文献   

14.
A major, but gradual, reversal in the cryptic variation patternof the plagioclase and pyroxenes, of 13 mol% anorthite and 10mol% Mg/ (Mg + Fe) respectively, is documented in the Main Zoneof the western Bush veld Complex. These changes are accompaniedby a decrease in initial 87Sr/86Sr ratio from > 0.708 to< 0.707. The Pyroxenite Marker, a distinctive orthopyroxenitelayer, occurs close to the top of this reversed differentiationsequence. This is attributed to addition of less differentiatedmagma. On the basis of a mass balance calculation of the initial87Sr/ 86Sr ratios, it is estimated that the volume of magmaadded was comparable to that of the resident magma. Increases in the Fe2O3, TiO2, Al2O3, and Na2O contents of thepyroxenes above the level of magma addition indicate that thenew magma had a lower silica activity and higher fO2 than theresident magma. Quantification of the trace element and REEcontent of the two magmas is hampered by the very low proportionof trapped intercumulus component in these adcumulate rocks.However, semi-quantitative modelling indicates that the traceand REE signatures of the two magmas were similar, with moderateLREE enrichment and flat HREE profiles. The new magma had aslightly higher La/ Sm ratio than the resident magma, consistentwith its more alkaline nature. The new magma was probably added gradually, while 100–150m of cumulates formed. It probably intruded at an intermediatelevel within an existing stratified magma chamber, where itcooled and crystallized, and composite packets of liquid pluscrystals plunged to the base of the chamber. The cores of plagioclasegrains formed during this mixing interval show a wider rangeof compositions than in other sections, and plagioclase primocrystsfrom both magmas may be preserved within single samples. Therefore,although intimate physical mixing of packets of unknown sizeof the two magmas occurred, re-equilibration of the major oxidecomposition of the plagioclase primocrysts was not achieved.However, the data and calculations based on diffusion ratesindicate that partial Sr isotopic resetting of plagioclase mayhave occurred.  相似文献   

15.
Volcán San Pedro in the Andean Southern Volcanic Zone(SVZ) Chile, comprises Holocene basaltic to dacitic lavas withtrace element and strontium isotope ratios more variable thanthose of most Pleistocene lavas of the underlying Tatara–SanPedro complex. Older Holocene activity built a composite coneof basaltic andesitic and silicic andesitic lavas with traceelement ratios distinct from those of younger lavas. Collapseof the ancestral volcano triggered the Younger Holocene eruptivephase including a sequence of lava flows zoned from high-K calc-alkalinehornblende–biotite dacite to two-pyroxene andesite. Notably,hornblende–phlogopite gabbroic xenoliths in the daciticlava have relatively low 87Sr/86Sr ratios identical to theirhost, whereas abundant quenched basaltic inclusions are moreradiogenic than any silicic lava. The latest volcanism rebuiltthe modern 3621 m high summit cone from basaltic andesite thatis also more radiogenic than the dacitic lavas. We propose thefollowing model for the zoned magma: (1) generation of hornblende–biotitedacite by dehydration partial melting of phlogopite-bearingrock similar to the gabbroic xenoliths; (2) forceful intrusionof basaltic magma into the dacite, producing quenched basalticinclusions and dispersion of olivine and plagioclase xenocryststhroughout the dacite; (3) cooling and crystallization–differentiationof the basalt to basaltic andesite; (4) mixing of the basalticandesite with dacite to form a small volume of two-pyroxenehybrid andesite. The modern volcano comprises basaltic andesitethat developed independently from the zoned magma reservoir.Evolution of dacitic and andesitic magma during the Holoceneand over the past 350 kyr reflects the intrusion of multiplemafic magmas that on occasion partially melted or assimilatedhydrous gabbro within the shallow crust. The chemical and isotopiczoning of Holocene magma at Volcán San Pedro is paralleledby that of historically erupted magma at neighboring VolcánQuizapu. Consequently, the role of young, unradiogenic hydrousgabbro in generating dacite and contaminating basalt may beunderappreciated in the SVZ. KEY WORDS: Andes; dacite; gabbro; Holocene; strontium isotopes  相似文献   

16.
Fountains in Magma Chambers   总被引:5,自引:3,他引:5  
Cyclic layering is a common feature of the ultramafic zone oflayered intrusions and is usually attributed to the entry ofnew pulses of dense magma into the chamber. Since the crystallizationof olivine and bronzite lowers the density of the magma, a newpulse of the parent magma will be denser than the fractionatedmagma in the chamber. If the new pulse enters with excess momentumit will initially rise up into the host magma to form a fountain,then fall back around the feeder when negative buoyancy forcesovercome the initial momentum of the pulse. Laboratory experimentsusing aqueous solutions with both point and line sources havebeen conducted to obtain a quantitative understanding of thefluid-dynamical processes that are important in fountains. Itis observed that convection within the fountain is highly turbulent,resulting in appreciable entrainment of the host magma. A gravity-stratifiedhybrid layer develops at the floor and this breaks up into aseries of double-diffusive convecting layers if the new pulseis hotter than the host magma. The number of layers that formdepends on a number of factors, especially R, the ratio of thecontributions of composition and heat to the total density differencebetween the host magma and the new pulse. Raising the valueof R, results in the formation of more, thinner layers. The thickness of the hybrid layer at any time t is given byH = h0+(V0/A)t where V0 is the volume flux through the feederand A is the horizontal area of the chamber. h0 is related tothe initial steady-state height of the fountain and, for a linesource, is given by h0=CU04/3 d–1(g/)–2/3 whereU0 is the volume flux per unit length, g is the accelerationdue to gravity, d is the width of the feeder, is the densityof the host magma, is the density difference between the magmasand C is a constant. Calculations based on these results and the consideration ofthe flow in the feeder dykes below the chamber indicate thata fountain will rise at least 350 m in a continental magma chamberif the feeder width is greater than 10 m. This will lead toextensive mixing between the new pulse and the fractionatedmagma in the chamber, producing a zoned hybrid layer at thefloor that is commonly over 1000 m thick. If the chamber receivesmany pulses of dense magma, the resulting zoning may persistthroughout much of the life of the chamber, especially if thefirst pulse to enter becomes contaminated by light magma releasedby melting at the margins. The highest Mg/Fe ratio for olivineand pyroxenes from cyclic units from the ultramafic zones oflayered intrusions is often well below the value expected forminerals crystallizing from a melt derived directly from themantle, supporting the hypothesis that new pulses of dense magmacan mix extensively with the fractionated magma in the chamber. The feeder dykes to some oceanic magma chambers, such as theBay of Islands Ophiolite, are believed to be narrower, so thatfountains do not rise more than a few metres above the floorof the chamber. This restricts mixing between the input magmaand the host magma and can result in the formation of a hybridzone that is only a few metres thick.  相似文献   

17.
The Batur volcanic field (BVF), in Bali, Indonesia, underwenttwo successive caldera-forming eruptions that resulted in thedeposition of silicic ignimbrites. The magmas erupted duringand between these eruptions show a broad range of compositionsfrom low-SiO2 andesite to high-SiO2 dacite. On the basis oftheir geochemistry and mineralogy these magmas may be assignedto six groups: (1) homogeneous andesites with phenocryst compositionsessentially in equilibrium with the whole-rock composition;(2) remobilized crystal-rich low-SiO2 andesites with resorbedphenocrysts in equilibrium with the whole-rock composition;(3) mixed low-SiO2 dacite with a relatively large range of phenocrystcompositions, with most phenocrysts slightly too evolved tobe in equilibrium with the whole-rock; (4) extensively mixedlow-SiO2 dacites with a very large and discontinuous range ofphenocryst compositions, with most phenocrysts either more Mg-richor more evolved than the equilibrium compositions; (5) remobilizedcrystal-rich low-SiO2 dacites with resorbed and euhedral phenocrysts;(6) homogeneous high-SiO2 dacites lacking evidence for magmamixing and showing narrow ranges of phenocryst compositionsin equilibrium with the whole-rock composition. This range ofsilicic magmas is interpreted to reflect a combination of closed-and open-system fractional crystallization, magma mixing andremobilization of cumulate piles by heating. The variety ofmagmas erupted simultaneously during the caldera-forming eruptionssuggests that the magmatic system consisted of several independentreservoirs of variable composition and degree of crystallization.The magmatic evolution of individual reservoirs varied fromclosed-system fractional crystallization to fully open-systemevolution, thereby resulting in simultaneous production of magmaswith contrasted compositions and mineralogy. Extensive emptyingof the magmatic system during the caldera-forming eruptionsled to successive or simultaneous eruption of several reservoirs. KEY WORDS: caldera; ignimbrite; magmatic chambers; magma mixing; petrology; Sunda Arc  相似文献   

18.
The Younger Andesites and Dacites of Iztacc?huatl volcano, Mexico,constitute a medium-K calcalkaline rock suite (58–66 wt.per cent SiO2) characterized by high Mg-numbers (100Mg/(Mg+0?85Fe2+=55–66) and relatively high abundances of MgO (2?5–6?6wt. per cent), Ni(17–158 p.p.m.), and Cr (42–224p.p.m.). Chemical stratigraphy plots of eruptive sequences indicatethe existence of a plexus of long-lived dacite magma chambersperiodically replenished by influxes of basaltic magma ascendingfrom depth. Short-term geochemical evolution after batch influxwas dictated by magma mixing and eventual dilution of the basalticcomponent by ‘quasi-steady state’ hornblende dacitemagma. The chemical data support textural and mineralogicalevidence for rapid homogenization of originally diverse magmasby convective blending of residual liquids accompanied by dynamicfractional crystallization (Nixon, 1988). Internally-consistent mixing calculations used to derive thecomposition of basaltic magma influx incorporate analyticaluncertainties and the observed range of salic end-member compositions.Mafic end-members are basalts to basaltic andesites (52–54wt. per cent SiO2) with Mg-numbers (73–76), MgO (9–11wt. per cent), Ni (250 p.p.m.), and Cr (340–510 p.p.m.)concentrations, and liquidus olivine compositions (Fo90–88),appropriate for unfractionated partial melts of mantle peridotite.The majority of model compositions are Ol-Hy-normative, similarto those of primitive basaltic lavas on the flanks of Iztacc?huatland in the Valley of Mexico. However, calculated magma batchesrange from weakly Qz-normative to strongly Ne-normative. Bothcalculated and analyzed basaltic compositions are distinguishedby highly variable abundances of alkalies and incompatible traceelements, notably Rb, Ba, Sr, P, Zr, and Y. Initial 87Sr/86Sr ratios for Iztacc?huatl lavas (0?7040–0?7046;n=24) are comparable to those for primitive basaltic rocks (0?7037–0?7045;?=4) and indicate that (1) mantle source regions are isotopicallyheterogeneous; and (2) contamination of iztacc?huatl magma chambersby radiogenic crustal rocks was not a significant factor inthe evolution of calc-alkaline andesites and dacites. The replenishment of Iztacc?huatl dacite reservoirs by Ne-normativemagmas late in the history of cone growth precludes exhaustionof mantle source regions by progressive partial melting. Thewaning stages of volcanic activity at Iztacc?huatl appear toreflect the inability of dense basaltic influxes to successfullypenetrate a large high-level chamber of low density hornblendedacite magma.  相似文献   

19.
The temperatures at which pigeonite began to crystallize intholeiitic basalts and andesite of Hakone volcano range from1123 to 1019 ?C based on the three-pyroxene geothermometer ofIshii (1975). These values are lower than the temperatures ofother tholeiitic magmas of similar solidification index, suchas the magmas of Funagata-yama, O-shima, and Akita-komagatakevolcanoes and the Skaergaard intrusion. The cores of Ca-poorpyroxene phenocrysts formed in the Hakone subvolcanic magmareservoir are invariably orthopyroxene; the groundmass and microphenocrystpyroxenes crystallized in the lava during ascent and extrusionof magma are generally pigeonite, but orthopyroxene is alsopresent occasionally. The subvolcanic temperature-compositionpath [T-XFe path; XFe = Fe/(Mg + Fe), atomic ratio] of the Ca-poorpyroxenes does not intersect the pigeonite eutectoid reactionline (PER-line) of Ishii & Takeda (1974), whereas the lava-flowpaths characteristically intersect it at XFe values between0. 31 and 0–52. These two different kinds of T XFe pathsmay be interpreted as reflecting different solidus temperatures,and the content of volatiles, particularly water, appears tobe the controlling factor. It is suggested that the water contentof the magma increased because of fractional crystallizationof anhydrous minerals from a relatively hydrous magma in thesubvolcanic reservoir; then each erupted batch of the fractionatedmagma had its water content lowered by degassing as it ascendedto the volcano. Pigeonite is common in the groundmass of basalticrocks throughout the world, both extrusive and intrusive, butit is rare as phenocrysts in the former, a feature that mayalso be explained by the different solidus temperatures. Calc-alkalirocks in Hakone volcano appear to be derived by fractionationof hydrous tholeiitic magma.  相似文献   

20.
The Tatara shield volcano and subsequent San Pedro cone arethe youngest edifices of the San Pedro-Pellado volcanic complexat 36S in the Chilean Andes. There are multiple basaltic andesitecompositional types present in the Tatara volcano, which couldresult from either contrasting source regions or interactionof primitive liquids with heterogeneous crust. The eruptivestratigraphy of the magma types implies concurrent, isolatedmagma chambers beneath Tatara-San Pedro. Open-system processesand multiple crustal endmembers were involved in calcalkalinedifferentiation series, whereas a tholeitiic series evolvedmainly by fractional crystallization. The glaciated Tatara shield comprises two cycles of compositionallydiverse basaltic andesite lavas, each of which is capped byvolumetrically minor andesite to dacite lavas. Four types (I-IV)of basaltic andesite are defined on the basis of chemical criteria,two in each cycle. The early cycle consists of calcalkalinetype I basaltic andesites, and tholeiitic type II basaltic andesitesand andesites; it culminated in the eruption of a dacite dome.The later cycle comprises intercalated calcalkaline type IIIand IV basaltic andesites, and they are overlain by San Pedroandesites and dacites which appear to be the differentiationproducts of type IV magmas. Tatara lavas were erupted from acommon vent situated beneath the modern San Pedro cone. Althoughthey overlap temporally and spatially, there is little evidenceof chemical interaction among the different lava types, indicatingthat there were two or more magma reservoirs beneath Tatara-SanPedro. Chemical differences among the basaltic andesite types precludederivation of any one from any of the others by fractional crystallization,assimilation-fractional crystallization (AFC), or magma mixing.The differences seem to reflect chemically different parentmagmas. The type I and IV parent liquids were relatively highin MgO, low in CaO and AI2O3, and had high incompatible andcompatible element abundances. The type II and III parents werelower in MgO, higher in A12O3 and CaO, and had lower compatibleand incompatible element abundances. Tholeiitic type II lavasappear to have evolved mainly by fractional crystallization,whereas there is evidence of open-system processes such as AFCand magma mixing in the evolution of the calcalkaline I, III,and IV suites. The chemical evolution of the type III and type IV-San Pedromagma suites has been simulated by assimilation and mixing modelsusing local granites and xenoliths as assimilants. The xenolithsprobably represent portions of a sub-caldera pluton associatedwith the Quebrada Turbia Tuff, which erupted from the Rio Coloradocaldera within the San Pedro-Pellado complex at 0–487Ma. Chemical and textural variations in type III lavas correlatewith stratigraphic position and appear to represent mixing betweena parental type III magma and remnant, evolved type I magmathat was progressively flushed from its chamber concurrent withmixing. The youngest San Pedro flow is chemically zoned fromdacite to basaltic andesite and may have formed by mixing withina conduit during eruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号