首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Vein-stockwork magnesite in the Madenli area, sedimentary huntite-magnesite in the A?a??t?rtar area, and lacustrine hydromagnesite in the Salda Lake area are located in the Bey?ehir-Hoyran and Lycian nappe rocks around Isparta and Burdur, Southwest Anatolia. The aim of this study is to understand trace element contents and carbon-oxygen isotope ratios in different originated magnesite, magnesite bearing huntite, and hydromagnesite deposits. Also, the element contents and isotope ratios of the magnesite occurrences are to compare with each other and similar magnesite occurrences in Turkey and world. It is found that the Madenli magnesite occurrences in the ?arkikaraa?aç ophiolites, A?a??t?rtar magnesite bearing huntite deposits in the lacustrine rocks of the Miocene-Pliocene, and the Salda hydromagnesite deposits in lacustrine basin on the Ye?ilova ophiolites. The paragenesis contains a common carbonate mineral magnesite, less calcite, serpentine, smectite, dolomite, and talc in the Madenli magnesite occurrences, mostly huntite and locally magnesite, dolomite, calcite, illite, quartz, and smectite in the A?a??t?rtar huntite-magnesite occurrences, and only hydromagnesite mineral in the Salda Lake hydromagnesite occurrences. Vein and stockwork Madenli magnesite deposits were recognized by higher total iron oxide concentrations (mean 1.10 wt%) than sedimentary A?a??t?rtar magnesite bearing huntite (mean 0.13 wt%) and lacustrine Salda hydromagnesite (mean 0.22 wt%) deposits. It is suggested that high Fe content (up to 5%) in the magnesite associated with ultramafic rocks than those from sedimentary environments (≤1% Fe). Based on average Ni, Co, Ba, Sr, As and Zr contents in the magnesite deposits, average Ni (134.63 ppm) and Co (15.19 ppm) contents in the Madenli magnesite and Salda hydromagnesite (36.85 ppm for Ni, 3.15 ppm for Co) have higher values than A?a??t?rtar huntite + magnesite (7.67 ppm for Ni and 0.89 ppm for Co). Average Ni-Co contents of these deposits can have close values depending on ophiolite host rock. Average Ba values of the Madenli (108.09 ppm) and A?a??t?rtar (115.88 ppm) areas are higher than those of Salda hydromagnesite (13.15 ppm). Sediment-hosted A?a??t?rtar magnesite-huntite deposits have the highest Sr contents (mean 505.81 ppm) as reasonably different from ultrabasic rock-related Madenli magnesite (mean 38.76 ppm) and Salda hydromagnesite (mean 36.70 ppm). The highest Sr content of sedimentary A?a??t?rtar deposits reveals that Sr is related to carbonate rocks. As and Zr contents have the highest average values (As 52.76 ppm and Zr 9.67 ppm) in the A?a??t?rtar deposits different from Madenli magnesite (As 0.54 ppm and Zr 1.67 ppm) and Salda hydromagnesite (As 0.5 ppm and Zr 2.58 ppm) deposits. High As and Zr concentrations in the A?a??t?rtar magnesite-huntite deposits may come from volcanic rocks in near country rocks. The δ 13C (PDB) isotope values vary between ?10.1 and ?11.4‰ in the Madenli magnesite, 7.8 to 8.8‰ for huntite, 1.7 to 8.3‰ for huntite + magnesite and 4.0‰ for limestone + magnesite in the A?a??t?rtar huntite-magnesite deposits, and 4.4 to 4.9‰ for Salda Lake hydromagnesite. The sources of the CO2 are hydrothermal solutions, meteoric waters, groundwater dissolved carbon released from fresh water carbonates and marine limestone, soil CO2, and plant C3 in the Madenli magnesite, and may be deep seated metamorphic reactions in limestone and shales of rich in terms of organic matter. The sources of CO2 in A?a??t?rtar huntite and Salda hydromagnesite were meteoric water, groundwater dissolved inorganic carbon, fresh water carbonates, and marine limestone. The δ 18O (SMOW) isotope composition ranges from 26.8 to 28.1‰ in the Madenli magnesite, 30.4 to 32.4‰ for huntite and 29.8 to 35.5‰ for huntite + magnesite and 26.9‰ for limestone + magnesite in the A?a??t?rtar area, and 36.4 to 38.2‰ in the Salda Lake hydromagnesite. The Salda Lake hydromagnesite has heavier oxygen isotopic values than others. The sources of oxygen in the Madenli magnesite deposits are hydrothermal solutions, meteoric water, freshwater carbonates, and marine limestone, but the sources of oxygen of the A?a??t?rtar magnesite-huntite are meteoric water, fresh water carbonates, and marine limestone. The Salda Lake hydromagnesite has very high δ18O isotope values indicating a strong evaporitic environment. Magnesium (Mg+2) and silica are released by disintegration of very weathered-serpentinized ultrabasic rocks of all magnesite deposits and from partly dolomite and dolomitic limestone in the A?a??t?rtar magnesite bearing huntite deposits. In the A?a??t?rtar area, calcium (Ca+2) for huntite mineralization is provided by surrounding carbonate rocks. Based on isotopic data, host rocks, petrographic properties of the Madenli magnesite can be described as an ultramafic-associated hydrothermal vein mineralization corresponding to “Kraubath type” deposits, but A?a??t?rtar ve Salda Lake deposits are sedimentary mineralization (lacustrine/evaporitic) corresponding to “Bela Stena type” deposits. The estimated temperature using average δ18O isotope values is about 33.51 °C for Madenli magnesite, 48.33 °C for A?a??t?rtar huntite-magnesite, and 25 °C for Salda hydromagnesite. Based on isotope data, we can be say that the Madenli magnesite, A?a??t?rtar magnesite-huntite, and Salda hydromagnesite occur at low to moderate-low temperature water and alkaline (pH 8.5–10.5) under surface or near-surface conditions.  相似文献   

2.
Six holes were drilled to depths of 30–69 m in the shallow lagoon of Aitutaki in the southern Cook Islands. One hole encountered pervasively dolomitized reef limestones at 36 m subbottom depth, which extended to the base of the drilled section at 69·3 m. This hole was drilled near the inner edge of the present barrier reef flat on the flank of a seismically defined subsurface ridge. Both the morphology and biofacies indicate that this ridge may represent an outer reef crest. Mineralogy, porosity and cementation change in concert downhole through three zones. Zone 1, 0–9 m, is composed of primary skeletal aragonite and calcite with minor void-filling aragonite and magnesian calcite cement of marine phreatic origin. Zone 2, 9–36 m, is composed of replacement calcite and calcite cement infilling intergranular, intragranular, mouldic and vuggy porosity. Stable isotopes (mean δ18O=—5·4‰ PDB for carbonate; δD =—50‰ SMOW for fluid inclusions) support the petrographic evidence indicating that sparry calcite cements formed in predominantly freshwater. Carbon isotope values of —4·0 to —11·0‰ for calcite indicate that organic matter and seawater were the sources of carbon. Zone 3, 36–69·3 m, is composed of replacement dolostone, consisting of protodolomite with, on average, 7 mol% excess CaCO3 and broad and weak ordering X-ray reflections at 2·41 and 2·54 A. The fine-scale replacement of skeletal grains and freshwater void-filling cements by dolomite did not significantly reduce porosity. Stable isotopes (mean δ18O=+2·6‰0 PDB for dolomite; maximum δD =—27‰ SMOW for fluid inclusions) and chemical composition indicate that the dolomite probably formed from seawater, although formation in the lower part of a mixed freshwater-seawater zone, with up to 40% freshwater contribution, cannot be completely ruled out. The carbon (δ13C=2·7‰) and magnesium were derived from seawater. Low-temperature hydrothermal iron hydroxides and associated transition metals occur in void space in several narrow stratigraphic intervals in the limestone section that was replaced by dolomite. The entire section of dolomite is also enriched in these transition metals. The metals dispersed throughout the dolostone section were introduced at the time of dolomitization by a different and later episode of hydrothermal circulation than the one(s) that produced the localized deposits near the base of the section. The primary reef framework is considered to have been deposited during several highstands of sea level. Following partial to local recrystallization of the limestone, a single episode of dolomitization occurred. Both tidal and thermal pumping drove large quantities of seawater through the porous rocks and perhaps maintained a wide mixing zone. However, the isotopic, geochemical and petrographic data do not clearly indicate the extent of seawater mixing.  相似文献   

3.
Pb–Zn deposits are widespread and common in various parts of the Taurus Belt. Most of the deposits are of pyrometasomatic and hydrothermal origin. The Keban Pb–Zn deposits are located along the intrusive contact between the Paleozoic – Lower Triassic Keban Metamorphic Formation and the syenite porphyry of the Upper Cretaceous Keban igneous rocks. Various studies have already been carried out; using fluid inclusion studies on fluorite, calcite and quartz on the pyrite–chalcopyrite bearing Keban ore deposits. This study focuses on the interpretation of stable isotope compositions in connexion with fluid inclusion data. Sulphur isotope values (δ34S) of pyrite are within the range of ?0.59 to +0.17‰V-CDT (n = 10). Thus, the source of sulphur is considered to be magmatic, as evidenced by associated igneous rocks and δ34S values around zero“0”. Oxygen isotope values δ18O of quartz vary between +10.5 and +19.9‰(SMOW). However, δ18O and δ13C values of calcite related to re-crystallized limestone (Keban Metamorphic Formation) reach up to +27.3‰(SMOW) and +1.6‰(PDB), respectively. The δ34S, δ13C and δ18O values demonstrate that skarn-type Pb–Zn deposits formed within syeno-monzonitic rocks and calc-schist contacts could have developed at low temperatures, by mixing metamorphic and meteoric waters in the final stages of magmatism.  相似文献   

4.
Magnesite forms a series of 1‐ to 15‐m‐thick beds within the ≈2·0 Ga (Palaeoproterozoic) Tulomozerskaya Formation, NW Fennoscandian Shield, Russia. Drillcore material together with natural exposures reveal that the 680‐m‐thick formation is composed of a stromatolite–dolomite–‘red bed’ sequence formed in a complex combination of shallow‐marine and non‐marine, evaporitic environments. Dolomite‐collapse breccia, stromatolitic and micritic dolostones and sparry allochemical dolostones are the principal rocks hosting the magnesite beds. All dolomite lithologies are marked by δ13C values from +7·1‰ to +11·6‰ (V‐PDB) and δ18O ranging from 17·4‰ to 26·3‰ (V‐SMOW). Magnesite occurs in different forms: finely laminated micritic; stromatolitic magnesite; and structureless micritic, crystalline and coarsely crystalline magnesite. All varieties exhibit anomalously high δ13C values ranging from +9·0‰ to +11·6‰ and δ18O values of 20·0–25·7‰. Laminated and structureless micritic magnesite forms as a secondary phase replacing dolomite during early diagenesis, and replaced dolomite before the major phase of burial. Crystalline and coarsely crystalline magnesite replacing micritic magnesite formed late in the diagenetic/metamorphic history. Magnesite apparently precipitated from sea water‐derived brine, diluted by meteoric fluids. Magnesitization was accomplished under evaporitic conditions (sabkha to playa lake environment) proposed to be similar to the Coorong or Lake Walyungup coastal playa magnesite. Magnesite and host dolostones formed in evaporative and partly restricted environments; consequently, extremely high δ13C values reflect a combined contribution from both global and local carbon reservoirs. A 13C‐rich global carbon reservoir (δ13C at around +5‰) is related to the perturbation of the carbon cycle at 2·0 Ga, whereas the local enhancement in 13C (up to +12‰) is associated with evaporative and restricted environments with high bioproductivity.  相似文献   

5.

The stable enrichment of pyrite from magnesite ores in δ34S isotope (from 5.4 to 6.9‰) compared with pyrite from the host (sedimentary and igneous) rocks was established in the classical Satka sparry magnesite ore field. Concretionary segregations of fine-grained pyrite in dolomite are depleted in the heavy sulfur isotope (δ34S, from–9.1 to–5.8‰). Pyrite from dolerite is characterized by δ34S values (–1.1 and 1.7‰) close to the meteorite sulfur. The δ34S values in barite from the underlying dolomite horizon vary in the range of 32.3–41.4‰. The high degree of homogeneity of the sulfur isotope composition in pyrite from magnesite is a result of thermochemical sulfate reduction during the syngenetic crystallization of pyrite and magnesite from epigenetic brines, formed during dissolution of evaporite sulfate minerals at the stage of early catagenesis of the Riphean deposits.

  相似文献   

6.
This paper describes the occurrence of dolomite and the mechanism of dolomitization of the Upper Triassic-Lower Jurassic K?z?loren Formation in the autochthonous Bolkardag? unit of the middle Taurus Mountains in south western Turkey. Dolomites were analyzed for geochemical, isotopic and crystallographic variation. Dolomites occur as a replacement of precursor carbonate and cement. The dolomite crystals range from <10 to ~1000 μm existing as both replacements and cements. Sr concentrations range between 84 and 156 ppm, and the molar Sr/Ca ratios of dolomitizing fluids are estimated to range between 0.0066 to 0.013 ratios. Dolomites are Ca-rich (with average CaCO3 and MgCO3 equal to 56.43 and 43.57 mol%, respectively) and they are non-stoichiometric, with an average Sr=116 ppm, Na=286 ppm, Mn=81 ppm, Fe=1329 ppm, and δ18O and δ13C ranges from –0.6‰ to –6.1‰ Pee Dee Belemnite [PDB], and +1.2 to +3.9‰ PDB. The North American Shale Composition [NASC]-normalized rare earth element (REE) values of the both limestone and dolomite sample groups show very similar REE patterns characterized by small positive Eu (mean=1.32 and mean=1.42, respectively) and slightly or considerably negative Ce (mean=0.61 and mean=0.72, respectively) anomalies and a clear depletion in all REE species. The K?z?loren Formation dolomites have been formed as early diagenetic from mixing zone fluids at the tidal-subtidal environment and at the late diagenetic from basinal brines at the shallow-deep burial depths.  相似文献   

7.
Origin of ultramafic-hosted magnesite on Margarita Island,Venezuela   总被引:1,自引:0,他引:1  
Ultramafic-hosted deposits of magnesite (MgCO3) have been studied on Margarita Island, Venezuela, to elucidate the source of carbon and conditions of formation for this type of ore. Petrographic, mineralogic, and δ18O data indicate that magnesite precipitated on Margarita in near-surface environments at low P and T. δ13C ranges from −9 to −16‰ PDB within the magnesite and −8 to −10‰ PDB within some calcite and dolomite elsewhere on the island. The isotopically light dolomite fills karst and the calcite occurs as stock-work veins which resemble the magnesite deposits. These carbon isotopic ratios are consistent with a deep-seated source rather than an overlying source from a zone of surficial weathering. However, there is not much enrichment of precious metals and no enrichment of heavy rare-earth elements, as would be expected if the carbon had migrated upward as aqueous carbonate ions. The carbon probably has risen as a gaseous mixture of CO2 and CH4 which partially dissolved in near-surface water before leaching cations and precipitating as magnesite and other carbonates. The process probably is ongoing, given regional exhalation of carbonaceous gases.  相似文献   

8.
奥地利东阿尔卑斯山地区Austroalpine杂砂岩带中的石炭纪Veitsch逆冲推覆体是"Veitsch型"晶质菱镁矿化的典型地区。几十年来,对其成因的解释一直是人们争论的焦点。为了解决这一长久以来的问题,本文对Veitsch推覆体的地质学、矿物学和地球化学制约条件进行了论述。菱镁矿仅仅存在于Veitsch推覆体之中,而其它推覆体中的碳酸盐岩岩层中则无菱镁矿。赋存于Veitsch推覆体中的碳酸盐岩石中的菱镁矿以不规则的岩株状、透镜状和层状产出。块状和厚层状的菱镁矿总是被白云岩包裹。在Veitsch推覆体中,沉积作用开始于晚维宪期的后造山的类磨拉石海相建造,并晚于内部基底带的变形和变质作用("Bretonic期")形成,该基底带位于现代的东阿尔卑斯山地区。沉积序列研究表明,演化从浅海大陆架开始,有时还穿插有高盐度的泻湖和透镜状生物礁,发展到海退的海岸线伴随有发育强烈的三角洲沉积的分支海湾和河流。由于成矿作用有好几个期次,所以对地球化学数据的解释相当复杂。 在Hohentauern/Sunk矿床中,石膏和硬石膏层在菱镁矿质沉积主岩中互层,其δ34S值分别为 17.6±0.2‰和 17.2±0.2‰,表现出石炭纪海水的特征。白云岩和菱镁矿的REE浓度要高于石灰质主岩。在Hohentauern/Sunk矿床中,球形白云岩中的白云岩球体和白云质基质  相似文献   

9.
Late Cambrian to Early Ordovician sedimentary rocks in the western Tarim Basin, Northwest China, are composed of shallow-marine platform carbonates. The Keping Uplift is located in the northwest region of this basin. On the basis of petrographic and geochemical features, four matrix replacement dolomites and one type of cement dolomite are identified. Matrix replacement dolomites include (1) micritic dolomites (MD1); (2) fine–coarse euhedral floating dolomites (MD2); (3) fine–coarse euhedral dolomites (MD3); and (4) medium–very coarse anhedral mosaic dolomites (MD4). Dolomite cement occurs in minor amounts as coarse saddle dolomite cement (CD1) that mostly fills vugs and fractures in the matrix dolomites. These matrix dolomites have δ18O values of ?9.7‰ to ?3.0‰ VPDB (Vienna Pee Dee Belemnite); δ13C values of ?0.8‰ to 3.5‰ VPDB; 87Sr/86Sr ratios of 0.708516 to 0.709643; Sr concentrations of 50 to 257 ppm; Fe contents of 425 to 16878 ppm; and Mn contents of 28 to 144 ppm. Petrographic and geochemical data suggest that the matrix replacement dolomites were likely formed by normal and evaporative seawater in early stages prior to chemical compaction at shallow burial depths. Compared with matrix dolomites, dolomite cement yields lower δ18O values (?12.9‰ to ?9.1‰ VPDB); slightly lower δ13C values (?1.6‰–0.6‰ VPDB); higher 87Sr/86Sr ratios (0.709165–0.709764); and high homogenization temperature (Th) values (98°C–225°C) and salinities (6 wt%–24 wt% NaCl equivalent). Limited data from dolomite cement shows a low Sr concentration (58.6 ppm) and high Fe and Mn contents (1233 and 1250 ppm, respectively). These data imply that the dolomite cement precipitated from higher temperature hydrothermal salinity fluids. These fluids could be related to widespread igneous activities in the Tarim Basin occurring during Permian time when the host dolostones were deeply buried. Faults likely acted as important conduits that channeled dolomitizing fluids from the underlying strata into the basal carbonates, leading to intense dolomitization. Therefore, dolomitization, in the Keping Uplift area is likely related to evaporated seawater via seepage reflux in addition to burial processes and hydrothermal fluids.  相似文献   

10.
The Sr isotopic composition of sediment-hosted magnesites in Permian and Scythian series of Upper Austroalpine units (Eastern Alps) has been determined. The results suggest diagenetic-metasomatic magnesite formation by Mg-rich pore solutions. The depositional environment of the magnesite-bearing rocks is reflected by different isotopic compositions with initial 87Sr/86Sr ratios close to contemporaneous sea water in marine sediments (0.7071–0.7083) and higher ratios being typical for lacustrine and coastal environments influenced from the hinterland (0.7133–0.7139). Coarser grained recrystallized magnesite and magnesite veins show a distinct increase in their Sr isotopic ratios (0.7202–0.7220) which can be attributed to metamorphic fluids of Eoalpine age. The findings of these magnesite occurrences, which have been affected only by very low-grade metamorphism, are compared with similar results from spar magnesites associated with metamorphosed Paleozoic sedimentary rocks. A similar genetic model is proposed for the first magnesite mineralization in those Paleozoic strata, but with variably intense later recrystallisation during metamorphism.  相似文献   

11.
Recent (<50 years old) freshwater cyanobacterial carbonates from diverse environments (streams, lakes, waterfalls) throughout Britain and Ireland were analysed for their stable carbon and oxygen isotope compositions. The mean δ18O value of ?5–9‰ PDB for river and stream data represents calcite precipitation in equilibrium with the mean oxygen isotopic composition of precipitation in central Britain (?7–5‰SMOW) assuming a mean water temperature of 9°C. The mean δ18O of lake data, ?4–5‰ PDB, is statistically different, reflecting the effects of residence time and/or variations in the oxygen isotopic composition of rainfall. Carbon isotopes have wide variations in both fluviatile and lake data sets (+ 3 to ?12‰ PDB). These variations are principally controlled in the fluviatile samples by contribution of isotopically light ‘soil zone’ carbon relative to isotopically heavier carbon from limestone aquifer rock dissolution. Lake samples have the heaviest carbon isotope values, reflecting a trend toward isotopic equilibrium between atmospheric CO2 and aqueous HCO?3. We infer that isotopic compositions of ancient cyanobacterial carbonates should also record environmental information, although the effects of stabilization and diagenesis on primary δ18O values will need careful consideration. Primary carbon isotope compositions should be well preserved, although in marine samples values will be buffered by the isotopic composition of aqueous marine bicarbonate.  相似文献   

12.
卿海若  陈代钊 《沉积学报》2010,28(5):980-986
加拿大萨斯喀彻温省东南部上奥陶统Yeoman组碳酸盐岩中发育有少量的鞍形白云石胶结物。这些鞍形白云石仅局限于Yeoman组上部厚约20~30 m的白云岩带中,上覆及下伏碳酸盐岩地层中均明显缺失这类鞍形白云石,表明其形成于一个相对封闭的体系中。此类奥陶系鞍形白云石胶结物以具有与宿主交代白云岩相似的碳同位素δ13C值(-0.2‰~0.9‰PDB)及锶同位素比值(0.708 2~0.709 0)为特征,表明前期的白云石围岩通过压溶作用形成的碳和锶是鞍形白云石胶结物的主要来源。另外,测得的鞍形白云石胶结物均一温度范围为99~105℃,可以由该区域的正常埋藏温度解释。基于上述资料和观察,我们认为萨斯喀彻温省东南部上奥陶统Yeoman组鞍形白云石胶结物与早期交代白云石的自调节白云石化作用(埋藏过程中相对封闭的体系中通过化学压实作用形成)有关,而与加西盆地其它地方已经证实的热液活动无关。因此,鞍形白云石的分布未必指示热液活动或热流体,也并不是所有的鞍形白云石都与热流体有关。  相似文献   

13.
Three stratificated levels of magnesite-bearing dolomites—Lower Riphean (Bakal-Satka-Suran), Middle Riphean (Avzyan), and Upper Riphean (Min’yar)—are recognized in the Riphean section of the Bashkir Anticlinorium of the southern Urals. Dolomites contain submicroscopic (~1 μm) magnesite dissemination (MgO/CaO > 0.714). The Lower and Middle Riphean magnesite-bearing dolomites host metasomatic magnesite stocks, lenses, pockets, and large stratiform lodes formed as products of hydrothermal activity. No metasomatic magnesite bodies are known in areas without indications of the hydrothermal reworking of magnesite-bearing dolomites. Magnesite deposits of the southern Urals are typical elisional-hydrothermal products related to sedimentation and lithogenesis of carbonate rocks in isochemical system of sedimentary basin. Juvenile components did not participate in the formation of magnesite deposits in the southern Urals.  相似文献   

14.
In the last ten years, with important discoveries from oil and gas exploration in the Dabashan foreland depression belt in the borderland between Shanxi and Sichuan provinces, the relationship between the formation and evolution of, and hydrocarbon accumulation in, this foreland thrust belt from the viewpoint of basin and oil and gas exploration has been studied. At the same time, there has been little research on the origin of fluids within the belt. Based on geochemical system analysis including Z values denoting salinity and research on δ13C, δ18O and 87Sr/86Sr isotopes in the host rocks and veins, the origin of paleofluids in the foreland thrust belt is considered. There are four principal kinds of paleofluid, including deep mantle-derived, sedimentary, mixed and meteoric. For the deep mantle-derived fluid, the δ13C is generally less than ?5.0‰PDB, δ18O less than -10.0‰PDB, Z value less than 110 and 87Sr/86Sr less than 0.70600; the sedimentary fluid is mainly marine carbonate-derived, with the δ13C generally more than ?2.0‰PDB, δ18O less than ?10.0‰PDB, Z value more than 120 and 87Sr/86Sr ranging from 0.70800 to 0.71000; the mixed fluid consists mainly of marine carbonate fluid (including possibly a little mantle-derived fluid or meteoric water), with the δ13C generally ranging from ?2.0‰ to ?8.0‰PDB, δ18O from ?10.0‰ to ?18.0‰ PDB, Z value from 105 to 120 and 87Sr/86Sr from 0.70800 to 0.71000; the atmospheric fluid consists mainly of meteoric water, with the δ13C generally ranging from 0.0‰ to ?10.0‰PDB, δ18O less than ?8.0‰PDB, Z value less than 110 and 87Sr/86Sr more than 0.71000. The Chengkou fault belt encompasses the most complex origins, including all four types of paleofluid; the Zhenba and Pingba fault belts and stable areas contain a simple paleofluid mainly of sedimentary type; the Jimingsi fault belt contains mainly sedimentary and mixed fluids, both consisting of sedimentary fluid and meteoric water. Jurassic rocks of the foreland depression belt contain mainly meteoric fluid.  相似文献   

15.
《Sedimentary Geology》2006,183(1-2):51-69
The Chicxulub Sedimentary Basin of the northwestern Yucatan Peninsula, Mexico, which was formed because of the largest identified Phanerozoic bolide impact on Earth, became a site of deposition of dominantly marine carbonate sediments during most of the Cenozoic Era. This is a study of the filling and diagenetic history of this basin and surrounding areas. The study makes use of lithologic, biostratigraphic, petrographic, and geochemical data obtained on core samples from boreholes drilled throughout the northwestern Yucatan Peninsula.The core sample data indicate that: 1) The Chicxulub Sedimentary Basin concentrated the deposition of pelagic and outer-platform sediments during the Paleocene and Eocene, and, in places, during the Early Oligocene, as well, and filled during the Middle Miocene, 2) deeper-water limestone also is present within the Paleocene and Lower Eocene of the proposed Santa Elena Depression, which is located immediately south of the Basin, 3) shallow-water deposits are relatively more abundant outside the Basin and Depression than inside, 4) the autigenic and allogenic silicates from the Paleogene formations are the most abundant inside the Depression, 5) sediment deposition and diagenesis within the Basin also were controlled by impact crater topography, 6) the abundance of the possible features of subaerial exposure increases upward and outward from the center of the Basin, and 7) the formation of replacive low-magnesium calcite and dolomite, dedolomitization, dissolution, and precipitation of vug-filling calcite and dolomite cement have been more common outside the Basin than inside.δ18O in whole-rock (excluding vug-filling) calcite from core samples ranges from − 7.14‰ to + 0.85‰ PDB. δ13C varies from − 6.92‰ to + 3.30‰ PDB. Both stable isotopes correlate inversely with the abundance of subaerial exposure features indicating that freshwater diagenesis has been extensive especially outside and at the edge of the Chicxulub Sedimentary Basin.δ18O and δ13C in whole-rock (excluding vug-filling) dolomite ranges from − 5.54‰ to + 0.87‰ PDB and − 4.63‰ to + 3.38‰ PDB, respectively. Most dolomite samples have negative δ18O and positive δ13C suggesting that replacive dolomitization involved the presence of a fluid dominated by freshwater and/or an anomalously high geothermal gradient.Most dolomite XRD-determined mole percent CaCO3 varies between 51 and 56. Replacive dolomite is larger, more euhedral, and less stoichiometric inside the Chicxulub Sedimentary Basin than outside.  相似文献   

16.
The early Pliocene Shirahama Limestone is a grainstone-packstone principally composed of fragments of algae, bryozoa, and echinoderm and subordinate volcanic rocks. The limestone was variously dolomitized and the regional distribution of dolomite is patchy. Dolomite occurs as isolated crystals filling pores, moulds, and solution vugs, and mosaic aggregates replacing bioclasts. Calcite occurs as rim and pore-filling sparry cements, and as calcareous skeletons. Isotopically, the dolomites are classified into a heavy oxygen group (?2 to ? 3.5%0 PDB) and a light oxygen group (?5.5 to ? 7.5%0 PDB). Calcite associated with heavy oxygen dolomite has δ18O of ? 6.5 to ?8.5%0 PDB, whereas those associated with light oxygen dolomite have a wide range from ?7.5 to ?14%0 PDB. Calcite in dolomite-free limestone has an oxygen isotopic composition of ?2 to ?8.5%0 PDB. Textures, chemistry, and isotopic evidence indicate that heavy oxygen calcite formed in freshwater, and heavy oxygen dolomite in a meteoric-marine mixture of 10–30% seawater. Light oxygen calcite and dolomite precipitated from modified hydrothermal fluids at approximately 30–65°C. Petrographic features, and both isotopic and chemical evidence suggest that the Shirahama Limestone was exposed to freshwater soon after deposition. Subsequently blocky calcite precipitated (Stage I). The limestone was locally submerged in the meteoric-marine mixture due to gradual subsidence or eustatic movement. This led to the precipitation of heavy oxygen, zoned dolomite and dolospar (Stage II). Hydrothermal alterations occurred in the area a few Myr ago, and related hydrothermal fluids and mixed meteoric-hydrothermal waters caused dedolomitization of some zoned dolomite, partial dissolution of vuggy dolomite, precipitation of limpid dolomite and recrystallization of some earlier dolomites (Stage III). Zeolites were also precipitated from these fluids. Finally, the Shirahama Limestone was exposed again to freshwater and sparry calcite precipitated to plug some of the remaining pores (Stage IV).  相似文献   

17.
Upper Pliocene dolomites (‘white earth’) from La Roda, Spain, offer a good opportunity to evaluate the process of dolomite formation in lakes. The relatively young nature of the deposits could allow a link between dolomites precipitated in modern lake systems and those present in older lacustrine formations. The La Roda Mg‐carbonates (dolomite unit) occur as a 3·5‐ to 4‐m‐thick package of poorly indurated, white, massive dolomite beds with interbedded thin deposits of porous carbonate displaying root and desiccation traces as well as local lenticular gypsum moulds. The massive dolomite beds consist mainly of loosely packed 1‐ to 2‐μm‐sized aggregates of dolomite crystals exhibiting poorly developed faces, which usually results in a subrounded morphology of the crystals. Minute rhombs of dolomite are sparse within the aggregates. Both knobbly textures and clumps of spherical bodies covering the crystal surfaces indicate that bacteria were involved in the formation of the dolomites. In addition, aggregates of euhedral dolomite crystals are usually present in some more clayey (sepiolite) interbeds. The thin porous carbonate (mostly dolomite) beds exhibit both euhedral and subrounded, bacterially induced dolomite crystals. The carbonate is mainly Ca‐dolomite (51–54 mol% CaCO3), showing a low degree of ordering (degree of ordering ranges from 0·27 to 0·48). Calcite is present as a subordinate mineral in some samples. Sr, Mn and Fe contents show very low correlation coefficients with Mg/Ca ratios, whereas SiO2 and K contents are highly correlated. δ18O‐ and δ13C‐values in dolomites range from ?3·07‰ to 5·40‰ PDB (mean=0·06, σ=1·75) and from ?6·34‰ to ?0·39‰ PDB (mean=?3·55, σ=1·33) respectively. Samples containing significant amounts of both dolomite and calcite do not in general show significant enrichment or depletion in 18O and 13C between the two minerals. The correlation coefficient between δ18O and δ13C for dolomite is extremely low and negative (r=?0·05), whereas it is higher and positive (r=0·47) for calcite. The lacustrine dolomite deposit from La Roda is interpreted mainly as a result of primary precipitation of dolomite in a shallow, hydrologically closed perennial lake. The lake was supplied by highly saturated HCO3?/CO32? groundwater that leached dolomitic Mesozoic formations. Precipitation of dolomite from alkaline lake waters took place under a semi‐arid to arid climate. However, according to our isotopic data, strong evaporative conditions were not required for the formation of the La Roda dolomite. A significant contribution by bacteria to the formation of the dolomites is assumed in view of both petrographic and geochemical evidence.  相似文献   

18.
The sequence of orebody formation at the Talgan massive sulfide deposit; morphology of sulfide orebodies; mineralogy, texture, and structure of ore; chemical composition of minerals; and fluid inclusions and relationships between stable isotopes (S, C, O) in sulfides from ores and carbonate rocks are discussed. The deposit is localized in the Uzel’ga ore field of the northern Magnitogorsk Megazone. The sulfide ore is hosted in the upper felsic sequence of the Middle Devonian Karamalytash Formation, composed of basalt, basaltic andesite, and rhyodacite. Orebodies are irregular lenses lying conformably with host rocks. Pyrite, chalcopyrite, sphalerite, and fahlore are the major ore minerals; galena, bornite, and hematite are of subordinate abundance. Sulfide mineralization bears attributes of deposition under subseafloor conditions. The carbonate and rhyolite interlayers at the roofs of orebodies and the supraore limestone sequence served as screens. Zoning typical of massive sulfide deposits was not established. The study of fluid inclusions has shown that the temperature of the hydrothermal solution varied from 375 to 110°C. δ34S‰ ranges from ?2.4 to +3.2‰ in pyrite, from ?1.2 to +2.8‰ in chalcopyrite, and from ?3.5 to +3.0‰ in sphalerite (CDT). These parameters correspond to an isotopic composition of magmatic sulfur without a notable percentage of sulfate sulfur. δ13C and δ18O of carbonates vary from ?18.1 to +5.9‰ (PDB) and from +13.7 to +27.8‰ (SMOW), respectively. The carbon and oxygen isotopic compositions of carbonates from ores and host rocks markedly deviate from the field of marine carbonates; a deep source of carbon is suggested. The results obtained show that the main mass of polysulfide ore at the Talgan deposit was formed beneath the floor of a paleoocean. The ore-forming system was short-lived and its functioning did not give rise to the formation of zonal orebodies. Magmatic fluid played the leading role in mineral formation.  相似文献   

19.
Located in the western Yangtze Block, the Qingshan Pb–Zn deposit, part of the Sichuan–Yunnan–Guizhou Pb–Zn metallogenic province, contains 0.3 million tonnes of 9.86 wt.% Pb and 22.27 wt.% Zn. Ore bodies are hosted in Carboniferous and Permian carbonate rocks, structurally controlled by the Weining–Shuicheng anticline and its intraformational faults. Ores composed of sphalerite, galena, pyrite, dolomite, and calcite occur as massive, brecciated, veinlets, and disseminations in dolomitic limestones.

The C–O isotope compositions of hydrothermal calcite and S–Pb–Sr isotope compositions of Qingshan sulphide minerals were analysed in order to trace the sources of reduced sulphur and metals for the Pb–Zn deposit. δ13CPDB and δ18OSMOW values of calcite range from –5.0‰ to –3.4‰ and +18.9‰ to +19.6‰, respectively, and fall in the field between mantle and marine carbonate rocks. They display a negative correlation, suggesting that CO2 in the hydrothermal fluid had a mixed origin of mantle, marine carbonate rocks, and sedimentary organic matter. δ34S values of sulphide minerals range from +10.7‰ to +19.6‰, similar to Devonian-to-Permian seawater sulphate (+20‰ to +35‰) and evaporite rocks (+23‰ to +28‰) in Carboniferous-to-Permian strata, suggesting that the reduced sulphur in hydrothermal fluids was derived from host-strata evaporites. Ores and sulphide minerals have homogeneous and low radiogenic Pb isotope compositions (206Pb/204Pb = 18.561 to 18.768, 207Pb/204Pb = 15.701 to 15.920, and 208Pb/204Pb = 38.831 to 39.641) that plot in the upper crust Pb evolution curve, and are similar to those of Devonian-to-Permian carbonate rocks. Pb isotope compositions suggest derivation of Pb metal from the host rocks. 87Sr/86Sr ratios of sphalerite range from 0.7107 to 0.7136 and (87Sr/86Sr)200Ma ratios range from 0.7099 to 0.7126, higher than Sinian-to-Permian sedimentary rocks and Permian Emeishan flood basalts, but lower than Proterozoic basement rocks. This indicates that the ore strontium has a mixture source of the older basement rocks and the younger cover sequence. C–O–S–Pb–Sr isotope compositions of the Qingshan Pb–Zn deposit indicate a mixed origin of the ore-forming fluids and metals.  相似文献   

20.
The In Ouzzal granulitic unit (IOGU) consists predominantly of felsic orthogneisses most of which correspond to granitoids emplaced during the Archaean, plus metasediments, including olivine-spinel marbles, of late Archaean age. All units were metamorphosed at granulite facies during the Eburnean (2 Ga). The stable isotope signature of the marbles (δ13C=–0.8 to –4.2‰/PDB; δ18O = 7.9 to 18.9‰/SMOW) does not record a massive streaming of C-bearing fluids during metamorphism. Most of the isotopic variation in the marbles is explained in terms of pregranulitic features. Metasomatic transformation of granulites into layered potassic syenitic rocks and emplacement of carbonate veins and breccias occurred during retrogressive granulite facies conditions. The chemistry of these rocks is comparable with that of fenites and carbonatites with high contents of (L)REEs, Th, U, F, C, Ba and Sr but, with respect to these elements, a relative depletion in Nb, Ta, Hf, Zr and Ti. The isotopic compositions of Nd (?Nd(T)=–6.3 to –9.9), of Sr (87Sr/86Sr(T)= 0.7093–0.7104), and the O isotopic composition of metasomatic clinopyroxene (δ18O = 6.9 to 8‰), all indicate that the fluid had a strong crustal imprint. On the basis of the C isotope ratios (δ13C =–3.5 to –9.7‰), the fluid responsible for the crystallization of carbonates and metasomatic alteration is thought to be derived from the mantle, presumably through degassing of mantle-derived magmas at depth. Intense interaction with the crust during the upward flow of the fluid may explain its chemical and isotopic signatures. The zones of metasomatic alteration in the In Ouzzal granulites may be the deep-seated equivalents of the zones of channelled circulation of carbonated fluids described at shallower levels in the crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号