首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The kerogen of an organic-rich sample, termed f top, from the Gorodische section (Russian platform) was studied using a combination of microscopic, spectroscopic and pyrolytic methods so as to examine its chemical structure, source organisms and formation pathway(s). This kerogen, which is mainly composed of orange gel-like, nanoscopically amorphous organic matter, exhibits a relatively high aliphatic character; organic sulphur is mainly present as di(poly)sulphides and alkylsulphides. The f top kerogen was chiefly formed via intermolecular incorporation of sulphur in algal or cyanobacterial lipids and carbohydrates. However, its formation also involved oxidative condensation via ether linkages. Comparison of f top sample with other S-rich kerogens points to a closer similarity with Monterey kerogens rather than with a kerogen from the bituminous laminites of Orbagnoux.  相似文献   

2.
A preliminary organic geochemical study shows that the sulphide ores from the hydrothermal deposit of the Okinawa Trough are generally low in the total organic carbon and extremely low in the soluble organic matter. In the aliphatic hydrocarbon fraction, the n-alkanes range from C15 to C35, with usual maxima in the middle n-C20 region and strong odd-carbon number predominance when n > C25 (CPI = 1.2). The dominant analog in the aromatic fraction is phenanthrene, a polynuclear aromatic hydrocarbon, which provides evidence for hydrothermal activity. The organic matter derived mainly from marine planktonic and terrigenous vascular plants is entrapped in a high-temperature regime such as an active chimney and cooled quickly in the sulphide ores on the seafloor. Organic matter and sulphides are definitely products of a high-temperature alteration. The biomarker compounds indicate that the ores are formed under low Eh and pH conditions-a reducing to anoxic environment, which is favourable for sulphates to be  相似文献   

3.
通过对黄河湿地孟津段不同湿地植被群落类型土壤进行采样分析,探讨了黄河小浪底水库修建之后调水调沙对下游滨河湿地不同植被群落类型土壤沉积特征的影响,并系统研究了滨河湿地土壤有机质的空间分异特征。研究结果表明:受上游小浪底水库建设的影响,滨河湿地不同植被群落类型土壤沉积层次和沉积厚度变化较大,近岸湿地植被向陆生演替的特征明显,土壤沉积加速、并不断向河道推移;滨河湿地不同植物群落类型、不同土壤层次的土壤有机质含量差异显著;典型湿地特征的植被群落表层土壤有机质含量明显高于其它深部沉积土壤;滨河湿地土壤有机质含量的显著差异性和受外部条件的显著控制作用,充分反映了滨河湿地生态系统的脆弱性。  相似文献   

4.
Wetland soils from a Mediterranean semiarid wetland (Las Tablas de Daimiel, Central Spain) were studied to characterize the organic matter (OM) and determine its origin and transformation. Cross polarization magic angle spinning (CPMAS) 13C nuclear magnetic resonance (NMR) spectroscopy and mathematical molecular mixing allowed analysis of the organic fraction in terms of six generic components (carbohydrate, protein, lignin, lipid, char and “carbonyl”). Las Tablas is an active carbon sink, with total organic carbon (TOC) content independent of soil OM quality; the TOC content of the upper sediment is 10.0 ± 7.8%. The inorganic carbon content is also high (5.4 ± 3.3%) and is associated mainly with OM of aliphatic character. The OM composition is variable; samples predominantly aliphatic (carbohydrate, lipid and protein) are characteristic of the northern sector, whereas predominantly aromatic samples are typical of the southern Tablas. A strong negative relationship between protein content and lignin content was found, interpreted as a consequence of different proportions of vascular vs. non-vascular (mostly charophyte) litter input. The effect of perturbation is apparent in the extended presence of char, particularly abundant in fire-prone areas. OM quantity and quality do not seem to depend on hydrology (although seasonal flooding is associated with lower TOC wetland soils) or soil characteristics. Dominant vegetation and fire are the main drivers of OM content and composition. Structural carbohydrate, protein and lipid (>60% of total organic fraction) dominate. Widespread anaerobic conditions and the recent character of the sediments could explain the preservation of different fractions of the original detritus composition (due to different vegetation and presence of microbes).  相似文献   

5.
Arctic soils contain a large fraction of Earth’s stored carbon. Temperature increases in the Arctic may enhance decomposition of this stored carbon, shifting the role of Arctic soils from a net sink to a new source of atmospheric CO2. Predicting the impact of Arctic warming on soil carbon reserves requires knowledge of the composition of the stored organic matter. Here, we employ solid state 13C nuclear magnetic resonance (NMR) spectroscopy and Fourier transform infrared-photoacoustic spectroscopy (FTIR-PAS) to investigate the chemical composition of soil organic matter collected from drained thaw-lake basins ranging in age from 0 to 5500 years before present (y BP). The 13C NMR and FTIR-PAS data were largely congruent. Surface horizons contain relatively large amounts of O-alkyl carbon, suggesting that the soil organic matter is rich in labile constituents. Soil organic matter decreases with depth with the relative amounts of O-alkyl carbon decreasing and aromatic carbon increasing. These data indicate that lower horizons are in a more advanced stage of decomposition than upper horizons. Nonetheless, a substantial fraction of carbon in lower horizons, even for ancient thaw-lake basins (2000-5500 y BP), is present as O-alkyl carbon reflecting the preservation of intrinsically labile organic matter constituents. Climate change-induced increases in the depth of the soil active layer are expected to accelerate the depletion of this carbon.  相似文献   

6.
In order to determine the metal-bearing phases with special emphasis on Cu, a sequential extraction has been carried out on seven soil samples from a sulphide-bearing spodosol profile in Liikavaara Östra, close to the Aitik Copper Mine in northern Sweden. A reference spodosol profile with very low abundances of sulphides located far from anthropogenic emissions was also studied. Five fractions were selected for the extraction: (I) CH3COONa-extractable (exchangeable/adsorbed/carbonate); (II) Na4P2O7-extractable (labile organics); (III) 0.25 M NH2OH·HCl-extractable (amorphous Fe oxyhydroxides/Mn oxides); (IV) 1 M NH2OH·HCl-extractable (crystalline Fe oxides); and (V) KClO3/HCl-extractable (organics and sulphides). The distribution of trace elements (Co, Cr, Cu, Ni, Pb and Zn) in the profile in Liikavaara Östra is different from that in the reference profile. Possible explanations for these differences are (i) the presence of sulphides in the soil, (ii) atmospheric deposition of dust derived from mining activities at the Aitik Copper Mine, and (iii) mineralogical heterogeneities inherited from the deposition of the till. There is no straightforward correlation between the amount of the extracted phases and the metal extractability in the soils. This fact indicates that other factors are important for the retention of trace metals as well. The data presented in this study suggest that Co, Cr and Ni, to a fairly large extent, are associated with the organic matter in the B-horizon in both profiles, while in the C-horizon in Liikavaara Östra, sulphides are probably the more important carriers of these elements. For Co and Ni, Fe oxyhydroxides seem to be important. Most of the Cr occurred in the residual remaining after the leaching procedure. Copper and Zn seem to be associated with the organic matter to some extent in the B-horizon. The concentration of Cu in the C-horizon in Liikavaara Östra is high (2310 ppm), but only a very small fraction is likely to be hosted by sulphides. It is concluded that the major part of Cu in the C-horizon and a prominent fraction in the B-horizon in Liikavaara Östra are associated with some secondary phase that is extractable during extractions III and IV. Possible candidates for this phase are goethite and inclusions of native Cu in weathered biotite.  相似文献   

7.
Both the concentrations and the stocks of soil organic carbon vary across the landscape. Do the amounts of recalcitrant components of soil organic matter (SOM) vary with landscape position? To address this question, we studied four Mollisols in central Iowa, two developed in till and two developed in loess. Two of the soils were well drained and two were poorly drained. We collected surface-horizon samples and studied organic matter in the particulate organic matter (POM) fraction, the clay fractions, and the whole, unfractionated samples. We treated the soil samples with 5 M HF at ambient temperature or at 60 °C for 30 min to concentrate the SOM. To assess the composition of the SOM, we used solid-state nuclear magnetic resonance (NMR) spectroscopy, in particular, quantitative 13C DP/MAS (direct-polarization/magic-angle spinning), with and without recoupled dipolar dephasing. Spin counting by correlation of the integral NMR intensity with the C concentration by elemental analysis showed that NMR was ?85% quantitative for the majority of the samples studied. For untreated whole-soil samples with <2.5 wt.% C, which is considerably less than in most previous quantitative NMR analyses of SOM, useful spectra that reflected ?65% of all C were obtained. The NMR analyses allowed us to conclude (1) that the HF treatment (with or without heat) had low impact on the organic C composition in the samples, except for protonating carboxylate anions to carboxylic acids, (2) that most organic C was observable by NMR even in untreated soil materials, (3) that esters were likely to compose only a minor fraction of SOM in these Mollisols, and (4) that the aromatic components of SOM were enriched to ∼53% in the poorly drained soils, compared with ∼48% in the well drained soils; in plant tissue and particulate organic matter (POM) the aromaticities were ∼18% and ∼32%, respectively. Nonpolar, nonprotonated aromatic C, interpreted as a proxy for charcoal C, dominated the aromatic C in all soil samples, composing 69-78% of aromatic C and 27-36% of total organic C in the whole-soil and clay-fraction samples.  相似文献   

8.
Lead concentrations and stable isotopic measurements were examined in the different chemical fractions of Czech forest soils to investigate the mechanisms of Pb partitioning. A method of selective sequential dissolution (SSD) was employed that distinguished between five different fractions: exchangeable, surface bound, organic matter, Fe-oxides, and silicates (non-labile).From an analysis of the concentrations and isotopic compositions associated with the different fractions, it is apparent that Pb in the deep Czech mineral soils is of predominantly natural origin and is primarily associated with silicates (69-81%) and Fe-oxides (11-19%). Natural Pb associated with surface bound and organic matter fractions in mineral soils accounts for only 7 to 15%. Anthropogenic Pb in the Czech soils is concentrated primarily in the organic horizons and is strongly associated with the surface-bound and organic matter fractions in which the proportion of total Pb is 33 to 50% and 23 to 47%, respectively.At high and low levels of contamination, Pb isotopic signatures within the labile fractions of the same soil samples are generally homogenous, although a degree of heterogeneity among these fractions is noted in samples of intermediate degrees of contamination. Such heterogeneity probably reflects different levels of natural and anthropogenic Pb mixing.Determination of the mass-normalized affinity of Pb to the primary components using solid-solution distribution coefficients suggests that in Czech forest soils, the order of affinity may be summarized as Fe-oxides > organic matter > silicates. A similar treatment of the data reported for semiarid Mediterranean soils indicates the prevailing order to be Fe-oxides > carbonates > organic matter > silicates. The general similarity of the behaviour of Pb with respect to the different soil components in both temperate and semiarid soils suggests that these orders of affinity may have wider significance for a variety of other soil types.  相似文献   

9.
Various Fe–S minerals of the mackinawite–greigite–pyrite association, ubiquitous in biogenic remains from Jurassic mudstones, have been described in detail in an SEM–EDS study. Two diagenetic stages of Fe sulphide formation and preservation in the Jurassic organic skeletons are identified. In the first stage, pyrite formed as euhedra and framboids shortly after deposition, mainly in the interiors of the skeletons which still contained labile organic matter. The second stage of iron sulphide formation was related to the later stages of diagenesis, when the influence of the surrounding sediment was more dominant, although some organic matter was still present in the biogenic skeletons. A Fe-rich carbonate–aluminosilicate cement was then introduced between the earliest iron sulphides and later subsequently sulphidized, to form a metastable iron monosulphide of mackinawite composition and then greigite.  相似文献   

10.
Although pedogenic barite has been documented in many modern soils and palaeosols, no actualistic studies on its formation have been reported. Because barite is stable over the entire range of pressure and temperature of the Earth's crust, it preserves reliable data about the original environment in which it formed. Pedogenic barite and barite‐bearing soils have been used as indicators of landscape stability, environmental conditions, climate and microbial acti‐vity. This study compares field data, micromorphology and stable isotope geochemistry of a barite‐bearing palaeosol from the Morrison Formation (Jurassic) and a modern analogue soil in south‐central Texas, USA. Morrison barite‐bearing palaeosols are over‐thickened cumulic palaeosols that developed in subaerially exposed lacustrine sediments during an extended lake contraction event. Lateral facies relationships document changes in hydrology and duration of episaturated conditions (perched water table above the Btg horizons) that correspond to differences in barite nodule morphology and abundance. Barite precipitation occurred at a redox boundary higher on the landscape after organic matter was completely oxidized. Sulphur isotope data indicate that the initial source of sulphur was soil organic matter. Meteoric water is the likely source of oxygen for the sulphate. Barium sourced from weathering feldspars and clays. The modern analogue displays similar catenary relationships, redox features and micromorphological characteristics compared to the Morrison palaeosols, suggesting that similar pedogenic processes led to barite precipitation. Synthesized data suggest that conditions favourable to barite‐bearing soil formation are low‐gradient basins that have received feldspar‐rich sediments (i.e. volcanically influenced basins), soils that developed near salt domes, soils that developed in exposed wetland or lacustrine sediments and coastal plain deposits. When studied in a well‐documented palaeogeographic context, barite‐bearing soils are valuable to palaeoclimate, palaeoenvironmental and palaeohydrological studies. Combined with regional interfluve palaeosols, barite‐bearing palaeosols may document temporal changes in drainage, surface stability, and accommodation consistent with sequence boundaries/maximum flooding surfaces and climate changes.  相似文献   

11.
The Mackenzie River Basin (MRB) in NW Canada is one of the least human-impacted large watersheds in the world. The western and eastern sub-basins of the MRB are also marked by contrasting geology, geomorphology, hydrology, and biology. These remarkable differences in a remote river basin provide a unique opportunity to probe the biogeochemical processes governing the sources, transport, and bioavailability of Hg at the terrestrial-marine interface and ultimately in the Arctic Ocean. Based on a large dataset of the concentration and speciation of Hg, S and organic matter in surface sediments across the MRB, a source-apportioned budget was constructed for Hg in the MRB. The results indicate that the Hg flux in the basin originates primarily from the weathering of sulfide minerals in the western mountainous sub-basin (∼78% of the total), followed by the erosion of coal deposits along the mainstream of the Mackenzie River (∼10%), with the remainder split between atmospheric inputs and organic matter-bound Hg (6% and 5%, respectively). Although the Hg flux from the eastern peatland sub-basin only accounts for ∼10% of the total riverine Hg flux, Hg in this region correlates strongly with labile organic matter, and will likely have a much stronger influence on local biota.  相似文献   

12.
We explored environmental factors influencing soil pyrite formation within different wetland regions of Everglades National Park. Within the Shark River Slough (SRS) region, soils had higher organic matter (62.65 ± 1.88 %) and lower bulk density (0.19 ± 0.01 g cm?3) than soils within Taylor Slough (TS; 14.35 ± 0.82 % and 0.45 ± 0.01 g cm?3, respectively), Panhandle (Ph; 15.82 ± 1.37 % and 0.34 ± 0.009 g cm?3, respectively), and Florida Bay (FB; 5.63 ± 0.19 % and 0.73 ± 0.02 g cm?3, respectively) regions. Total reactive sulfide and extractable iron (Fe) generally were greatest in soils from the SRS region, and the degree of pyritization (DOP) was higher in soils from both SRS (0.62 ± 0.02) and FB (0.52 ± 0.03) regions relative to TS and Ph regions (0.30 ± 0.02 and 0.31 ± 0.02, respectively). Each region, however, had different potential limits to pyrite formation, with SRS being Fe and sulfide limited and FB being Fe and organic matter limited. Due to the calcium-rich soils of TS and Ph regions, DOP was relatively suppressed. Annual water flow volume was positively correlated with soil DOP. Soil DOP also varied in relation to distance from water management features and soil percent organic matter. We demonstrate the potential use of soil DOP as a proxy for soil oxidation state, thereby facilitating comparisons of wetland soils under different flooding regimes, e.g., spatially or between wet years versus dry years. Despite its low total abundance, Fe plays an important role in sulfur dynamics and other biogeochemical cycles that characterize wetland soils of the Florida coastal Everglades.  相似文献   

13.
The organic matter-rich Toolebuc Formation of eastern Australia was deposited in a Lower Cretaceous epicontinental sea. Parameters from biological marker studies indicate that the organic matter is immature to marginally mature for hydrocarbon generation. The occurrence of abundant coccoliths and the distribution of alkane biomarkers suggest that the organic matter (Type II) is largely of planktonic origin and only in the southeastern part of the depositional area can a terrestrial influence be discerned. Variations in kerogen composition can be attributed to the extent of the oxidation of the source materials and the degree of incorporation of sulphur. The atomic H/C ratios (c. 1.1) are remarkably constant for most of the Toolebuc Formation. Atomic O/C ratios vary from 0.1 and 0.4 and can be related both to depth and paleogeographic position. Kerogen sulphur contents range up to 7%, and the highest values occur in the most carbonate-rich sediments. Total sulphur (inorganic + organic) to carbon ratios in the sediments vary from 1 to <0.2 and are a function of paleogeographic position and lithology. Most of the sulphur in the sediments is in the form of pyrite, but the proportion of sulphur in organic form increases as the total sulphur content decreases. The evidence for oxidation of the organic matter and incorporation of sulphur into it during deposition suggests that bituminite, which is the dominant organic maceral in the Toolebuc Formation, was formed from an organic gel derived by decay of predominantly algal material. These data support a modified gyttja model (Kauffman, 1981) for the deposition of organic matter in the Toolebuc Formation.  相似文献   

14.
Soil organic matter (SOM) is one of the earth’s largest reservoirs of actively cycled carbon and plays a critical role in various ecosystem functions. In this study, mineral soils with the same parent material and of similar approximate age were sampled from the same climatic region in Halsey, Nebraska to determine the relationship between overlying vegetation inputs to SOM composition using complementary molecular level methods (biomarker analyses and solid state 13C nuclear magnetic resonance (NMR) spectroscopy). Soil samples were collected from a native prairie and cedar and pine sites planted on the native prairie. Free and bound lipids isolated from the pine soil were more enriched in aliphatic and cutin-derived compounds than the other two soils. Cinnamyl type lignin-derived phenols were more abundant in the grassland soil than in the pine and cedar soils. Acid to aldehyde ratios (Ad/Al) for vanillyl and syringyl type phenols were higher for the pine soil indicating a more advanced stage of lignin oxidation (also observed by 13C NMR) in the soil that has also been reported to have accelerated carbon loss. In agreement with the more abundant aliphatic lipids and cutin-derived compounds, solid state 13C NMR results also indicated that the SOM of the pine soil may have received more aliphatic carbon inputs or may have lost other components during enhanced decomposition. The observed relationship between vegetation and SOM composition may have important implications for global carbon cycling as some structures (e.g. aliphatics) are hypothesized to be more recalcitrant compared to others and their accumulation in soils may enhance below ground carbon storage.  相似文献   

15.
Polyaromatic hydrocarbons (PAHs) are often considered as abundant and widespread organic structures in the universe and such structures are known to build the macromolecular network of the organic matter in carbonaceous chondrites. Assuming that interstellar PAHs are properly identified from infrared bands, these meteoritic aromatic moieties can be compared with their interstellar counterpart. The main structural parameters of the aromatic units of the insoluble organic matter of the Orgueil and Murchison chondrites are directly determined through high resolution transmission electron microscopy along with image analysis. These aromatic moieties appear weakly organized and of a smaller size than those present in the interstellar medium (containing ∼30 and ∼150 C atoms). Provided chondritic and interstellar polyaromatic hydrocarbons are derived from a similar organosynthesis, the smaller units were selectively preserved in meteorites, likely thanks to their fast accumulation on grains, which would protect them from solar UV photodissociation at the surface of the protosolar disk.  相似文献   

16.
Amazonian Dark Earths (ADE) are a unique type of soils developed through intense anthropogenic activities that transformed the original soils into Anthrosols throughout the Brazilian Amazon Basin. We conducted a comparative molecular-level investigation of soil organic C (SOC) speciation in ADE (ages between 600 and 8700 years B.P.) and adjacent soils using ultraviolet photo-oxidation coupled with 13C cross polarization-magic angle spinning nuclear magnetic resonance (CP-MAS NMR), synchrotron-based Fourier transform infrared-attenuated total reflectance (Sr-FTIR-ATR) and C (1s) near edge X-ray absorption fine structure (NEXAFS) spectroscopy to obtain deeper insights into the structural chemistry and sources of refractory organic C compounds in ADE. Our results show that the functional group chemistry of SOC in ADE was considerably different from adjacent soils. The SOC in ADE was enriched with: (i) aromatic-C structures mostly from H- and C-substituted aryl-C, (ii) O-rich organic C forms from carboxylic-C, aldehyde-C, ketonic-C and quinine-C, and (iii) diverse group of refractory aliphatic-C moieties. The SOC in adjacent soils was predominantly composed of O-alkyl-C and methoxyl-C/N-alkyl-C structures and elements of labile aliphatic-C functionalities. Our study suggests that the inherent molecular structures of organic C due to selective accumulation of highly refractory aryl-C structures seems to be the key factor for the biochemical recalcitrance and stability of SOC in ADE. Anthropogenic enrichment with charred carbonaceous residues from biomass-derived black C (BC) is presumed to be the precursor of these recalcitrant polyaromatic structures. Our results also highlight the complementary role that might be played by organic C compounds composed of O-containing organic C moieties and aliphatic-C structures that persisted for millennia in these anthropic soils as additional or secondary sources of chemical recalcitrance of SOC in ADE. These organic C compounds could be the products of: (i) primary recalcitrant biomolecules from non-BC sources or (ii) secondary processes involving microbial mediated oxidative or extracellular neoformation reactions of SOC from BC and non-BC sources; and stabilized through physical inaccessibility to decomposers due to sorption onto the surface or into porous structures of BC particles, selective preservation or through intermolecular interactions involving clay and BC particles.  相似文献   

17.
Measurements of the 34S/32S ratios in sulphides from the slightly metamorphosed Lady Loretta deposit show the sphalerite and galena to be in isotopic equilibrium. Pyrite in immediate association with these sulphides is not isotopically related. A similar distribution of sulphur isotopes had previously been noted in the even less altered McArthur deposit, for which a dual sulphur source was postulated. This fresh isotopic evidence from Lady Loretta now suggests that such a genesis for stratiform sulphides from the Proterozoic is not uncommon.  相似文献   

18.
Microbial and photochemical decomposition are two major processes regulating organic matter (OM) transformation in the global carbon cycle. However, photo-oxidation is not as well understood as biodegradation in terms of its impact on OM alteration in terrigenous environments. We examined microbial and photochemical transformation of OM and lignin derived phenols in two plant litters (corn leaves and pine needles). Plant litter was incubated in the laboratory over 3 months and compositional changes to OM were measured using nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry. We also examined the susceptibility of soil organic matter (SOM) to ultraviolet (UV) radiation. Solid-state 13C NMR spectra showed that O-alkyl type structures (mainly from carbohydrates) decreased during biodegradation and the loss of small carbohydrates and aliphatic molecules was observed by solution-state 1H NMR spectra of water extractable OM from biodegraded litters. Photochemical products were detected in the aliphatic regions of NaOH extracts from both litter samples by solution-state 1H NMR. Photo-oxidation also increased the solubility of SOM, which was attributed to the enhanced oxidation of lignin derived phenols and photochemical degradation of macromolecular SOM species (as observed by diffusion edited 1H NMR). Overall, our data collectively suggests that while biodegradation predominates in litter decomposition, photo-oxidation alters litter OM chemistry and plays a role in destabilizing SOM in soils exposed to UV radiation.  相似文献   

19.
We measured molecular distributions and compound-specific hydrogen (δD) and stable carbon isotopic ratios (δ13C) of mid- and long-chain n-alkanes in forest soils, wetland peats and lake sediments within the Dorokawa watershed, Hokkaido, Japan, to better understand sources and processes associate with delivery of terrestrial organic matter into the lake sediments. δ13C values of odd carbon numbered C23-C33n-alkanes ranged from −37.2‰ to −31.5‰, while δD values of these alkanes showed a large degree of variability that ranged from −244‰ to −180‰. Molecular distributions in combination with stable carbon isotopic compositions indicate a large contribution of C3 trees as the main source of n-alkanes in forested soils whereas n-alkanes in wetland soil are exclusively derived from marsh grass and/or moss. We found that the n-alkane δD values are much higher in forest soils than wetland peat. The higher δD values in forest samples could be explained by the enrichment of deuterium in leaf and soil waters due to increased evapotranspiration in the forest or differences in physiology of source plants between wetland and forest. A δ13C vs. δD diagram of n-alkanes among forest, wetland and lake samples showed that C25-C31n-alkanes deposited in lake sediments are mainly derived from tree leaves due to the preferential transport of the forest soil organic matter over the wetland or an increased contribution of atmospheric input of tree leaf wax in the offshore sites. This study demonstrates that compound-specific δD analysis provides a useful approach for better understanding source and transport of terrestrial biomarkers in a C3 plant-dominated catchment.  相似文献   

20.
The hydrologic and water-quality characteristics of a small tropical riverine wetland at Ulakwo, near Owerri, Imo State, Nigeria, were evaluated by analysis of stream hydrographs, the groundwater flow system, and geochemical analyses. This research is an initial step toward providing information needed to develop a programme of sustainable development of the ecosystem. The wetland is underlain by a layer of organic debris and hydromorphic soils, which in turn are underlain by an unconfined alluvial sand aquifer about 80 m thick. Horizontal and upward vertical hydraulic head gradients of about 0.002 and 0.001, respectively, and the results of a flow-net analysis suggest that considerable amounts of groundwater flow into the wetland. Low concentrations of Fe, NO3, PO4, and SO4 in the wetland water column are probably due to short-term removal of these nutrients from the surface-water by adsorption on the surficial wetland organic matter and bottom sediments. The groundwater flow system is important in the maintenance of the wetland, which probably plays an important role in the flow stabilisation and improvement of the water quality of the river. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号