首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
We consider a cosmological model in which a scalar field is non-minimally coupled to scalar torsion and a vector field through two coupling functions in the framework of teleparallel gravity. The explicit forms of the coupling functions and the scalar field potential are explored, under the assumption that the Lagrangian admits the Noether symmetry in the Friedmann–Lemaître–Robertson–Walker (FLRW) space–time. The existence of such symmetry allows to solve the equations of motion and achieve exact solutions of the scale factor, scalar and vector fields. It is found that the vector field contributes significantly in the accelerating expansion of the universe in the early times, while the scalar field plays an essential role in the late times.  相似文献   

3.
It is shown that the acceleration of the universe can be understood by considering a f(T) gravity models. Modified teleparallel gravity theory with the torsion scalar has recently gained a lot of attention as a possible explanation of dark energy. For these f(T) gravity models, a variant of the accelerating cosmology reconstruction program is developed. We consider spatially homogenous and anisotropic Bianchi type I universe in the context of f(T) gravity. The de Sitter, power-law and general exponential solutions are assumed for the scale factor in each spatial direction and the corresponding cosmological models are reconstructed. We reconstruct f(T) theories from two different holographic dark energy models in different time durations. For the holographic dark energy model, the dark energy dominated era with new setting up is chosen for reconstruction, and the Ricci dark energy model, radiation, matter and dark energy dominated time durations are all investigated. Finally we have obtained a modified gravity action consistent with the holographic dark energy scenario.  相似文献   

4.
We consider generalized teleparallel gravity in the flat FRW universe with a viable power-law f(T) model. We construct its equation of state and deceleration parameters which give accelerated expansion of the universe in quintessence era for the obtained scale factor. Further, we develop correspondence of f(T) model with scalar field models such as, quintessence, tachyon, K-essence and dilaton. The dynamics of scalar field as well as scalar potential of these models indicate the expansion of the universe with acceleration in the f(T) gravity scenario.  相似文献   

5.
In this paper it is shown that in non-minimally coupled Brans-Dicke theory containing a self-interacting potential, a suitable conformal transformation can automatically give rise to an interaction between the normal matter and the Brans-Dicke scalar field. Considering the scalar field in the Einstein frame as the quintessence matter, it has been shown that such a non-minimal coupling between the matter and the scalar field can give rise to a late time accelerated expansion for the universe preceded by a decelerated expansion for very high values of the Brans-Dicke parameter ω. We have also studied the observational constraints on the model parameters considering the Hubble and Supernova data.  相似文献   

6.
We use the teleparallel geometry analog of the Møller energy-momentum complex to calculate the energy distribution (due to matter plus field including gravity) of a charged black hole solution in heterotic string theory. We find the same energy distribution as obtained by Gad who investigated the same problem by using the Møller energy-momentum complex in general relativity. The total energy depends on the black hole mass M and charge Q. The energy obtained is also independent of the teleparallel dimensionless coupling constant, which means that it is valid not only in the teleparallel equivalent of general relativity, but also in any teleparallel model. Furthermore, our results also sustains (a) the importance of the energy-momentum definitions in the evaluation of the energy distribution of a given spacetime and (b) the viewpoint of Lessner that the Møller energy-momentum complex is a powerful concept of energy and momentum.  相似文献   

7.
We study the late-time cosmological viability of the solutions in the DGP braneworld scenario. We consider a quintessence field trapped on the normal branch of the DGP model and we suppose this scalar field is both minimally and non-minimally coupled to induced gravity on the brane. Since a successful cosmological model should therefore admit for a sequence of epochs: a radiation era, a sufficiently long matter dominated era and a final stable positively accelerated scaling solution, we analyze the cosmological properties of system in its critical points.  相似文献   

8.
9.
Motivated by the holographic principle, it has been suggested that the dark energy density may be inversely proportional to the area A of the event horizon of the universe. However, such a model would have a causality problem. In this work, we consider the entropy-corrected version of the holographic dark energy model in the non-flat FRW universe and we propose to replace the future event horizon area with the inverse of the Ricci scalar curvature. We obtain the equation of state (EoS) parameter ω Λ, the deceleration parameter q and WD¢\Omega_{D}' in the presence of interaction between Dark Energy (DE) and Dark Matter (DM). Moreover, we reconstruct the potential and the dynamics of the tachyon, K-essence, dilaton and quintessence scalar field models according to the evolutionary behavior of the interacting entropy-corrected holographic dark energy model.  相似文献   

10.
We calculate the energy density and energy distribution of Kantowski-Sachs space-time, using Einstein, Bergmann-Thomson and Landau-Lifshitz energy-momentum complexes, in the theory of teleparallel gravity. A comparison of the results shows that the Einstein and Bergmann-Thomson definitions furnish a consistent result for the energy density and energy distribution, but the definition of Landau-Lifshitz does not concur with them. We show that the space-time under consideration gives a counterexample that the energy distribution is the same either in general relativity or teleparallel gravity.  相似文献   

11.
Mukhanov and Vikman have studied inflation model with the non-linear (NL) scalar field. We discuss the dark energy model with the Lagrangian in the presence of the square potential. We analyse the sufficient condition for the existence of an attractor solution, and compare the equation of state parameter, the present age of universe and the transition redshift with the quintessence model. We also use the Gold dataset of 157 SN-Ia to finally constrain the parameter of the models. We find that the considered model is consistent with the observation and a little inferior to the quintessence model. The above Lagrangian is similar to the non-linear Born–Infeld (NLBI) scalar field model, while which is superior to the quintessence model.  相似文献   

12.
The equivalence of Lagrangian containing gravitational, electromagnetic, scalar, and torsion fields is discussed. It is shown that the equation for the variation of the scalar field leads to a torsion wave equation generated by electromagnetic field leads to a torsion wave equation generated by electromagnetic fields. The system is proved to be equivalent to a Proca field coupling torsion non-minimally to a massive photon and having the scalar Higgs field as a strength of this photon-torsion coupling. The generalized Maxwell equations containing the scalar fields are obtained. The torsion potential around the Sun or a more massive collapsing star in the weak field limit is estimated.  相似文献   

13.
14.
We study FRW cosmology for a double scalar-tensor theory of gravity where two scalar fields are nonminimally coupled to the geometry. In a framework to study stability and attractor solutions of the model in the phase space, we constrain the model parameters with the observational data. For an accelerating universe, the model behaves like quintom dark energy models and predicts a transition from quintessence era to phantom era.  相似文献   

15.
It has been recently shown that tachyonic chameleon model of dark energy in which tachyon scalar field non-minimally coupled to the matter admits stable scaling attractor solution that could give rise to the late-time accelerated expansion of the universe and hence alleviate the coincidence problem. In the present work, we use data from Type Ia supernova (SN Ia) and Baryon Acoustic oscillations to place constraints on the model parameters. In our analysis we consider in general exponential and non-exponential forms for the non-minimal coupling function and tachyonic potential and show that the scenario is compatible with observations.  相似文献   

16.
The evolution of scalar perturbations is studied for 2-component (non-relativistic matter and dark energy) cosmological models at the linear and non-linear stages. The dark energy is assumed to be the scalar field with either classical or tachyonic Lagrangian and constant equation-of-state parameter w. The fields and potentials were reconstructed for the set of cosmological parameters derived from observations. The comparison of the calculated within these models and observational large-scale structure characteristics is made. It is shown that for w = const such analysis can’t remove the existing degeneracy of the dark energy models. The article is published in the original.  相似文献   

17.
This work investigates the validity of the generalized second law of thermodynamics in modified f(R) Horava–Lifshitz gravity proposed by Chaichian et al. (Class. Quantum Grav. 27: 185021, 2010), which is invariant under foliation-preserving diffeomorphisms. It has been observed that the equation of state parameter behaves like quintessence (w>−1). We study the thermodynamics of the apparent, event and particle horizons in this modified gravity. We observe that under this gravity, the time derivative of total entropy stays at positive level and hence the generalized second law is validated.  相似文献   

18.
The dominance of dark energy in the universe has necessitated the introduction of a repulsive gravity source to make q0 negative. The models for dark energy range from a simple Λ term to quintessence, Chaplygin gas, etc. We look at the possibility of how change of behaviour of missing energy density, from DM to DE, may be determined by the change in the equation of state of a background fluid instead of a form of potential. The question of cosmic acceleration can be discussed within the framework of theories which do not necessarily include scalar fields.  相似文献   

19.
We discuss the expansion of the universe in the FRLW model assuming that the source of dark energy is either tachyonic scalar field or quintessence. The tachyonic scalar field with exponential and power-law potential (function of homogeneous scalar field ?) both gives exponential expansion of the universe. It is found that this behaviour is not distinguishable from the quintessence with respect to these potentials.  相似文献   

20.
An action of general form is proposed for a Universe containing matter, radiation and dark energy. The latter is interpreted as a tachyon field non-minimally coupled to the scalar curvature. The Palatini approach is used when varying the action so the connection is given by a more generic form. Both the self-interaction potential and the non-minimally coupling function are obtained by constraining the system to present invariability under global point transformation of the fields(Noether Symmetry). The only possible solution is shown to be that of minimal coupling and constant potential(Chaplygin gas). The behavior of the dynamical properties of the system is compared to recent observational data, which infers that the tachyon field must indeed be dynamical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号