首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In October 2005 spatial distribution of live and dead Acartia clausi and Acartia tonsa was studied in the Black and Marmara Seas and near the Marmara Sea inlet of the Bosphorus, in order to understand their fate upon transportation between two seas. The morphometric characteristics in both species from all studied areas, and the decreased abundance of A. clausi and A. tonsa from the Black Sea towards the Marmara Sea indicate that the Marmara Sea Acartia populations are formed by recruitment from the Black Sea. We observed mass mortality of A. clausi in the Marmara Sea near the Prince Islands. The majority of carcasses (66% of total A. clausi numbers in the Marmara Sea) were found in the salinity gradient layer.  相似文献   

2.
《Marine Geology》2003,201(4):253-267
A series of simple hydraulic calculations has been performed to examine some of the questions associated with the reconnection of the Black Sea to the Mediterranean through the Turkish Strait System during the Holocene. Ryan et al.’s catastrophic flood scenario, whereby the erosive power of the marine in-fluxes, initiated after eustatic sea level reached the sill depth, opened up the Bosphorus, allowing saline water to pour into the Black Sea and filling it on a short time scale, is examined. The calculations show that although it might be possible to fill the palaeo-Black Sea within the order of a decade, a 1–2 year filling time scale is not physically possible. A hydraulic model is also used to examine the more traditional connection hypothesis of (near-)continuous freshwater outflow from the Black Sea, with a slowly increasing saline inflow from the Mediterranean beginning around 8–9 kyr BP. The model considers two forms for the structure of the Bosphorus: a shallow sill as seen today and a deep sill associated with no sediments filling the 100 m gorge above the bedrock in the strait. Sensitivity experiments with the hydraulic model show what possible strait geometric configurations may lead to the Black Sea reaching its present-day salinity of 18 psu. Salinity transients within the Black Sea are shown as a function of time, providing for values that can be validated against estimates from cores. To consider a deep, non-sediment-filled Bosphorus (100 m deep), the entry of Mediterranean water into the Sea of Marmara after 12.0 kyr BP is examined. A rapid entry of marine water into the Sea of Marmara is only consistent with small freshwater fluxes flowing through the Turkish Strait System, smaller than those of the present day by a factor of at least 4. Such a small freshwater flux would lead to the salinification of the Black Sea being complete by an early date of 10.2–9.6 kyr BP. Thus the possibility of a deep Bosphorus sill should be discounted.  相似文献   

3.
High resolution Chirp and Sparker data allowed definition and mapping of distinct seismic units in the shallow sediment record (~100 ms) acquired from the southern exit of the Bosphorus Strait; a dynamic depositional environment. The bottommost unit observed in the Chirp data (unit-3) is made up of marine-lacustrine sediments thinning seaward and onlaps the basement rocks which are represented by folded strata in the Sparker data, possibly lower to middle Pleistocene age. It is overlain by a series of prograding deposits along the shelf (unit-2) referring to sediment input from the northern sector depending on the water levels of the paleo Marmara lake’s during MIS 3. The uppermost deposits (unit-1) close to the Bosphorus Strait were represented by three separate subunits, unlike to relatively thin drape of sediments observed at the other places in the surrounding regions. The detailed definition of these subunits deduced from the closely-spaced reflection profiles and available radiocarbon ages helped to explain the history of the latest stratigraphic development depending on the connections between the Black Sea and the Sea of Marmara. In addition to the previously proposed major conduits, which controlled the sedimentary deposition at the southern exit of the Bosphorus, namely the Bosphorus Strait and Kurba?al?dere River, another submarine sedimentary pathway at the eastern bank of the strait’s channel seems to have delivered sediments directly into the basin.  相似文献   

4.
《Marine Geology》1999,153(1-4):275-302
Detailed interpretation of single-channel air-gun and deep-tow boomer profiles demonstrates that the Marmara Sea, Turkey, experienced small-amplitude (∼70 m) fluctuations in sea level during the later Quaternary, limited in magnitude by the sill depth of the Strait of Dardanelles. Moderate subsidence along the southern shelf and Quaternary glacio-eustatic sea-level variations created several stacked deltaic successions, separated by major shelf-crossing unconformities, which developed during the transitions from global glacial to interglacial periods. Near the Strait of Dardanelles, a series of sand-prone deposits are identified beneath an uppermost (Holocene) transparent mud drape. The sandy deposits thicken into mounds with the morphology and cross-sectional geometries of barrier islands, sand waves, and current-generated marine bars. All cross-stratification indicates unidirectional flow towards the Dardanelles prior to the deposition of the transparent drape which began ∼7000 years BP, in strong support of the notion that the Marmara Sea flowed westwards into the Aegean Sea through the Dardanelles at times of deglaciation in northern Europe. The global sea-level curve shows that, at ∼11,000 and ∼9500 years BP, sea level rose to the sill depths of the Straits of Dardanelles and Bosphorus, respectively. The effect from ∼11,000 to ∼9500 years BP was seawater incursion into the Marmara Sea, drowning and formation of algal-serpulid bioherms atop lowstand barrier islands, and transgression of shelves and lowstand deltas. At ∼9500 years BP, glacial meltwater temporarily stored in the Black Sea lake, developed into a vigorous southward flow toward the Aegean Sea, forming west-directed sandy bedforms in the western Marmara Sea and initiating deposition of sapropel S1 in the Aegean Sea. This strong outflow persisted until ∼7000 years BP, after which a mud drape began to accumulate in the Marmara Sea and euryhaline Mediterranean mollusks successfully migrated into a progressively more saline Black Sea where sapropel deposition began. Most eastern Mediterranean sapropels from S1 to S11 appear to correlate with periods of rising sea level and breaching, or near-breaching, of the Bosphorus sill. These events are believed to coincide with times of vigorous outflow of low-salinity (?fresh) surface waters transiting the Black Sea–Marmara Sea corridor, and ultimately derived from melting of northern European ice sheets.  相似文献   

5.
The straits connect two large water bodies show highly strong and stratified currents related to meteorological, morphological and hydrodynamic conditions. In some cases, spatial and temporal changes of the stratified currents and their thickness, direction and magnitude are so complex. This complexity directly affects the circulation pattern in the region, water exchange between both ends of the straits and migration of fish species. In order to understand general characteristics of this kind of straits and identifying the complexity of the hydrodynamics of the region and evaluate the secondary currents and recirculation need long term, intensive, field work and measurement studies. As an example of this kind of hydrodynamically complex straits, Bosphorus strait is selected for a field study. The Bosphorus strait has a strongly stratified two-layer system and a unique case of the maximal exchange regime typical of strait flows, which is largely determined by conditions at the Black Sea. Although the Bosphorus strait has distinct two-layer stratification with an associated two-layer system exchange, no continuous current measurements have been made so far, previous measurements all having been random sampling.In this paper, a detailed measurement program has been applied to Bosphorus strait. In the measurement program, a short-term current profile measurement at selected locations at southern part of the strait has been conveyed. Additionally a long-term measurement of current profile has been performed at a selected critical location (in front of the Dolmabahçe Palace) where a recirculation flow exists in the strait. The scope of this paper is to present the techniques and the results of analysis of measurement data. In the measurements the current profile (magnitude and direction) has been determined at every 1 m depth intervals from the surface to the sea bottom at 3 min duration at every hour. Measurements provide that lower-layer flows in northward direction from the Sea of Marmara towards the Black Sea, whereas the upper-layer flow comes from the Black Sea and flows towards the Sea of Marmara in the opposite direction of lower layer. The Bosphorus strait exhibits distinctive features associated with variations in its width and depth. The meandering features of Bosphorus also cause recirculation flows. These results of measurements are presented, discussed and compared with previous studies.  相似文献   

6.
The identification of past connection routes between the Black Sea and the Sea of Marmara, other than the traditional one through to the Bosphorus Strait, would be of considerable interest to the international scientific community. Nazik et al. (Geo-Mar Lett 31:75?C86 (2011) doi:10.1007/s00367-010-0216-9) suggest the possibility of two alternative waterway connections via lakes Sapanca and ?znik. Their Black Sea to Sea of Marmara multi-connection hypothesis, which is based on undated marine fossils collected in both lakes from surficial grab samples, conflicts with many earlier studies. In this contribution, the hypothesis and the underlying data are discussed in the light of previous tectonic, sedimentological and limnological findings showing that it is impossible to have had marine connections through lakes Sapanca and ?znik during the last 11.5?ka. Global sea-level trends and tectonic uplift rates would accommodate a connection between the Sea of Marmara and Lake ?znik in the middle Pleistocene. Uplift rates for the northern block of the North Anatolian Fault, when compared with the global sea-level curve, clearly indicate that there cannot have been a connection through the ?zmit Gulf?CLake Sapanca?CSakarya Valley for at least the past 500?ka. Moreover, borehole sediments along the western shores of Lake Sapanca, which reach down to the bedrock, do not contain any marine fossils.  相似文献   

7.
The Bosphorus is oceanographically very complicated two-layer stratified strait where denser water from the Marmara Sea flows towards North under the lighter water which is frequently flowing from the Black Sea towards South. The water level difference between both ends of the Bosphorus varies seasonally within the range of ?0.2 and 0.6 m. The seasonal variability depends mainly on the water level changes in the adjacent basins related to the hydrological cycle, short-term changes in the atmospheric pressure and the wind characteristics. These variations together with the depth and alignment of the cross section along the strait dominate the spatial and temporal variations and sometimes sharp changes in the flow pattern in three dimensions. Although these hydrodynamic conditions are critical for all marine and hydraulic works along the Bosphorus, there was not continuous long-term measurement for a sufficient time span in the strait for detailed evaluation of the current climate. An extensive site surveying work including current, wind, pressure and water level measurements was carried out between September 2004 and January 2006 in relation to the design and construction requirements of the Bosphorus Tube Crossing Project. In this study, the characteristics of stratified flow in the Bosphorus Strait and their relation to local and regional, short- and long-term changes in the meteorological parameters are studied by using the measurement data and the results are discussed comparatively.  相似文献   

8.
The early Holocene marine flooding of the Black Sea has been the subject of intense scientific debate since the “Noah’s Flood” hypothesis was proposed in the late 1990s. The chronology of the flooding is not straightforward because the connection between the Black Sea and the Mediterranean Sea involves the intermediate Marmara Sea Basin via two sills (Dardanelles and Bosphorus). This study explores the chronology of late Pleistocene–Holocene flooding by examining sedimentary facies and molluscs from 24 gravity cores spanning shelf to slope settings in the southern Marmara Sea Basin. A late Pleistocene Ponto-Caspian (Neoeuxinian) mollusc association is found in 12 of the cores, comprising 14 mollusc species and dominated by brackish (oligohaline–lower mesohaline) endemic taxa (dreissenids, hydrobiids). The Neoeuxinian association is replaced by a TurritellaCorbula association at the onset of the Holocene. The latter is dominated by marine species, several of which are known to thrive under dysoxic conditions in muddy bottoms. This association is common in early Holocene intervals as well as sapropel intervals in younger Holocene strata. It is an indicator of low-salinity outflows from the Black Sea into the Marmara Sea that drive stratification. A marine Mediterranean association (87 species) represents both soft bottom and hard substrate faunas that lived in well-ventilated conditions and upper mesohaline–polyhaline salinities (ca. 25 psu). Shallower areas were occupied by hard substrate taxa and phytopdetritic communities, whereas deeper areas had soft bottom faunas. The middle shelf part of the northern Gemlik Gulf has intervals with irregular and discontinuous sedimentary structures admixed with worn Neoeuxinian and euryhaline Mediterranean faunas. These intervals represent reworking events (slumping) likely related to seismic activity rooted in the North Anatolian Fault system. The core data and faunas indicate an oscillating postglacial sea-level rise and phases of increased/decreased ventilation in the Marmara Sea during the Holocene, as well as palaeobiogeographic reorganisations of Ponto-Caspian and Mediterranean water bodies since the latest Pleistocene (<30 ka). The findings contribute to arguments against a single catastrophic flooding of the Black Sea at about 7.5 ka (Noah’s Flood).  相似文献   

9.
Distribution of Sea of Azov water on the Crimean shelf and its penetration into the Gulf of Feodosia result in significant changes in the hydrophysical and hydrochemical structure of the water area. This inflow is also estimated as a major source of anthropogenic pollution in the region. At the same time, the Gulf of Feodosia is one of the least investigated areas of Russian Black Sea coast. The paper focuses on the hydrophysical structure of the Gulf of Feodosia and southeastern part of the Crimean shelf. The results of a field survey in May 2015 made it possible to reveal the presence of Sea of Azov water in the gulf and describe its thermohaline properties, along with the character of distribution. It is shown that contamination of Sea of Azov water in the gulf could mostly be determined by the synoptic dynamic processes in the area rather than by the seasonal variability of discharge in the Kerch Strait. The possible influence of the distribution of Sea of Azov water on the formation of cyclonic gyres in the coastal area of the region is indirectly confirmed by in situ measurements.  相似文献   

10.
The Strait of İstanbul (SoI) (Bosphorus) is a narrow valley, which has evolved tectonically from a stream, and in which thick sediment deposits have accumulated in the course of its evolution. Detailed seismic and multi-beam bathymetric data have revealed that the upper parts of the deeper channel deposits consist of parallel strata, which have mostly been eroded subsequently to their deposition. The resulting erosion surface is represented by the present channel floor in the strait, the estimated volume of the eroded material being approximately 2×108 m3 . Erosion rate and seafloor morphology indicate that the flow direction was from the south to the north. This inner channel may have been formed by an abrupt flooding of the Black Sea by Mediterranean waters at the beginning of the latest connection between the Marmara and the Black seas. Subsequently, the Mediterranean bottom current of the modern two-way flow system, which was established at about 5–4 ka b.p., has given the latest shape to the strait floor.  相似文献   

11.
Estimation of horizontal salt transfer from the central part of the Black Sea to the continental slope is carried out based on numerical modeling. A box hydrodynamic model of the Black Sea based on the POM model is used. Horizontal transport caused by seasonal variability of vertical velocity in the central part of the Black Sea and horizontal turbulent diffusion is considered. In this work we demonstrate that, in the 0- to 30-m layer on average for the year, there is an outflow of salty water under the impact of both factors. In the surface layer, the transport caused by seasonal variability contributes significantly (30%). In the 80- to 150-m layer on average over the year, the waters from the continental slope arrive into the central part of the basin; they are characterized by higher salinity due to the inflow of the Marmara Sea waters across the Bosporus Strait.  相似文献   

12.
The historical Golden Horn Estuary (GHE), near the confluence of the Istanbul Strait (Bosphorus) and the Sea of Marmara in the European part of Istanbul, has been used as a natural harbor since 330 a.d. The sedimentary infill of the GHE is 15–46 m thick, deposited unconformably above the turbiditic sandstones of the Carboniferous Trakya Formation. Chronostratigraphic and paleontological analyses of the infill sequence indicate that the GHE was a fluvial channel prior to 13,500 cal. a (calibrated to calendar years) B.P. It subsequently became gradually influenced by marine waters, and was a brackish-water environment until 9,500 cal. a B.P. Normal marine salinities prevailed at ca. 9,500−5,600 cal. a B.P., with suboxic/dysoxic bottom-water conditions. The increase in salinity at 9,500 cal. a B.P. was most likely caused by Mediterranean water outflow into the Black Sea through the Istanbul Strait. The estuary was influenced by large fluvial inputs between 5,600 and 1,000 cal. a B.P., possibly during a distinct pluvial period, as shown by coarse siliciclastic sediments deposited on the flanks. It has become a highly polluted environment with marked anthropogenic inputs during the last millennium. The finding that the sediment infill sequence above the Carboniferous basement is not older than about 20 ka strongly suggests that the Golden Horn Estuary acquired its present-day morphology during the late glacial–Holocene period.  相似文献   

13.
The analysis of the macroalgae distribution along the salinity gradient in the Azov Sea, the Kerch strait, and Taman Bay during the summer allowed finding two macroalgae complexes. The first complex (brackish) is formed by algae belonging to the Enteromorpha, Cladophora, Rhizoclonium, and Chaetomorpha genera in the Taganrog Gulf. The second complex (marine) with dominating algae belonging to the Enteromorpha, Chaetomorpha, Ceramium, and Polysiphonia inhabits the littoral part of the Azov Sea itself, the Kerch Strait, and Taman Bay. The saprobe analysis of the flora showed that the majority of macroalgae species inhabiting the Azov Sea are represented by meso- and polysaprobes and a small number of oligosaprobe species inhabit the Kerch Strait. The biggest species diversity of macroalgae was noted in the southwestern part of the sea; the value of Shannon’s index was 0.65 in the Taganrog Gulf, 1.04 in the Azov Sea, 1.38 in Taman Bay. The leading role in the littoral communities of Taganrog Gulf belongs to aquatic flowering plants with Potamogeton perfoliatus being dominant; as the salinity increases, the share of such species as P. pectinatus, Zostera marina, Z. noltii, Ruppia maritime, and Zannichellia major starts to increase.  相似文献   

14.
The composition and frequency of antibiotic resistance of pathogenic bacteria, the abundance of heterotrophic aerobic bacteria (HPC) and possible in-situ use of chromogenic agar were investigated in the ships' ballast water coming from different regions of the world to the Sea of Marmara, Turkey for the first time. The samples that were taken from 21 unit ships coming from various marine environments of the Southern China Sea, the Atlantic Ocean, the Mediterranean and the Black Sea to the Sea of Marmara, Turkey in 2009 and 2010 were tested. 38 bacteria species, 27 of them pathogenic bacteria belonging to 17 familia, were detected. Vibrio cholera was not detected in the samples. However, the presence of a high number of HPC, including a cocktail of pathogenic bacteria showed that the ships carry a potential risk for the Sea of Marmara.  相似文献   

15.
I. Genov 《Oceanology》2009,49(4):540-557
A model for the palaeoenvironmental evolution of the Black Sea and its adjacent basins during the past 20.000 years, in which variations in sedimentation, erosion, and hydrologic processes as a result of climatic change are taken into consideration, is developed. The data used include those from five cruises in the Black Sea with the participation of the author, seismo-acoustic data in the possession of the Institute of Oceanology in Varna, and data from the published literature. The most important result is that the water level of the Black Sea is controlled largely by that of the Marmara Sea via the Bosporus sill. The water circulation in the south part of the Bosporus channel as natural regulative mechanism of the Black Sea level during 11800–9000 yr C14 BP is produced. A succession of climatic and water conditions for the Black Sea by pollen analysis is presented. The linear ridges on the Black Sea shelf as result of the lower Holocene regression are proved by means of a stratigraphic interpretation of the seismo-acoustic profiles. The levels of the Black Sea, Marmara Sea, and Mediterranean at regarded intervals of time are presented. An attempt at explanation of maximum number of facts from the study region with this model is made.  相似文献   

16.
The effect of seawater movement through the Kerch Strait for extreme deviations in the level and speed of currents in the Sea of Azov caused by the action of climate wind fields has been studied using the Princeton ocean model (POM), a general three-dimensional nonlinear model of ocean circulation. Formation of the water flow through the strait is caused by the long-term action of the same type of atmospheric processes. The features of the water dynamics under conditions of changing intensity and active wind direction have been studied. Numerical experiments were carried out for two versions of model Sea of Azov basins: closed (without the Kerch Strait) and with a fluid boundary located in the Black Sea. The simulation results have shown that allowance for the strait leads to a significant change in the velocities of steady currents and level deviations at wind speeds greater than 5 m/s. The most significant effect on the parameters of steady-state movements is exerted by the speed of the wind that generates them; allowance for water exchange through the strait is less important. Analysis of the directions of atmospheric circulation has revealed that the response generated by the movement of water through the strait is most pronounced when a southeast wind is acting.  相似文献   

17.
During the SoJaBio expedition, the deep sea fauna of the north-western Sea of Japan was sampled in August–September 2010. From this study, 11 epibenthic sledge stations are analyzed, with a focus on species composition, diversity and distribution patterns of polychaetes. A total of 92 polychaete taxa belonging to 70 genera and 28 families and 3 indeterminate species were found. Twelve species and eight genera have not been reported from the Sea of Japan before, but were registered from other deep-sea basins. Calculation of diversity (Shannon–Wiener Index, Pielou's Evenness) showed that the upper bathyal of the Sea of Japan is an area of higher polychaete diversity than the abyssal plain. The increased richness and diversity here could possibly be explained by a zoogeographic overlapping with the shallower species' assemblages of the shelf. At a higher taxonomic level the polychaete fauna of the deep Sea of Japan does not seem to differ from that of other deep-sea regions world-wide. In depths below 2000 m about 30% polychaete species have wide distributional ranges.  相似文献   

18.
Based on extensive voluminous literary data, a comparison of the Harpacticoida faunas of the Black Sea; the Sea of Azov; and the Caspian, Baltic, Barents, White, Kara, Laptev, and East Siberian seas, as well as of the Spitsbergen and Franz Josef Land areas, was performed. The degree of community and specificity of the faunas of different regions was estimated and the general patterns of the latitudinal variability in the species compositions were revealed. It is shown that the Harpacticoida faunas of geographically separated areas and even those isolated from each other such as those of the Black Sea, the Sea of Azov, and the Caspian Sea are rather similar; an hypothesis is put forward that this is caused by the common history of the seas’ formation. In contrast, the faunas of the Arctic seas (Barents, White, Kara, Laptev, and East Siberian), whose water areas are closely connected, are considerably different, being related to their different temperature conditions.  相似文献   

19.
Active faults aligning in NW–SE direction and forming flower structures of strike-slip faults were observed in shallow seismic data from the shelf offshore of Avcılar in the northern Marmara Sea. By following the parallel drainage pattern and scarps, these faults were traced as NW–SE-directed lineaments in the morphology of the northern onshore sector of the Marmara Sea (eastern Thrace Peninsula). Right-lateral displacements in two watersheds of drainage and on the coast of the Marmara Sea and Black Sea are associated with these lineaments. This right-lateral displacement along the course of these faults suggests a new, active strike-slip fault zone located at the NW extension of the northern boundary fault of the ?ınarcık Basin in the Marmara Sea. This new fault zone is interpreted as the NW extension of the northern branch of the North Anatolian Fault Zone (NAFZ), extending from the ?ınarcık Basin of the Marmara Sea to the Black Sea coast of the Thrace Peninsula, and passing through B üy ük ?ekmece and K ü ? ük ?ekmece lagoons. These data suggest that the rupture of the 17 August 1999 earthquake in the NAFZ may have extended through Avcılar. Indeed, Avcılar and İzmit, both located on the Marmara Sea coast along the rupture route, were strongly struck by the earthquake whereas the settlements between Avcılar and İzmit were much less affected. Therefore, this interpretation can explain the extraordinary damage in Avcılar, based on the newly discovered rupture of the NAFZ in the Marmara Sea. However, this suggestion needs to be confirmed by further seismological studies.  相似文献   

20.
The sediment infill over the Paleozoic bedrock in the Bosphorus Strait consists of four sedimentary units which were deposited in the last 26,000 14C years B.P. The stratigraphy of these units suggests that this part of the Bosphorus was a freshwater lake between 26,000 and 5,300 14C years B.P., depositing sands with a freshwater mollusc fauna of Black Sea neo-euxinian affinity (Dreissena rostriformis, Dreissena polymorpha, and Monodacna pontica). The first appearance of euryhaline Mediterranean molluscs (e.g., Ostrea edulis, Mytilus edulis) was observed at 5,300 14C years B.P. in this part of the Bosphorus. Deposition of coarse Mytilus-bank and Ostrea-bank units suggests that the establishment of the present dual-flow regime in the Bosphorus took place at about 4,400 14C years B.P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号