首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A survey within the French National Programme of Ecotoxicology was carried out in 2002, 2003 and 2004 to study the response of Nereis diversicolor populations (Polychaeta, Nereididae) to the impact of pollution in the Authie estuary (non-contaminated site) and in the Seine estuary (contaminated site). In the period studied, the density varied from 672 ind. m−2 to 3584 ind. m−2 in the Authie estuary and from 80 ind. m−2 to 920 ind. m−2 in the Seine estuary. Biomass varied from 3.94 g m−2 (dry weight) in February 2004 to 38.0 g m−2 in August 2003 in the Authie estuary and from 3.4 g m−2 in February 2002 to 0.6 g m−2 in February 2004 in the Seine estuary. Density and biomass of the populations of N. diversicolor were consistently lower in the Seine estuary than in the Authie estuary. Size frequency histograms permit the analysis of the cohorts as well as the elaboration of the growth curves. For the individuals from the Authie estuary, the relation between dry weight (DW) and length L3 (prostomium, peristomium and chaetiger 1) was DW = 4.2205 L32.9832. For those from the Seine estuary, the relation between dry weight and L3 was DW = 0.4697e1.7209L3. The individuals of N. diversicolor should belong to eight cohorts in Authie estuary (two cohorts each year) instead of six cohorts for those from the Seine estuary. These differences can be attributed to the effect of pollution on the population of N. diversicolor.  相似文献   

2.
Annual variability in abundance and population structure of the copepod Eurytemora affinis was studied in the maximum turbidity zone of the Seine Estuary in 2005. An Eulerian sampling strategy was applied monthly from March to July and from September to December. Chlorophyll a and suspended particulate matter (SPM) concentration, copepod abundance and stage distribution, and phytoplankton abundance were measured in sub-surface and near-bottom water during the ebb phase. Total E. affinis abundance was at a maximum in March and April (>200 × 103 ind. m−3), and decreased from May to September (<25 × 103 ind. m−3). This decrease corresponds to annual increases in temperature, salinity, chlorophyll a concentration and phytoplankton abundance, which was dominated by large diatoms, and decreases in SPM and river discharge. The phenology observed in 2005 was almost two months earlier compared to previous studies in the 1990s, when E. affinis reached maximum abundance in May and June. The low proportion of nauplii (<50%) in the population and high abundance of ovigerous females suggests that low recruitment is probably related to anomalously low temperatures in late winter (<5 °C). Whatever the horizontal position of the population in the estuary, adult and late copepodid stages are distributed in higher salinity than naupliar stages. Overall E. affinis population abundance was driven by parameters that characterize water masses at the tidal scale and by river discharge and chlorophyll a at the annual scale. By integrating the tidal effect, the high-frequency sampling protocol used appears to be optimal for investigating annual variability of planktonic communities in megatidal estuaries.  相似文献   

3.
The inner zone of the Bahía Blanca Estuary is shallow, nutrient-rich and turbid. Tidal energy and water turbulence strongly affect the water column resulting in a well-mixed structure and high concentrations of suspended sediment. The phytoplankton community is mostly dominated by diatoms and the annual pattern has been characterized by a recurrent winter-early spring bloom. Here, we investigated to what extent the temporal variations of suspended particulate matter (SPM) regulate the phytoplankton blooms in the head of the estuary by light-limitation. Sampling was done on a fortnightly basis (weekly during the blooming season) at a fixed station in the inner zone of the estuary from January 2007 to February 2008. SPM concentrations and light extinction coefficients (k) in the water column were significantly correlated and showed relatively lower values during the phytoplankton maximal biomass levels. During winter, SPM and k reached values of 23.6 mg l−1 and 0.17 m−1 which were significantly lower than the annual means of 77.6 mg l−1 and 2.94 m−1, respectively. The particulate organic matter (POM) concentration was significantly correlated with the calculated phytoplankton biomass although the contribution of the latter to the total POM was rather low. Both, POM and biomass, had maximal values during winter (21.8 mg l−1 and 393.5 μg C l−1) and mid summer (24.3 mg l−1 and 407.0 μg C l−1), with cell densities up to 8 × 106 cells l−1 and chlorophyll a up to 24.6 μg l−1. Our results suggest that the decrease of SPM concentrations in the water column with a concomitant increase in the penetration of solar radiation seems to be one of the main causes for the development of the phytoplankton winter bloom in the Bahía Blanca Estuary.  相似文献   

4.
The macro-tidal Keum River Estuary located in the eastern Yellow Sea has been suffering siltation and morphological change since 1994. To understand the effects of the large-scale coastal developments on the sedimentation processes in the estuary, hydrodynamic and sedimentary data collected from 1985 to 2002 were analyzed and numerical experiments of hydrodynamics were performed. The sedimentation rate in the estuary increased by a factor of 1.9, from 3.5 × 106 to 6.7 × 10my−1, after the construction of a dam in the upper reaches of the estuary in 1994. Large part of the estuary is veneered by the muddy sediments noticeably, which were rarely found before dam construction. Since then, siltation has concentrated in the upper estuary rather than the lower. The upstream transport and accumulation of fine-grained sediments is due to: (1) the change to flood-dominance in the main channel, i.e. the relative intensification of flood current and the flood-directed residual current; and (2) the decrease in transport capacity in the upper estuary, i.e. the marked decrease in current velocity, which was induced by dam construction. The former has resulted in the ebb-dominance of the Gaeya channel, a distributary in the north of the main channel. The tidal pumping of fine sediments was reinforced not by the freshwater/saltwater interaction but by the residual tidal circulation. The sediment fluxes observed in 2001–2002 demonstrate year-round net inflow both at the entrance of the jetties and at the Gaeya channel, which implies that the sediments delivered by the Keum River are entirely confined to the estuary, incapable of escaping to the sea. The net inward transport of fine sediments may accumulate pollutants adsorbed to or absorbed in the sediment grains in the estuary, thus deteriorating the benthic environment gradually and the water quality eventually.  相似文献   

5.
The variability and origin of the Coloured Dissolved Organic Matter (CDOM) were studied in the Belgian coastal and adjacent areas including offshore waters and the Scheldt estuary, through the parameters: absorption at 375 nm, aCDOM(375), and the slope of the absorption curve, S. aCDOM(375) varied between 0.20 and 1.31 m−1 and between 0.97 and 4.30 m−1 in the marine area and Scheldt estuary, respectively. S fluctuated between 0.0101 and 0.0203 nm−1 in the marine area and between 0.0167 and 0.0191 nm−1 in the Scheldt estuary. The comparative analysis of aCDOM(375) and S variations evidenced different origins of CDOM in the BCZ. The Scheldt estuarine waters showed decreasing aCDOM(375) values with increasing salinity but constant S value of ∼0.018 nm−1 suggesting a dominant terrestrial origin of CDOM. On the contrary, samples collected in the marine domain showed a narrow range of aCDOM(375) but highly variable S suggesting the additional presence of autochthonous sources of CDOM. This source was evidenced based on the sorting of the marine offshore data according to the stage of the phytoplankton bloom when they were collected. A clear distinction was made between CDOM released during the growth stage characterized by high S (∼0.017 nm−1) and low aCDOM(375) and the decay phase characterized by low S (∼0.013 nm−1) and high aCDOM(375). This observation was supported by CDOM measurements performed on pure phytoplankton cultures which showed increased CDOM release along the wax and wane of the bloom but decreasing S. We concluded that the high variability of the CDOM signature in offshore waters is explained by the local biological production and processing of CDOM.  相似文献   

6.
Benthic, viable resting eggs of calanoid copepods were found for the first time in the Seine estuary (France) during July 2008. Vertical distribution of the resting eggs in the sediment was determined up to 10 cm depth. Hatching success of the eggs extracted from different 1-cm thick sediment layers was experimentally tested immediately after extraction and after a long refractory phase (i.e. 11 months) of storage at low temperature (4–5 °C). The hatching success of resting eggs obtained immediately after sediment incubation was lower (0.72%) than the value observed after 11 months (4.50%) with an overall hatching success of 2.37%. The marine, calanoid copepod Temora longicornis was the primary species to hatch from the eggs; however, the estuarine calanoid copepod Eurytemora affinis also hatched from resting eggs. The mean abundance of eggs found in sediment (1.42 × 106 eggs m−2) was comparable to that reported for other marine and estuarine calanoid copepods. The Seine estuary sediment had a high variability of egg abundance (between 0.14 and 8.10 × 107 eggs m−3) suggesting that the hydrodynamics of this macrotidal estuary are likely responsible for this variability. Significant sediment resuspension occurs in the Seine estuary during flood periods and spring tides leading to resting eggs to contribute along the year to the nauplii recruitment of calanoid copepods. On average, around 400,000 nauplii m−3 month−1 of the main calanoid copepods can emerge from the surface layer sediment in the Seine estuary, suggesting that resting eggs could play an important role in the population dynamics of key calanoid copepods in the Seine estuary.  相似文献   

7.
We examined the carbonate system, mainly the partial pressure of CO2 (pCO2), dissolved inorganic carbon (DIC) and total alkalinity (TAlk) in the Changjiang (Yangtze) River Estuary based on four field surveys conducted in Sep.–Oct. 2005, Dec. 2005, Jan. 2006 and Apr. 2006. Together with our reported pCO2 data collected in Aug.–Sep. 2003, this study provides, for the first time, a full seasonal coverage with regards to CO2 outgassing fluxes in this world major river–estuarine system. Surface pCO2 ranged 650–1440 μatm in the upper reach of the Changjiang River Estuary, 1000–4600 μatm in the Huangpujiang River, an urbanized and major tributary of the Changjiang downstream which was characterized by a very high respiration rate, and 200–1000 μatm in the estuarine mixing zone. Both DIC and TAlk overall behaved conservatively during the estuarine mixing, and the seasonal coverage of these carbonate parameters allowed us to estimate the annual DIC export flux from the Changjiang River as ∼ 1.54 × 1012 mol. The highly polluted Huangpujiang River appeared to have a significant impact on DIC, TAlk and pCO2 in the lower reaches of the inner estuary. CO2 emission flux from the main stream of the Changjiang Estuary was at a low level of 15.5–34.2 mol m− 2 yr− 1. Including the Huangpujiang River and the adjacent Shanghai inland waters, CO2 degassing flux from the Changjiang Estuary may have represented only 2.0%–4.6% of the DIC exported from the Changjiang River into the East China Sea.  相似文献   

8.
The often-rapid deposition of phytoplankton to sediments at the end of the spring phytoplankton bloom is an important component of benthic–pelagic coupling in temperate and high latitude estuaries and other aquatic systems. However, quantifying the flux is difficult, particularly in spatially heterogeneous environments. Surficial sediment chlorophyll-a, which can be measured quickly at many locations, has been used effectively by previous studies as an indicator of phytoplankton deposition to estuarine sediments. In this study, surficial sediment chlorophyll-a was quantified in late spring at 20–50 locations throughout Chesapeake Bay for 8 years (1993–2000). A model was developed to estimate chlorophyll-a deposition to sediments using these measurements, while accounting for chlorophyll-a degradation during the time between deposition and sampling. Carbon flux was derived from these estimates via C:chl-a = 75.Bay-wide, the accumulation of chlorophyll-a on sediments by late spring averaged 171 mg m−2, from which the chlorophyll-a and carbon sinking fluxes, respectively, were estimated to be 353 mg m−2 and 26.5 gC m−2. These deposition estimates were ∼50% of estimates based on a sediment trap study in the mid-Bay. During 1993–2000, the highest average chlorophyll-a flux was in the mid-Bay (248 mg m−2), while the lowest was in the lower Bay (191 mg m−2). Winter–spring average river flow was positively correlated with phytoplankton biomass in the lower Bay water column, while phytoplankton biomass in that same region of the Bay was correlated with increased chlorophyll-a deposition to sediments. Responses in other regions of the Bay were less clear and suggested that the concept that nutrient enrichment in high flow years leads to greater phytoplankton deposition to sediments may be an oversimplification. A comparison of the carbon flux associated with the deposition of the spring bloom with annual benthic carbon budgets indicated that the spring bloom did not contribute a disproportionately large fraction of annual carbon inputs to Chesapeake Bay sediments. Regional patterns in chlorophyll-a deposition did not correspond with the strong regional patterns that have been found for plankton net community metabolism during spring.  相似文献   

9.
The influence of prolonged mouth closure on the population dynamics of the caridian shrimp, Palaemon peringueyi and the estuarine isopod, Exosphaeroma hylocoetes, in the littoral zone of temporarily open/closed Kasouga Estuary located on the south-eastern coastline of southern Africa was assessed monthly over the period October 2007 to September 2008. Prolonged mouth closure of the estuary contributed to hypersaline conditions (psu > 35) prevailing throughout the estuary for the last four months of the study. The high salinities coincided with a decrease in the areal extent (up to 80%) of the submerged macrophytes, mainly Ruppia maritima, within the littoral zone of the estuary. Total abundance and biomass values of the shrimp and isopod over the period of investigation ranged from 0 to 14.6 ind m−2, from 0 to 13.3 mg dwt m−2, from 12 to 1540 ind m−2 and from 0.1 to 2.16 mg dwt m−2, respectively. Maximum values of both the shrimp and isopod were recorded in the upper reaches of the estuary in close association with R. maritima. Over the course of the investigation, both the abundance and biomass values of the shrimp decreased significantly (P < 0.05 in both cases) which could be related to reduced habitat availability, R. maritima, that acts as a refuge against fish predation. Additionally, the decrease in abundance and biomass values could be attributed to reduced recruitment opportunities for the shrimp and the cessation of reproduction in the estuarine isopod. The establishment of a link to the marine environment following an overtopping event in September 2008 contributed to a decrease in salinity within the system although no recruitment of either the isopod or shrimp was recorded.  相似文献   

10.
Large Zostera marina meadows (covering 13.6 km2) existed in the Nakdong River estuary on the south coast of Korea until the mid-1980s, but these Z. marina beds nearly disappeared due to reclamation of adjacent mud flats for the construction of a port and industrial complex during the late 1980s. Partial recovery of Z. marina meadows occurred recently, and Z. marina coverage of about 0.3 km2 was observed in this estuary. In this study, shoot morphology, density, biomass, productivity, and tissue nutrient content were measured to evaluate the current status of the Z. marina meadows by comparing these data to those for persistent seagrass meadows in similar geographical areas. Additionally, we examined the ecological roles of Z. marina in this estuary after recovery from the large-scale disturbance. Shoot density (151 shoots m−2) and total biomass (141 g DW m−2) in the estuary were similar to those reported from other Z. marina meadows in Korea. Annual leaf production (1726 g DW m−2 y−1) was higher than generally observed for Z. marina in other geographical areas. These results imply that the existing Z. marina meadows in this estuary have adjusted to local environmental conditions that changed after large-scale reclamation. Estimated annual whole plant carbon (C) and nitrogen (N) incorporations based on shoot production and tissue C and N content were 810.0 g C m−2 y−1 and 59.7 g N m−2 y−1, respectively. These values were equivalent to 2.4 × 105 kg C y−1 and 1.8 × 104 kg N y−1 for all Z. marina beds in the Nakdong River estuary. This high C and N incorporation into Z. marina tissues suggests that existing Z. marina meadows play important roles in C and N cycles in this estuary. Although the currently existing Z. marina beds in this estuary are persisting and play an important ecological role, anthropogenic factors that cause seagrass declines still affect the estuary. Thus, effective management and monitoring of Z. marina beds and environmental factors are critical to protecting and conserving this invaluable component of the Nakdong River estuary.  相似文献   

11.
Chlorophyll-a (chl-a) concentration has an important economic effect in coastal and marine environments on fisheries resources and marine aquaculture development. Monthly climatologies the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) derived chl-a from February 1998 to August 2004 around Funka Bay were used to investigate the spatial and temporal variability of chl-a concentrations. SeaWiFS-derived suspended sediment, MODIS derived sea surface temperature (SST), solar radiation and wind data were also analyzed. Results showed two distinct chlorophyll blooms in spring and autumn. Chl-a concentrations were relatively low (<0.3 mg m3) in the bay during summer, with high concentrations occurring along the coast, particularly near Yakumo and Shiraoi. In spring, chl-a concentrations increased, and a large (>2 mg m3) phytoplankton bloom occurred. The spatial and temporal patterns were further confirmed by empirical orthogonal function (EOF) analysis. About 83.94% of the variability could be explained by the first three modes. The first chl-a mode (77.93% of the total variance) explained the general seasonal cycle and quantified interannual variability in the bay. The spring condition was explained by the second mode (3.89% of the total variance), while the third mode (2.12% of the total variance) was associated with autumn condition. Local forcing such as the timing of intrusion of Oyashio water, wind condition and surface heating are the mechanisms that controlled the spatial and temporal variations of chlorophyll concentrations. Moreover, the variation of chlorophyll concentration along the coast seemed to be influenced by suspended sediment caused by resuspension or river discharge.  相似文献   

12.
The fish fauna of the Berg River Estuary was sampled from the mouth to 40 km upstream using a small-meshed seine-net before (summer 1993), during (summer 1994) and after (summer 1996) a low-oxygen, hydrogen sulphide “black tide” event that caused a mass mortality of fish in St Helena Bay. These data were compared to determine how the species composition, abundance and distribution of the fish fauna of the Berg River Estuary differed before, during and after the event as well as to ascertain which species, if any, found refuge in the estuary. The overall catch-per-unit-effort of 1637 fish.haul−1 during the event was almost double the 932 fish.haul−1 and 643 fish.haul−1 in the years before and after respectively. All the fish recorded alive in the estuary during the event were species known to have some degree of estuarine association. No representatives of the purely marine species found dead on the adjacent shoreline were recorded live in the estuary during the event. Of the 10 estuarine-associated species sampled, 5 extended their range and/or modal peaks of abundance further upstream during the event. One species, Liza richardsonii, was abundant enough to examine its size distribution in different breaches of the estuary. Large/adult fish were concentrated further upstream than small/juvenile fish, which appeared to be unable to escape tidal currents and were concentrated at the edge of the low-oxygen front. Collectively this circumstantial evidence indicates that (1) fish used the Berg Estuary as a refuge from low-oxygen conditions in the marine environment during the “black tide” event, and (2) the ability to secure refuge in the estuary was restricted to species described as “estuarine-associated” or “estuarine-dependent”.  相似文献   

13.
The effect of bioturbation on the erodability of natural and manipulated copper spiked sediments (3 μmol Cu g−1 dw) was investigated using sediments collected in the Tagus estuary and Nereis diversicolor (900 ind m−2). The input of particulate matter and Cu into the water column as a result of erosion was quantified in an annular flume at 7 shear velocities (1–13 cm s−1). The biogeochemical characteristics of the sediment were analysed in depth down to 8 cm. Cu contamination elicited lower levels of eroded matter and lower shear strength profiles. Eroded matter and sediment shear strength values were higher (up to 1.7 kg m−2) in the presence of N. diversicolor, whose effect was less pronounced under contamination. Sediment erodability was not only related to hydrodynamics but was highly affected by the biogeochemical characteristics and contamination of the sediments.  相似文献   

14.
Zooplankton are important grazers of primary production within intertidal marshes and are the optimal prey of higher trophic consumers; however, the patterns of their spatial distribution in marsh creeks are rarely reported. The zooplankton in the intertidal creeks with different salinities at Dongtan marshes of the Yangtze River Estuary was surveyed. The mean zooplankton densities in the intertidal creeks were 53,638 ind. m−3 in April and 132,916 ind. m−3 in July, respectively, which were as high as in the near-shore subtidal waters of the Yangtze River Estuary. This high abundance implied the important roles of zooplankton in the matter flux between marshes and near-shore waters through complex intertidal creek systems. Zooplankton total densities changed significantly from northern to southern creeks. ANOSIM and CCA analyses revealed that the zooplankton community structure were significantly different among the northern, eastern and southern creeks, and between two sampling seasons. Salinity accounted for most of the spatial variation of zooplankton community, whereas water temperature, chlorophyll a concentration, and pH were the main reasons of the temporal variation observed. Copepods were the most abundant zooplankton group. A total of 24 copepod species, belonging to 15 families and 20 genera, were recorded. Planktonic copepods preferred the northern and eastern creeks, with higher densities in July than in April, while benthic copepods predominated only in the northern creeks in April. Since the role of benthic and planktonic copepods may differ in transporting nutrients in the intertidal creeks, it is suggested that the variations in their distribution may influence the ecological functions of zooplankton in the estuarine matter fluxes both spatially and temporally.  相似文献   

15.
The importance of macrophytes as food sources for estuarine nekton is unclear. Previous carbon isotope investigations in the macrophyte-dominated, freshwater-deprived Kariega Estuary showed that the bivalveSolen cylindraceusdid not utilize the dominant estuarine macrophytes found within the estuary as a primary food source. This finding prompted questions as to what the nekton of this estuary utilize as primary energy sources. δ13C analyses of the principal autochthonous and allochthonous primary carbon sources, as well as the dominant invertebrate and fish species, indicate that there are two main carbon pathways within the Kariega Estuary. The littoral community, which incorporates the majority of crustaceans, gobies, mullet and a sparid, utilizes δ13C enriched primary food sources namelySpartina maritima,Zosteracapensis and epiphytes. The channel fauna, which includes the zooplankton, zooplanktivorous and piscivorous fish, utilizes a primary food source depleted in δ13C, which is most likely a mixture of phytoplankton, terrestrial plant debris and C4macrophyte detritus. The C3saltmarsh macrophytesSarcocornia perennisandChenolea diffusa, as well as benthic microalgae, appear to be less important as primary food sources to the nekton of the Kariega Estuary.  相似文献   

16.
In-situ measurements of benthic fluxes of oxygen and nutrients were made in the subtidal region of the Mandovi estuary during premonsoon and monsoon seasons to understand the role of sediment–water exchange processes in the estuarine ecosystem. The Mandovi estuary is a shallow, highly dynamic, macrotidal estuary which experiences marine condition in the premonsoon season and nearly fresh water condition in the monsoon season. The benthic flux of nutrients exhibited strong seasonality, being higher in the premonsoon compared to the monsoon season which explains the higher ecosystem productivity in the dry season in spite of negligible riverine nutrient input. NH4+ was the major form of released N comprising 70–100% of DIN flux. The benthic respiration rate varied from −98.91 to −35.13 mmol m−2 d−1, NH4+ flux from 5.15 to 0.836 mmol m−2 d−1, NO3 + NO2 from 0.06 to −1.06 mmol m−2 d−1, DIP from 0.12 to 0.23 mmol m−2 d−1 and SiO44− from 5.78 to 0.41 mmol m−2 d−1 between premonsoon to monsoon period. The estuarine sediment acted as a net source of DIN in the premonsoon season, but changed to a net sink in the monsoon season. Variation in salinity seemed to control NH4+ flux considerably. Macrofaunal activities, especially bioturbation, enhanced the fluxes 2–25 times. The estuarine sediment was observed to be a huge reservoir of NH4+, PO43− and SiO44− and acted as a net sink of combined N because of the high rate of benthic denitrification as it could remove 22% of riverine DIN influx thereby protecting the eco system from eutrophication and consequent degradation. The estuarine sediment was responsible for ∼30–50% of the total community respiration in the estuary. The benthic supply of DIN, PO43− and SiO44− can potentially meet 49%, 25% and 55% of algal N, P and Si demand, respectively, in the estuary. Based on these observations we hypothesize that it is mainly benthic NH4+ efflux that sustains high estuarine productivity in the NO3 depleted dry season.  相似文献   

17.
To examine the influence of river discharge on plankton metabolic balance in a monsoon driven tropical estuary, daily variations in physico-chemical and nutrients characteristics were studied over a period of 15 months (September 2007 to November 2008) at a fixed location (Yanam) in the Godavari estuary, India. River discharge was at its peak during July to September with a sharp decrease in the middle of December and complete cessation thereafter. Significant amount of dissolved inorganic nitrogen (DIN, of 22–26 μmol l−1) and dissolved inorganic phosphate (DIP, of 3–4 μmol l−1) along with suspended materials (0.2–0.5 g l−1) were found at the study region during the peak discharge period. A net heterotrophy with low gross primary production (GPP) occurred during the peak discharge period. The Chlorophyll a (Chl a) varied between 4 and 18 mg m−3 that reached maximum levels when river discharge and suspended loads decreased by >75% compared to that during peak period. High productivity was sustained for about one and half months during October to November when net community production (NCP) turned from net heterotrophy to autotrophy in the photic zone. Rapid decrease in nutrients (DIN and DIP by ∼15 and 1.4 μmol l−1, respectively) was observed during the peak Chl a period of two weeks. Chl a in the post monsoon (October–November) was negatively related to river discharge. Another peak in Chl a in January to February was associated with higher nutrient concentrations and high DIN:DIP ratios suggest possible external supply of nitrogen into the system. The mean photic zone productivity to respiration ratio (P:R) was 2.38 ± 0.24 for the entire study period (September 2007–November 2008). Nevertheless, the ratio of GPP to the entire water column respiration was only 0.14 ± 0.02 revealing that primary production was not enough to support water column heterotrophic activity. The excess carbon demand by the heterotrophs could be met from the allochthonous inputs of mainly terrestrial origin. Assuming that the entire phytoplankton produced organic material was utilized, the additional terrestrial organic carbon supported the total bacterial activity (97–99%) during peak discharge period and 40–75% during dry period. Therefore, large amount of terrestrial organic carbon is getting decomposed in the Godavari estuarine system.  相似文献   

18.
Dissolved Cd (CdD) concentrations along the salinity gradient were measured in surface water of the Gironde Estuary during 15 cruises (2001–2007), covering a wide range of contrasting situations in terms of hydrology, turbidity and season. During all situations dissolved Cd concentrations displayed maximum values in the mid-salinity range, reflecting Cd addition by chloride-induced desorption and complexation. The daily net CdD fluxes from the Gironde Estuary to the coastal ocean were estimated using Boyle's method. Extrapolating CdD concentrations in the high salinity range to the freshwater end member using a theoretical dilution line produced 15 theoretical Cd concentrations (CdD0), each representative of one distinct situation. The obtained CdD0 concentrations were relatively similar (201 ± 28 ng L−1) when freshwater discharge Q was >500 m3 s−1 (508 ≤ Q ≤ 2600 m3 s−1), but were highly variable (340 ± 80 ng L−1; 247–490 ng L−1) for low discharge situations (169 ≤ Q ≤ 368 m3 s−1). The respective daily CdD net fluxes were 5–39 kg day−1, mainly depending on freshwater discharge. As this observation invalidates the existing method of estimating annual CdD net fluxes, we proposed an empirical model, using representative CdD0 values and daily freshwater discharges for the 2001–2007 period. Subsequent integration produced reliable CdD net flux estimates for the Gironde Estuary at the annual timescale that ranged between 3.8–5.0 t a−1 in 2005 and 6.0–7.2 t a−1 in 2004, depending on freshwater discharge. Comparing CdD net fluxes with the incoming CdD fluxes suggested that the annual net CdD addition in the Gironde Estuary ranged from 3.5 to 6.7 t a−1, without any clear temporal trend during the past seven years. The annual CdD net fluxes did not show a clearly decreasing trend in spite of an overall decrease by a factor 6 in Cd gross fluxes during the past decade. Furthermore, in six years out of seven (except 2003), the annual CdD net fluxes even exceeded river borne total (dissolved + particulate) gross Cd fluxes into the estuary. These observations were attributed to progressive Cd desorption from both suspended particles and bottom sediment during various sedimentation–resuspension cycles induced by tidal currents and/or continuous dredging (navigation channel) and diverse intra-estuarine sources (wet deposition, urban sources, and agriculture). Provided that gross fluxes remain stable over time, dissolved Cd exportation from the Gironde Estuary to the coastal ocean may remain at the present level for the coming decade and the estuarine sedimentary Cd stock is forecast to decrease slowly.  相似文献   

19.
Biomass and primary productivity of picophytoplankton (PP; phytoplankton <3 μm) and larger phytoplankton (>3 μm) were determined during an annual cycle along the salinity gradient in North Carolina’s Neuse River Estuary (NRE), a eutrophic, microtidal estuary. The PP were a major component of total phytoplankton biomass and productivity, contributing ∼35–44% of the total chlorophyll a (Chl a) and 42–55% of the total primary productivity. Chl a and productivity of PP decreased from the upper to lower estuary, although the PP contribution relative to larger phytoplankton remained nearly constant. Significant PP growth occurred in the spring, but PP productivity and biomass were maximal in summer. PP productivity and biomass were positively correlated with temperature and dissolved inorganic phosphorus concentrations, which were maximal in summer due to release from sediments. Biomass and productivity of PP and >3 μm phytoplankton were also positively correlated, suggesting that growth conditions favoring the onset of blooms of larger phytoplankton species will similarly affect PP. High PP productivity and biomass in the NRE support the notion that PP play an important role in the production and eutrophication potentials of this estuary. High PP productivity and biomass have been noted in several other temperate estuaries, all sharing a common feature with the NRE—long residence time. These findings challenge the assumption that PP relative importance should be minimal in eutrophic systems.  相似文献   

20.
The estuarine turbidity maximum (ETM) that develops in the lower salinity areas of macrotidal estuaries has been considered as an important nursery for many fish species. Mysids are one of the dominant organisms in the ETM, serving as a key food source for juvenile fish. To investigate the horizontal distribution and population dynamics of dominant mysids in relation to the fluctuation of physical conditions (temperature, salinity, turbidity, and freshwater discharge), we conducted monthly sampling (hauls of a ring net in the surface water) along the macrotidal Chikugo River estuary in Japan from May 2005 to December 2006. Hyperacanthomysis longirostris was the dominant mysid in the estuary, usually showing peaks of density and biomass in or close to the ETM (salinity 1–10). In addition, intra-specific differences (life-cycle stage, sex, and size) in horizontal distribution were found along the estuary. Larger males and females, particularly gravid females, were distributed upstream from the center of distribution where juveniles were overwhelmingly dominant. Juveniles increased in size toward the sea in marked contrast with males and females. The findings suggest a possible system of population maintenance within the estuary; gravid females release juveniles in the upper estuary, juveniles grow during downstream transport, young males and females mature during the upstream migration. Density and biomass were primarily controlled by seasonal changes of temperature, being high at intermediate temperatures (ca. 15–25 °C in late spring and fall) and being low at the extreme temperatures (ca. 10 °C in midwinter and 30 °C in midsummer). High density (up to 666 ind. m−3) and biomass (up to 168 mg dry weight m−3) of H. longirostris were considered to be comparable with those of copepods in the estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号