首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we study the evolution of the dark energy parameter within the scope of a spatially homogeneous and isotropic FRW universe filled with barotropic fluid and dark energy. The scale factor is considered as a power law function of time which yields a constant deceleration parameter. We consider the case when the dark energy is minimally coupled to the perfect fluid as well as direct interaction with it. The cosmic jerk parameter in our derived models is consistent with the recent data of astrophysical observations. It is concluded that in non-interacting case, all the three open, close and flat universes cross the phantom region whereas in interacting case only open and flat universes cross the phantom region. We find that during the evolution of the universe, the equation of state (EoS) for dark energy ω D changes from ω D >−1 to ω D <−1, which is consistent with recent observations.  相似文献   

2.
In this paper we compare outcomes of some extended phantom-like cosmologies with each other and also with ΛCDM and ΛDGP. We focus on the variation of the luminosity distances, the age of the universe and the deceleration parameter versus the redshift in these scenarios. In a dynamical system approach, we show that the accelerating phase of the universe in the f(R)-DGP scenario is stable if one consider the curvature fluid as a phantom scalar field in the equivalent scalar-tensor theory, otherwise it is a transient and unstable phenomenon. Up to the parameters values adopted in this paper, the extended F(R,ϕ)-DGP scenario is closer to the ΛCDM scenario than other proposed models. All of these scenarios explain the late-time cosmic speed-up in their normal DGP branches, but the redshift at which transition to the accelerating phase occurs are different: while the ΛDGP model transits to the accelerating phase much earlier, the F(R,ϕ)-DGP model transits to this phase much later than other scenarios. Also, within the parameter spaces adopted in this paper, the age of the universe in the f(R)-DGP model is larger than ΛCDM, but this age in F(G,ϕ)-DGP is smaller than ΛCDM.  相似文献   

3.
In this paper, we study a cosmological application of the new agegraphic dark energy density in the f(R) gravity framework. We employ the new agegraphic model of dark energy to obtain the equation of state for the new agegraphic energy density in a spatially flat universe. Our calculations show, taking n<0, that it is possible to have w Λ crossing −1. This implies that one can generate a phantom-like equation of state from a new agegraphic dark energy model in a flat universe in the modified gravity cosmology framework. Also, we develop a reconstruction scheme for the modified gravity with f(R) action.  相似文献   

4.
Using N -body simulations of flat, dark energy-dominated cosmologies, we show that galaxies around simulated binary systems resembling the Local Group (LG) have low peculiar velocities, in good agreement with observational data. We have compared results for LG-like systems selected from large, high-resolution simulations of three cosmologies: a ΛCDM model, a ΛWDM model with a 2-keV warm dark matter candidate, and a quintessence (QCDM) model with an equation-of-state parameter   w =−0.6  . The Hubble flow is significantly colder around LGs selected in a flat, Λ-dominated cosmology than around LGs in open or critical models, showing that a dark energy component manifests itself on the scales of nearby galaxies, cooling galaxy peculiar motions. Flows in the ΛWDM and QCDM models are marginally colder than in the ΛCDM one.
The results of our simulations have been compared to existing data and to a new data set of 28 nearby galaxies with robust distance measures (Cepheids and surface brightness fluctuations). The measured line-of-sight velocity dispersion is given by  σH= (88 ± 20  km s−1) × ( R /7 Mpc)  . The best agreement with observations is found for LGs selected in the ΛCDM cosmology in environments with  −0.1 < δρ/ρ < 0.6  on scales of 7 Mpc, in agreement with existing observational estimates on the local matter density. These results provide new, independent evidence for the presence of dark energy on scales of a few megaparsecs, corroborating the evidence gathered from observations of distant objects and the early Universe.  相似文献   

5.
Taking up four model universes we study the behaviour and contribution of dark energy to the accelerated expansion of the universe, in the modified scale covariant theory of gravitation. Here, it is seen that though this modified theory may be a cause of the accelerated expansion it cannot totally outcast the contribution of dark energy in causing the accelerated expansion. In one case the dark energy is found to be the sole cause of the accelerated expansion. The dark energy contained in these models come out to be of the ΛCDM type and quintessence type comparable to the modern observations. Some of the models originated with a big bang, the dark energy being prevalent inside the universe before the evolution of this era. One of the models predicts big rip singularity, though at a very distant future. It is interestingly found that the interaction between the dark energy and the other part of the universe containing different matters is enticed and enhanced by the gauge function ϕ(t) here.  相似文献   

6.
Motivated by the holographic principle, it has been suggested that the dark energy density may be inversely proportional to the area A of the event horizon of the universe. However, such a model would have a causality problem. In this work, we consider the entropy-corrected version of the holographic dark energy model in the non-flat FRW universe and we propose to replace the future event horizon area with the inverse of the Ricci scalar curvature. We obtain the equation of state (EoS) parameter ω Λ, the deceleration parameter q and WD¢\Omega_{D}' in the presence of interaction between Dark Energy (DE) and Dark Matter (DM). Moreover, we reconstruct the potential and the dynamics of the tachyon, K-essence, dilaton and quintessence scalar field models according to the evolutionary behavior of the interacting entropy-corrected holographic dark energy model.  相似文献   

7.
The paper deals with a spatially homogeneous and anisotropic universe filled with perfect fluid and dark energy components. We consider the f(R,T) theory according to holographic and new agegraphic dark energy in the Bianchi type I universe. In this study, we concentrate on two particular models of f(R,T) gravity namely, R+2f(T) and f(R)+λT. We conclude that the derived f(R,T) models can represent phantom or quintessence regimes of the universe.  相似文献   

8.
Multiple ΛCDM cosmology is studied in a way that is formally a classical analog of the Casimir effect. Such cosmology corresponds to a time-dependent dark fluid model or, alternatively, to its scalar field presentation, and it motivated by the string landscape picture. The future evolution of the several dark energy models constructed within the scheme is carefully investigated. It turns out to be almost always possible to choose the parameters in the models so that they match the most recent and accurate astronomical values. To this end, several universes are presented which mimic (multiple) ΛCDM cosmology but exhibit Little Rip, asymptotically de Sitter, or Type I, II, III, and IV finite-time singularity behavior in the far future, with disintegration of all bound objects in the cases of Big Rip, Little Rip and Pseudo-Rip cosmologies.  相似文献   

9.
Hydrodynamical simulations of galaxy formation in spatially flat cold dark matter (CDM) cosmologies with and without a cosmological constant (Λ) are described. A simple star formation algorithm is employed and radiative cooling is allowed only after redshift z =1 so that enough hot gas is available to form large, rapidly rotating stellar discs if angular momentum is approximately conserved during collapse. The specific angular momenta of the final galaxies are found to be sensitive to the assumed background cosmology. This dependence arises from the different angular momenta contained in the haloes at the epoch when the gas begins to collapse and the inhomogeneity of the subsequent halo evolution. In the Λ-dominated cosmology, the ratio of stellar specific angular momentum to that of the dark matter halo (measured at the virial radius) has a median value of ∼0.24 at z =0. The corresponding quantity for the Λ=0 cosmology is over three times lower. It is concluded that the observed frequency and angular momenta of disc galaxies pose significant problems for spatially flat CDM models with Λ=0 but may be consistent with a Λ-dominated CDM universe.  相似文献   

10.
The dominance of dark energy in the universe has necessitated the introduction of a repulsive gravity source to make q0 negative. The models for dark energy range from a simple Λ term to quintessence, Chaplygin gas, etc. We look at the possibility of how change of behaviour of missing energy density, from DM to DE, may be determined by the change in the equation of state of a background fluid instead of a form of potential. The question of cosmic acceleration can be discussed within the framework of theories which do not necessarily include scalar fields.  相似文献   

11.
We study FRW cosmology for a double scalar-tensor theory of gravity where two scalar fields are nonminimally coupled to the geometry. In a framework to study stability and attractor solutions of the model in the phase space, we constrain the model parameters with the observational data. For an accelerating universe, the model behaves like quintom dark energy models and predicts a transition from quintessence era to phantom era.  相似文献   

12.
In a four dimensional manifold formalism we study the evolutionary behavior as well as the ultimate fate of the universe, in the course of which the contribution of dark energy in these phases are investigated. At one stage we get a situation (a condition) where the dark energy contained dominates other types of energies available in this universe. In the model universes we obtain here the dark energy is found to be of ΛCDM and quintessence types-which bear testimony to being real universes. In one of the cases where the equation of state between the fluid pressure and density is of the type of the van der Waals equation, it is found that our universe may end in dust. And, also, it is seen that the behavior of the deceleration parameter is almost compatible with the recent observation.  相似文献   

13.
Various cosmological models in frames of F(T) gravity are considered. The general scheme of constructing effective dark energy models with various evolution is presented. It is showed that these models in principle are compatible with ΛCDM model. The dynamics of universe governed by F(T) gravity can mimics ΛCDM evolution in past but declines from it in a future. We also construct some dark energy models with the “real” (non-effective) equation-of-state parameter w such that w≤?1. It is showed that in F(T) gravity the Universe filled phantom field not necessarily ends its existence in singularity. There are two possible mechanisms permitting the final singularity. Firstly due to the nonlinear dependence between energy density and H 2 (H is the Hubble parameter) the universe can expands not so fast as in the general relativity and in fact Little Rip regime take place instead Big Rip. We also considered the models with possible bounce in future. In these models the universe expansion can mimics the dynamics with future singularity but due to bounce in future universe begin contracts.  相似文献   

14.
15.
It is shown that the acceleration of the universe can be understood by considering a f(T) gravity models. Modified teleparallel gravity theory with the torsion scalar has recently gained a lot of attention as a possible explanation of dark energy. For these f(T) gravity models, a variant of the accelerating cosmology reconstruction program is developed. We consider spatially homogenous and anisotropic Bianchi type I universe in the context of f(T) gravity. The de Sitter, power-law and general exponential solutions are assumed for the scale factor in each spatial direction and the corresponding cosmological models are reconstructed. We reconstruct f(T) theories from two different holographic dark energy models in different time durations. For the holographic dark energy model, the dark energy dominated era with new setting up is chosen for reconstruction, and the Ricci dark energy model, radiation, matter and dark energy dominated time durations are all investigated. Finally we have obtained a modified gravity action consistent with the holographic dark energy scenario.  相似文献   

16.
Alternative cosmologies, based on extensions of General Relativity, predict modified thermal histories in the early universe during the pre Big Bang Nucleosynthesis (BBN) era. When the expansion rate is enhanced with respect to the standard case, thermal relics typically decouple with larger relic abundances. In this paper, we study the dynamical evolution of an f(R) model of gravity in a homogeneous and anisotropic background which is given by a Bianchi type-I model of the universe filled with dark matter, which is described by a perfect fluid with a barotropic equation of state. As an example of a consistent analysis of modified gravity, we apply the formalism to a simple background solution of R+βR n gravity. Our analysis shows that f(R) cosmology allows dark matter masses lesser than 100 GeV, in the regime ρ c ?ρ m . We finally discuss how these limits apply to some specific realizations of standard cosmologies: an f(R) gravity model, Einstein frame model.  相似文献   

17.
We present two dark energy (DE) models with an anisotropic fluid in Bianchi type-VI 0 space-time by considering time dependent deceleration parameter (DP). The equation of state (EoS) for dark energy ω is found to be time dependent and its existing range for derived models is in good agreement with the recent observations. Under the suitable condition, the anisotropic models approach to isotropic scenario. We also find that during the evolution of the universe, the EoS parameter for DE changes from ω>−1 to ω=−1 in first model whereas from ω>−1 to ω<−1 in second model which is consistent with recent observations. The cosmological constant Λ is found to be a positive decreasing function of time and it approaches a small positive value at late time (i.e. the present epoch) which is corroborated by results from recent type Ia supernovae observations. The cosmic jerk parameter in our derived models is also found to be in good agreement with the recent data of astrophysical observations. The physical and geometric aspects of both the models are also discussed in detail.  相似文献   

18.
We generalize the holographic dark energy model described in Hubble length IR cutoff by assuming a slowly time varying function for holographic parameter c 2. We calculate the evolution of EoS parameter and the deceleration parameter as well as the evolution of dark energy density parameter of the model in flat FRW universe. We show that in this model the phantom line is crossed from quintessence regime to phantom regime which is in agreement with observation. The evolution of deceleration parameter of the model indicates the transition from decelerated to accelerated expansion consistently with observation. Eventually, we show that the holographic dark energy model with Hubble horizon IR cutoff can interpret the pressureless dark matter era at the early time and dark energy dominated phase later. The singularity of the model is also calculated.  相似文献   

19.
We explore flat ΛCDM models with bulk viscosity, and study the role of the bulk viscosity in the evolution of these universe models. The dynamical equations for these models are obtained and solved for some cases of bulk viscosity. We obtain differential equations for the Hubble parameter H and the energy density of dark matter ρ m , for which we give analytical solutions for some cases and for the general case we give a numerical solution. Also we calculate the statefinder parameters for these models and display them in the sr-plane.  相似文献   

20.
Plane symmetric cosmological models with perfect fluid and dark energy   总被引:1,自引:0,他引:1  
We consider a self-consistent system of Plane symmetric cosmology and binary mixture of perfect fluid and dark energy. The perfect fluid is taken to be one obeying the usual equation of state p=γρ with γ∈[0,1]. The dark energy is considered to be either the quintessence or Chaplygin gas. Exact solutions to the corresponding Einstein’s field equations are obtained as a quadrature. The cases of Zeldovich Universe, Dust Universe and Radiation Universe and models with power-law and exponential expansion have discussed in detail. For large t, the models tend to be isotropic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号