首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present U, Th, and Pa isotope data for young lavas from Costa Rica and Nicaragua in the Central American arc. Thorium isotopic ratios for Costa Rica and Nicaragua differ dramatically: Costa Rican lavas are characterized by low (230Th/232Th) (1 to 1.2) and, for four out of five lavas, (230Th/238U) greater than unity. Nicaraguan lavas have high (230Th/232Th) (2.2 to 2.7) and, for five of six samples, (230Th/238U) less than unity. All lavas have (231Pa/235U) greater than unity, with initial values ranging from 1.27 to 1.77, but those from Costa Rica have larger 231Pa excesses. There is a broad positive correlation between (231Pa/235U) and (230Th/238U) similar to the worldwide trend for arcs outlined by Pickett and Murrell (1997), although many of the Nicaraguan lavas skirt the high end of that trend. In greater detail, the Central American data appear to divide into separate high-(231Pa/235U) and low-(231Pa/235U) tiers. These tiers may be different because of either different residence times in the crust or different proportions of sedimentary components from the slab.Substantial (231Pa/235U) excesses (>1.5) in both Costa Rica and Nicaragua require a melting process that allows for enhanced daughter (231Pa) ingrowth. With increasing U addition, (231Pa/230Th) increases in a manner that cannot be explained adequately by aging of fluid components before partial melting and eruption. Thus, either some 231Pa is added from the slab, or melting-enhanced 231Pa ingrowth is greater in sources that have experienced a larger amount of slab-derived flux and a higher extent of melting. These observations can be explained if regions that have undergone greater extents of fluxing and melting have experienced these processes over a longer time interval than those that have had little flux added and little melt extracted. We propose a flux-ingrowth melting model in which corner flow in the mantle wedge supplies fresh hot mantle into a zone of slab fluid addition. Partial melting occurs in response to this fluxing. We assume critical melting at low porosity (∼10−3), rapid fluid flux to the melting region, and rapid melt transport. Solid mantle traverses the melting region over 105 to 106 yr, thereby allowing 231Pa and 230Th ingrowth from U retained in the residues of melt extraction. Magmas are aggregated from all parts of the melting regime, mixing melts from incipiently fluxed regions with those from sources that have experienced more extensive fluid addition, partial melting, and daughter nuclide ingrowth. With suitable assumptions about component addition from the slab, this flux-ingrowth model matches a wide range of U-series and trace element data from Costa Rican and Nicaraguan lavas, with required average extents of melting of ∼1 to 3% and 7 to 15%, respectively. Upwelling and/or extensive melt-rock reaction are not required to explain large (231Pa/235U) excesses in Central America or other arcs. On Th isotope equiline plots, the model produces linear arrays that resemble isochrons but that have no age significance. Instead, these arrays are generated by mixing of melts from sources that have experienced fluid addition and partial melting over a range of time intervals, as seems likely in arc source regions. Finally, the flux-ingrowth model predicts considerable 226Ra excesses for integrated magmas. If we assume that 226Ra is added continuously with the slab-derived fluid, the model predicts large and increasing (226Ra/230Th) with increasing melting and slab-component addition, without requiring the addition of a distinct late fluid.  相似文献   

2.
We present data for U and its decay series nuclides 230Th, 226Ra, 231Pa, and 210Po for 14 lavas from Kick’em Jenny (KEJ) submarine volcano to constrain the time-scales and processes of magmatism in the Southern Lesser Antilles, the arc having the globally lowest plate convergence rate. Although these samples are thought to have been erupted in the last century, most have (226Ra)/(210Po) within ±15% of unity. Ten out of 14 samples have significant 226Ra excesses over 230Th, with (226Ra)/(230Th) up to 2.97, while four samples are in 226Ra-230Th equilibrium within error. All KEJ samples have high (231Pa)/(235U), ranging from 1.56 to 2.64 and high 238U excesses (up to 43%), providing a global end-member of high 238U and high 231Pa excesses. Negative correlations between Sr, sensitive to plagioclase fractionation, and Ho/Sm, sensitive to amphibole fractionation, or K/Rb, sensitive to open system behavior, indicate that differentiation at KEJ lavas was dominated by amphibole fractionation and open-system assimilation. While (231Pa)/(235U) does not correlate with differentiation indices such as Ho/Sm, (230Th)/(238U) shows a slight negative correlation, likely due to assimilation of materials with slightly higher (230Th)/(238U). Samples with 226Ra excess have higher Sr/Th and Ba/Th than those in 226Ra-230Th equilibrium, forming rough positive correlations of (226Ra)/(230Th) with Sr/Th and Ba/Th similar to those observed in many arc settings. We interpret these correlations to reflect a time-dependent magma differentiation process at shallow crustal levels and not the process of recent fluid addition at the slab-wedge interface.The high 231Pa excesses require an in-growth melting process operating at low melting rates and small residual porosity; such a model will also produce significant 238U-230Th and 226Ra-230Th disequilibrium in erupted lavas, meaning that signatures of recent fluid addition from the slab are unlikely to be preserved in KEJ lavas. We instead propose that most of the 238U-230Th, 226Ra-230Th, and 235U-231Pa disequilibria in erupted KEJ lavas reflect the in-growth melting process in the mantle wedge (reflecting variations in U/Th, daughter-parent ratios, fO2, and thermal structure), followed by modification by magma differentiation at crustal depths. Such a conclusion reconciles the different temporal implications from different U-series parent-daughter pairs and relaxes the time constraint on mass transfer from slab to eruption occurring in less than a few thousand years imposed by models whereby 226Ra excess is derived from the slab.  相似文献   

3.
The processes involved in the formation and transport of partial melts above subducting plates remain poorly constrained relative to those at mid-ocean ridges. In particular, 238U-230Th-226Ra disequilibria, that might normally be used to constrain melting dynamics, tend to be swamped by the effects of fluid addition from the down-going plate. The 231Pa-235U system provides an exciting exception to this because the highly incompatible nature of Pa means that fractionation and in-growth during partial melting overwrite the effects of fluid U addition. We present 231Pa-235U data on 50 well-characterised lavas from seven subduction zones in order to examine partial melting processes. Measured (231Pa/235U) ratios are all >1 and 15% are >2. Overall (231Pa/235U) shows broad positive correlations with (230Th/238U) and La/Yb and negative trends against Ba/Th and (226Ra/230Th). These systematics can differ from arc to arc but suggest that (231Pa/235U) tends to be higher in sediment-rich arc lavas where the effects of fluid addition are muted and there is less of a 231Pa deficit for melting to overprint. We have explored the effects of decompression melting, frictional drag dynamic melting with and without ageing subsequent to fluid U addition to the wedge as well as flux melting models. Globally, average (231Pa/235U) appears to correlate negatively with convergence rate and so in the numerical models we use the local subduction rate for the rate of matrix flow through the melting zone. Using this assumption and reasonable values for other parameters, the melting models can simulate the overall range of (231Pa/235U) and some of the data trends. However, it is clear that local variations in some parameters, especially source composition and extent of melting, exert a major influence on 231Pa-235U disequilibria. Some data, which lie at a high angle to the modelled trends, may be explained by mixing between small degree hydrous melts formed near the slab and larger degree, decompression melts produced at shallow depth.  相似文献   

4.
Interpretation of U-series disequilibria in midocean ridge basalts is highly dependent on the bulk partition coefficients for U and Th and therefore the mineralogy of the mantle source. Distinguishing between the effect of melting processes and variable source compositions on measured disequilibria (238U-230Th-226Ra and 235U-231Pa) requires measurement of the radiogenic isotopes Hf, Nd, Sr, and Pb. Here, we report measurements of 238U-230Th-226Ra and 235U-231Pa disequilibria; Hf, Nd, Sr, and Pb isotopic; and major and trace element compositions for a suite of 20 young midocean ridge basalts from the East Pacific Rise axis between 9°28′ and 9°52′N. All of the samples were collected within the axial summit trough using the submersible Alvin. The geological setting and observational data collected during sampling operations indicate that all the rocks are likely to have been erupted from 1991 to 1992 or within a few decades of that time. In these samples, 230Th excesses and 226Ra excesses are variable and inversely correlated. Because the eruption ages of the samples are much less than the half-life of 226Ra, this inverse correlation between 230Th and 226Ra excesses can be considered a primary feature of these lavas. For the lava suite analyzed in this study, 226Ra and 230Th excesses also vary with lava composition: 226Ra excesses are negatively correlated with Na8 and La/Yb and positively correlated with Mg#. Conversely, 230Th excesses are positively correlated with Na8 and La/Yb and negatively correlated with Mg#. Th/U, 230Th/232Th, and 230Th excesses are also variable and correlated to one another. 231Pa excesses are large but relatively constant and independent of Mg#, La/Yb, Th/U, and Na8. The isotope ratios 143Nd/144Nd, 176Hf/177Hf, 87Sr/86Sr, and 208Pb/206Pb are constant within analytical uncertainty, indicating that they were derived from a common source. The source is homogeneous with respect to parent/daughter ratios Lu/Hf, Sm/Nd, Rb/Sr, and Th/U; therefore, the measured variations of Th/U, 230Th, and 226Ra excesses and major and trace element compositions in these samples are best explained by polybaric melting of a homogeneous source, not by mixing of compositionally distinct sources.  相似文献   

5.
U-series disequilibria are presented for Holocene samples from the Canary Islands and interpreted with special emphasis on the separate roles of plume vs. lithospheric melting processes. We report Th and U concentrations and (238U)/(232Th), (230Th)/(232Th), (230Th)/(238U) and (234U)/(238U) for 43 samples, most of which are minimally differentiated, along with (226Ra)/(230Th) and (231Pa)/(235U) for a subset of these samples, measured by thermal ionization mass spectrometry (TIMS). Th and U concentrations range between 2 and 20 ppm and 0.5 and 6 ppm, respectively. Initial (230Th)/(238U) ranges from 1.1 to 1.6. (226Ra)/(230Th)o ranges between 0.9 and 1.8 while (231Pa)/(235U)o ranges between 1.0 and 2.0.Our interpretation of results is based on a three-fold division of samples as a function of incompatible element ratio, such as Nb/U. The majority of samples have Nb/U = 47 ± 10, similar to most MORB and OIB. Higher ratios are found exclusively in alkali basalts and tholeiites from the eastern Canary Islands whereas lower ratios are exclusively found in differentiated rocks from the western Canary Islands. Those with ordinary Nb/U ratios are attributed to melting within the slowly ascending HIMU-dominated Canary plume.Higher Nb/U, generally found in more silica rich basalts from the eastern islands, is attributed to lithospheric contamination. Based on their trace element characteristics, two possible contaminants are amphibole veins (± other minerals) crystallized in the mantle from previous plume-derived basanite or re-melted plume-derived intrusive rocks. The high Nb/U signature of these materials is imparted on a melt of the lithosphere created either by the diffusive infiltration of alkalis or by direct reaction between basanites and peridotite. Mixing between plume-derived basanite and lithospheric melt accounts for the U-series systematics of most eastern island magmas including the well-known Timanfaya eruption. Lower Nb/U ratios in differentiated rocks from the western islands are attributed to fractional crystallization of amphibole ± phlogopite ± sphene from basanite during its ascent through the lithosphere. Based on changes in disequilibria, phonolites and tephrites are interpreted to result from rapid differentiation of primitive parents within millennia.  相似文献   

6.
The extent to which U-series disequilibria can be produced during partial melting of mafic lower crust is quantified using a simple batch melting model and both experimental and theoretical partition coefficients for U, Th and Ra. We show that partial melting of mafic lower crust can only produce small disequilibria between 238U, 230Th and 226Ra. Crystallisation of basalt and mixing between young basalt and crustal derived melts will have a similar or smaller effect. Consequently, U-series disequilibrium in arc andesites and dacites can generally only be an inherited feature derived from a mantle parent, unless the timescales of silicic magma production within the crust are short compared to the half-life of 226Ra. Our results have profound implications for several recent models of silicic magma production by thermal incubation and partial melting of the lower crust. We show that the 226Ra excess observed in most arc andesites and dacites requires extremely rapid differentiation and/or the involvement of mantle derived basalts less than a few thousand years old. Application to Mount St. Helens suggests that crystallisation of young mantle-derived magma is likely to be the dominant process in the formation of these dacites.  相似文献   

7.
We use coupled 238U-230Th and 235U-231Pa disequilibria measurements from Pico Island, Azores to examine the melting behavior of the underlying mantle. U-series disequilibria in young, mafic lavas are dependent on the melting rate of their source, which in most cases is primarily controlled by its melt productivity. Mafic lithologies such as eclogite and pyroxenite have much higher melt productivities than peridotite and so U-series measurements may provide constraints on the mineralogy of the melting mantle. Recent Pico Mountain lavas show limited geochemical variations and a restricted range of U-series disequilibria with (230Th/238U) = 1.22-1.25 and (231Pa/235U) = 1.46-1.50. Using a simple, dynamic melting model of a homogeneous source, these results can be reproduced with melting rates of <1 × 10−4 kg/m3/a and melt porosities of <0.7% near the onset of melting. For a plausible range of upwelling rates, this implies that the melt productivity is <6%/GPa. This value is consistent with a garnet peridotite source but not with more highly productive mafic lithologies. Given independent evidence for the involvement of mafic lithologies such as recycled oceanic crust in Pico magmagenesis, we suggest a scenario in which initial eclogitic melts are dispersed through melt-rock reaction into a larger volume of surrounding peridotite. Subsequent re-melting of the resultant incompatible element enriched peridotite carries a geochemical signature of the mafic lithologies but not necessarily a record of their high melt productivity.  相似文献   

8.
Precise measurements of 238U-230Th-226Ra disequilibria in lavas erupted within the last 100 yr on Mt. Cameroon are presented, together with major and trace elements, and Sr-Nd-Pb isotope ratios, to unravel the source and processes of basaltic magmatism at intraplate tectonic settings. All samples possess 238U-230Th-226Ra disequilibria with 230Th (18-24%) and 226Ra (9-21%) excesses, and there exists a positive correlation in a (226Ra/230Th)-(230Th/238U) diagram. The extent of 238U-230Th-226Ra disequilibria is markedly different in lavas of individual eruption ages, although the (230Th/232Th) ratio is constant irrespective of eruption age. When U-series results are combined with Pb isotope ratios, negative correlations are observed in the (230Th/238U)-(206Pb/204Pb) and (226Ra/230Th)-(206Pb/204Pb) diagrams. Shallow magma chamber processes like magma mixing, fractional crystallization and wall rock assimilation do not account for the correlations. Crustal contamination is not the cause of the observed isotopic variations because continental crust is considered to have extremely different Pb isotope compositions and U/Th ratios. Melting of a chemically heterogeneous mantle might explain the Mt. Cameroon data, but dynamic melting under conditions of high DU and DU/DTh, long magma ascent time, or disequilibrium mineral/melt partitioning, is required. The most plausible scenario to produce the geochemical characteristics of Mt. Cameroon samples is the interaction of melt derived from the asthenospheric mantle with overlying sub-continental lithospheric mantle which has elevated U/Pb (>0.75) and Pb isotope ratios (206Pb/204Pb > 20.47) due to late Mesozoic metasomatism.  相似文献   

9.
《Applied Geochemistry》2003,18(1):127-134
Based on U-series disequilibrium arguments there is good evidence for the presence of U-rich accessory minerals in the outer mantle. The very large excesses of 226Ra and 231Pa activity relative to 230Th, 238U, and 235U in most mid-ocean ridge basalts and some non-divergent plate-margin basalts are inconsistent with prevailing incompatibility models of U-series fractionation. Application of a fundamental principle of equilibrium balance reveals that in these instances more than half of the original U and Th remains behind in the residual outer mantle when basaltic magmas separate. One is forced to conclude that, in the outer mantle, U and Th do not occur primarily in major silicate minerals, where they would indeed be incompatible. Rather, they must be occurring as high concentration components in refractory accessory minerals. The precipitous concentration gradients bounding such minerals would allow for the operation of physical processes, such as alpha recoil and daughter diffusion, to produce paired disequilibrated phases. Daughter deficiencies would develop in the high concentration minerals, and daughter excesses in the surrounding low concentration major silicates. This would constitute a steady-state condition existing in the mantle before the onset of melting. Subsequent preferential melting of the matrix silicates would readily result in the disequilibria observed in basalts.  相似文献   

10.
In order to unravel magma processes and the geochemical evolution of shallow plumbing systems beneath active volcanoes, we investigated U-series disequilibria of rocks erupted over the past 500 years (1469-2000 AD) from Miyakejima volcano, Izu arc, Japan. Miyakejima volcanic rocks show 238U-230Th-226Ra disequilibria with excess 238U and 226Ra, due to the addition of slab-derived fluids to the mantle wedge. Basaltic bombs of the 2000 AD eruption have the lowest (230Th/232Th) ratio compared to older Miyakejima eruptives, yielding the youngest 238U-230Th model age of 2 kyr. This reinforces our previous model that fluid release from the slab and subsequent magma generation in the mantle wedge beneath Miyakejima occur episodically on a several-kyr timescale. In the last 500 years, Miyakejima eruptives show: (1) a vertical trend in a (230Th/232Th)-(238U/232Th) diagram and (2) a positive linear correlation in a (226Ra/230Th)0 − 1/230Th diagram, which is also observed in lavas from some of the single eruptions (e.g., 1940, 1962, and 1983 AD). The variations cannot be produced by simple fractional crystallization in a magma chamber with radioactive decay of 230Th and 226Ra, but it is possibly produced by synchronous generation of melts in the mantle wedge with different upwelling rate or addition of multiple slab-derived fluids. A much more favorable scenario is that some basaltic magmas were intermittently supplied from deep in the mantle and injected into the crust, subsequently modifying the original magma composition and producing variations in (230Th/232Th) and (226Ra/230Th)0 ratios via assimilation and fractional crystallization (AFC). The assimilant of the AFC process would be a volcanic edifice of previous Miyakejima magmatism. Due to the relatively short timescales involved, the interaction between the assimilant and recent Miyakejima magmatism has not been recorded by the Sr-Nd-Pb isotopic systems. In such cases, Th isotopes and (226Ra/230Th) ratio are excellent geochemical tracers of magmatic evolution.  相似文献   

11.
New U–Th–Ra, major and trace element, and Sr–Nd–Pb isotope data are presented for young lavas from the New Britain and Western Bismarck arcs in Papua New Guinea. New Britain is an oceanic arc, whereas the latter is the site of an arc–continent collision. Building on a recent study of the Manus Basin, contrasts between the two arcs are used to evaluate the processes and timescales of magma generation accompanying arc–continent collision and possible slab detachment. All three suites share many attributes characteristic of arc lavas that can be ascribed to the addition of a regionally uniform subduction component derived from the subducting altered oceanic crust and sediment followed by dynamic melting of the modified mantle. However, the Western Bismarck arc lavas diverge from the Pb isotope mixing array formed by the New Britain and the Manus Basin lavas toward elevated 208Pb/204Pb. We interpret this to reflect a second and subsequent addition of sediment melt at crustal depth during collision. 238U and 226Ra excesses are preserved in all of the lavas and are greatest in the Western Bismarck arc. High-Mg andesites with high Sr/Y ratios in the westernmost arc are attributed to recent shallow mantle flux melting at the slab edge. Data for two historical rhyolites are also presented. Although these rhyolites formed in quite different tectonic settings and display different geochemical and isotopic compositions, both formed from mafic parents within millennia.  相似文献   

12.
Magmas erupted at mid-ocean ridges (MORB) result from decompression melting of upwelling mantle. However, the mechanism of melt transport from the source region to the surface is poorly understood. It is debated whether melt is transported through melt-filled conduits or cracks on short time scales (<∼ 103 yrs), or whether there is a significant component of slow, equilibrium porous flow on much longer time scales (>∼ 103-104 yrs). Radiogenic excess 226Ra in MORB indicates that melt is transported from the melting region on time scales less than the half life of 226Ra (∼1600 yrs), and has been used to argue for fast melt transport from the base of the melting column. However, excess 226Ra can be generated at the bottom of the melt column, during the onset of melting, and at the top of the melt column by reactive porous flow. Determining the depth at which 226Ra is generated is critical to interpreting the rate and mechanism of magma migration. A recent compilation of high quality U-series isotope data show that in many young basalts, 226Ra excess in MORB is negatively correlated with 230Th excess. The data suggest that 226Ra excess is generated independently of 230Th excess, and cannot be explained by “dynamic” or fractional melting, where observed radiogenic excesses are all generated at the base of the melt column. One explanation is that the negative correlation of activity ratios is a result of mixing of slow moving melt that has travelled through reactive, low-porosity pathways and relatively fast moving melt that has been transported in unreactive high-porosity channels. We investigate this possibility by calculating U-series disequilibria in a melting column in which high-porosity, unreactive channels form within a low-porosity matrix that is undergoing melting. The results show that the negative correlation of 226Ra and 230Th excesses observed in MORB can be produced if ∼60% of the total melt flux travels through the low-porosity matrix. This melt maintains 226Ra excesses via chromatographic fractionation of Ra and Th during equilibrium transport. Melt that travels through the unreactive, high-porosity channels is not able to maintain significant 226Ra excesses because Ra and Th are not fractionated from each other during transport and the transport time for melt in the channels to reach the top of the melt column is longer than the time scale for 226Ra excesses to decay. Mixing of melt from the high porosity channels with melt from the low-porosity matrix at the top of the melting column can produce a negative correlation of 226Ra and 230Th excesses with the slope and magnitude observed in MORB. This transport process can also account for other aspects of the geochemistry of MORB, such as correlations between La/Yb, αSm/Nd, and Th/U and 226Ra and 230Th excess.  相似文献   

13.
Measurements of 238U-230Th-226Ra disequilibria, Sr-Nd-Pb-Hf isotopes and major-trace elements have been conducted for lavas erupted in the last quarter-millennium at Hekla volcano, Iceland. The volcanic rocks range from basalt to dacite. Most of the lavas (excluding dacitic samples) display limited compositional variations in radiogenic Sr-Nd-Pb-Hf isotopes (87Sr/86Sr = 0.70319-0.70322; 143Nd/144Nd = 0.51302-0.51305; 206Pb/204Pb = 19.04-19.06; 207Pb/204Pb = 15.53-15.54; 208Pb/204Pb = 38.61-38.65; 176Hf/177Hf = 0.28311-0.28312). All the samples possess (230Th/238U) disequilibrium with 230Th excesses, and they show systematic variations in (230Th/232Th) and (238U/232Th) ratios. The highest 226Ra excesses occur in the basalt and most differentiated andesite lavas, while some basaltic-andesite lavas have (226Ra/230Th) ratio that are close to equilibrium. The 238U-230Th-226Ra disequilibria variations cannot be produced by simple closed-system fractional crystallization with radioactive decay of 230Th and 226Ra in a magma chamber. A closed-system fractional crystallization model and assimilation and fractional crystallization (AFC) model indicate that the least differentiated basaltic andesites were derived from basalt by fractional crystallization with a differentiation age of ∼24 ± 11 kyr, whereas the andesites were formed by assimilation of crustal material and fractionation of the basaltic-andesites within 2 kyr. Apatite is inferred to play a key role in fractionating the parent-daughter nuclides in 230Th-238U and 226Ra-230Th to make the observed variations. Our proposed model is that several batches of basaltic-andesite magmas that formed by fractional crystallization of a basaltic melt from a deeper reservoir, were periodically injected into the shallow crust to form individual magma pockets, and subsequently modifying the original magma compositions via simultaneous assimilation and fractional crystallization. The assimilant is the dacitic melt, which formed by partial melting of the crust.  相似文献   

14.
To examine the petrogenesis and sources of basalts from the Kolbeinsey Ridge, one of the shallowest locations along the global ridge system, we present new measurements of Nd, Sr, Hf, and Pb isotopes and U-series disequilibria on 32 axial basalts. Young Kolbeinsey basalts (full-spreading rate = 1.8 cm/yr; 67°05′-70°26′N) display (230Th/238U) < 1 and (230Th/238U) > 1 with (230Th/238U) from 0.95 to 1.30 and have low U (11.3-65.6 ppb) and Th (33.0 ppb-2.40 ppm) concentrations. Except for characteristic isotopic enrichment near the Jan Mayen region, the otherwise depleted Kolbeinsey basalts (e.g. 87Sr/86Sr = 0.70272-0.70301, εNd = 8.4-10.5, εHf = 15.4-19.6 (La/Yb)N = 0.28-0.84) encompass a narrow range of (230Th/232Th) (1.20-1.32) over a large range in (238U/232Th) (0.94-1.32), producing a horizontal array on a (230Th/232Th) vs. (238U/232Th) diagram and a large variation in (230Th/238U). However, the (230Th/238U) of the Kolbeinsey Ridge basalts (0.96-1.30) are inversely correlated with (234U/238U) (1.001-1.031). Samples with low (230Th/238U) and elevated (234U/238U) reflect alteration by seawater or seawater-derived materials. The unaltered Kolbeinsey lavas with equilibrium 234U/238U have high (230Th/238U) values (?1.2), which are consistent with melting in the presence of garnet. This is in keeping with the thick crust and anomalously shallow axial depth for the Kolbeinsey Ridge, which is thought to be the product of large degrees of melting in a long melt column. A time-dependent, dynamic melting scenario involving a long, slowly upwelling melting column that initiates well within the garnet peridotite stability zone can, in general, reproduce the (230Th/238U) and (231Pa/235U) ratios in uncontaminated Kolbeinsey lavas, but low (231Pa/235U) ratios in Eggvin Bank samples suggest eclogite involvement in the source for that ridge segment.  相似文献   

15.
This study centers on the question: How sensitive are 231Pa/230Th and 10Be/230Th to sediment composition and redistribution? The natural radionuclides 231Pa, 230Th and 10Be recorded in deep sea sediments are tracers for water mass advection and particle fluxes. We investigate the influence of oceanic particle composition on the element adsorption in order to improve our understanding of sedimentary isotope records. We present new data on particle size specific 231Pa and 10Be concentrations. An additional separation step, based on settling velocities, led to the isolation of a very opal-rich phase. We find that opal-rich particles contain the highest 231Pa and 10Be concentrations, and higher 231Pa/230Th and 10Be/230Th isotope ratios than opal-poor particles. The fractionation relative to 230Th induced by the adsorption to opal-rich particles is more pronounced for 231Pa than for 10Be. We conclude that bulk 231Pa/230Th in Southern Ocean sediments is most suitable as a proxy for past opal fluxes. The comparison between two neighboring cores with rapid and slow accumulation rates reveals that these isotope ratios are not influenced significantly by the intensity of sediment focusing at these two study sites. However, a simulation shows that particle sorting by selective removal of sediment (winnowing) could change the isotope ratios. Consequently, 231Pa/230Th should not be used as paleocirculation proxy in cases where a strong loss of opal-rich material due to bottom currents occurred.  相似文献   

16.
The short residence times of Th and Pa in seawater make them very responsive to changes in the ocean environment. We use a new multi-ion-counting technique to make Th and Pa isotope measurements in seawaters from a near-shore environment in which oceanic chemical tracers are not overwhelmed by terrestrial inputs (the Bahamas). An unusual feature of the Bahamas setting is the shallow depth of water residing on the bank tops. These waters have significantly lower 232Th/230Th (∼10,000) than those immediately adjacent to the banks (24,000-31,000) and a (231Pa/230Th) near the production ratio (∼0.1). The change in 232Th/230Th and (231Pa/230Th) on the bank tops is explained by almost quantitative removal of Th and Pa by scavenging, and their replacement with a mixture of 230Th and 231Pa alpha-recoiled from the underlying carbonates, together with Th from dust dissolution. Analysis of a water profile in the Tongue of the Ocean, which separates the Great and Little Bahama Banks, allows us to trace the movement of bank-top water to depth. A distinct minimum in both 232Th/230Th (∼13,000) and (231Pa/230Th) (∼0.5) is observed at ∼430 m and is interpreted to reflect density cascading of bank-top water with entrained carbonate sediment. These results suggest that Th and Pa can be used as water-mass tracers in near-shore environments. Uranium concentration measurements on the same waters demonstrate that U is conservative across a range in salinity of 2 psu, with a concentration of 3.33 ppb (at a salinity of 35).The incorporation of U and Th isotopes into marine carbonates has also been assessed by analyzing carbonate samples from the same location as these Bahamas waters. Such incorporation is critical for U-Th geochronology. U isotope analyses demonstrate that seawater δ234U averages 146.6 and does not vary by more than 2.5%o, and that carbonates capture this value. Additional high precision measurements (≈±1%o) on modern carbonates confirm that all oceans have identical δ234U. Modern marine carbonates are shown to have 232Th/230Th ratios that reflect the local seawater in which they formed.  相似文献   

17.
The 230Th/234U/238U age dating of corals via alpha counting or mass spectrometry has significantly contributed to our understanding of sea level, radiocarbon calibration, rates of ocean and climate change, and timing of El Nino, among many applications. Age dating of corals by mass spectrometry is remarkably precise, but many samples exposed to freshwater yield inaccurate ages. The first indication of open-system 230Th/234U/238U ages is elevated 234U/238Uinitial values, very common in samples older than 100,000 yr. For samples younger than 100,000 yr that have 234U/238Uinitial values close to seawater, there is a need for age validation. Redundant 230Th/234U/238U and 231Pa/235U ages in a single fossil coral fragment are possible by Multi-Collector Magnetic Sector Inductively Coupled Plasma Mass Spectrometry (MC-MS-ICPMS) and standard anion exchange column chemistry, modified to permit the separation of uranium, thorium, and protactinium isotopes from a single solution. A high-efficiency nebulizer employed for sample introduction permits the determination of both 230Th/234U/238U and 231Pa/235U ages in fragments as small as 500 mg. We have obtained excellent agreement between 230Th/234U/238U and 231Pa/235U ages in Barbados corals (30 ka) and suggest that the methods described in this paper can be used to test the 230Th/234U/238U age accuracy.Separate fractions of U, Th, and Pa are measured by employing a multi-dynamic procedure, whereby 238U is measured on a Faraday cup simultaneously with all minor isotopes measured with a Daly ion counting detector. The multi-dynamic procedure also permits correcting for both the Daly to Faraday gain and for mass discrimination during sample analyses. The analytical precision of 230Th/234U/238U and 231Pa/235U dates is generally better than ±0.3% and ±1.5%, respectively (2 Relative Standard deviation [RSD]). Additional errors resulting from uncertainties in the decay constant for 231Pa and from undetermined sources currently limit the 231Pa/235U age uncertainty to about ±2.5%. U isotope data and 230Th/234U/238U ages agree with National Institute of Standards and Technology (NIST) reference materials and with measurements made by Thermal Ionization Mass Spectrometry (TIMS) in our laboratory.  相似文献   

18.
U-series radioactive disequilibria in basaltic lavas have been used to infer many important aspects of melt generation and extraction processes in Earth’s mantle and crust, including the porosity of the melting zone, the solid mantle upwelling rate, and the melt transport rate. Most of these inferences have been based on simplified theoretical treatments of the fractionation process, which assume equilibrium partitioning of U-series nuclides among minerals and melt. We have developed a numerical model in which solid-state diffusion controls the exchange of U-series nuclides among multiple minerals and melt. First the initial steady-state distribution of nuclides among the phases, which represents a balance between diffusive fluxes and radioactive production and decay, is calculated. Next, partial melting begins, or a foreign melt is introduced into the system, and nuclides are again redistributed among the phases via diffusion. U-series nuclides can be separated during this stage due to differences in their diffusivity; radium in particular, and possibly protactinium as well, can be strongly fractionated from slower-diffusing thorium and uranium. We show that two distinct processes are not required for the generation of 226Ra and 230Th excesses in mid-ocean ridge basalts, as has been argued previously; instead the observed negative correlations of the (226Ra/230Th) activity ratio with (230Th/238U) and with the extent of trace element enrichment may result from diffusive fractionation of Ra from Th during partial melting of the mantle. Alternatively, the (226Ra/230Th) disequilibrium in mid-ocean ridge basalts may result from diffusive fractionation during shallow-level interaction of mantle melts with gabbroic cumulates, and we show that the results of the interaction have a weak dependence on the age of the cumulate if both plagioclase and clinopyroxene are present.  相似文献   

19.
《Geochimica et cosmochimica acta》1999,63(23-24):4119-4138
Measurements of 238U-230Th-226Ra and 235U-231Pa disequilibria in a suite of tholeiitic-to-basanitic lavas provide estimates of porosity, solid mantle upwelling rate and melt transport times beneath Hawaii. The observation that (230Th/238U) > 1 indicates that garnet is required as a residual phase in the magma sources for all of the lavas. Both chromatographic porous flow and dynamic melting of a garnet peridotite source can adequately explain the combined U-Th-Ra and U-Pa data for these Hawaiian basalts. For chromatographic porous flow, the calculated maximum porosity in the melting zone ranges from 0.3–3% for tholeiites and 0.1–1% for alkali basalts and basanites, and solid mantle upwelling rates range from 40 to 100 cm yr−1 for tholeiites and from 1 to 3 cm yr−1 for basanites. For dynamic melting, the escape or threshold porosity is 0.5–2% for tholeiites and 0.1–0.8% for alkali basalts and basanites, and solid mantle upwelling rates range from 10 to 30 cm yr−1 for tholeiites and from 0.1 to 1 cm yr−1 for basanites. Assuming a constant melt productivity, calculated total melt fractions range from 15% for the tholeiitic basalts to 3% for alkali basalts and basanites.  相似文献   

20.
The geochemistry of Ba, Ra, Th, and U and the potential of using 226Ra/Ba ratios as an alternative dating method are explored in modern and Holocene marine mollusc shells. Five modern shells of the Antarctic scallop Adamussium colbecki collected from the present day beach and six radiocarbon dated specimens from Holocene beach terraces of the Ross Sea region (Antarctic) between 700 and 6100 calibrated yr BP old have been analysed by mass spectrometry. In clean shells 226Ra concentrations and 226Ra/Ba ratios show a clear decrease with increasing age, suggesting the possibility of 226Ra dating. Limiting factors for such dating are Ba and 226Ra present in surface contaminants, and ingrowth of 226Ra from U present within the shell. Surface contamination is difficult to clean off entirely, but moderate levels of residual contamination can be corrected using 232Th. Sub-samples from the same shell with different proportions of contamination form a mixing line in a 226Ra/Ba-232Th/Ba graph, and the 226Ra/Ba of the pure shell can be derived from the intercept on the 226Ra/Ba axis. Contaminant corrected 226Ra/Ba ratios of late-Holocene 14C-dated samples fall close to that expected from simple 226Ra excess decay from seawater 226Ra/Ba values. 226Ra ingrowth from U incorporated into the shell during the lifetime of the mollusc can be corrected for. However, the unknown timing of post mortem U uptake into the shell makes a correction for 226Ra ingrowth from secondary U difficult to achieve. In the A. colbecki shells, 226Ra ingrowth from such secondary U becomes significant only when ages exceed ∼2500 yr. In younger shells, 226Ra/Ba ratios corrected for surface contamination provide chronological information. If evidence for a constant oceanic relationship between 226Ra and Ba in the ocean can be confirmed for that time scale, the 226Ra/Ba chronometer may enable the reconstruction of variability in sea surface 14C reservoir ages from mollusc shells and allow its use as a paleoceanographic tracer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号