首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the future, the land system will be facing new intersecting challenges. While food demand, especially for resource-intensive livestock based commodities, is expected to increase, the terrestrial system has large potentials for climate change mitigation through improved agricultural management, providing biomass for bioenergy, and conserving or even enhancing carbon stocks of ecosystems. However, uncertainties in future socio-economic land use drivers may result in very different land-use dynamics and consequences for land-based ecosystem services. This is the first study with a systematic interpretation of the Shared Socio-Economic Pathways (SSPs) in terms of possible land-use changes and their consequences for the agricultural system, food provision and prices as well as greenhouse gas emissions. Therefore, five alternative Integrated Assessment Models with distinctive land-use modules have been used for the translation of the SSP narratives into quantitative projections. The model results reflect the general storylines of the SSPs and indicate a broad range of potential land-use futures with global agricultural land of 4900 mio ha in 2005 decreasing by 743 mio ha until 2100 at the lower (SSP1) and increasing by 1080 mio ha (SSP3) at the upper end. Greenhouse gas emissions from land use and land use change, as a direct outcome of these diverse land-use dynamics, and agricultural production systems differ strongly across SSPs (e.g. cumulative land use change emissions between 2005 and 2100 range from −54 to 402 Gt CO2). The inclusion of land-based mitigation efforts, particularly those in the most ambitious mitigation scenarios, further broadens the range of potential land futures and can strongly affect greenhouse gas dynamics and food prices. In general, it can be concluded that low demand for agricultural commodities, rapid growth in agricultural productivity and globalized trade, all most pronounced in a SSP1 world, have the potential to enhance the extent of natural ecosystems, lead to lowest greenhouse gas emissions from the land system and decrease food prices over time. The SSP-based land use pathways presented in this paper aim at supporting future climate research and provide the basis for further regional integrated assessments, biodiversity research and climate impact analysis.  相似文献   

2.
Global GDP projections for the 21st century are needed for the exploration of long-term global environmental problems, in particular climate change. Greenhouse gas emissions as well as climate change mitigation and adaption capacities strongly depend on growth of per capita income. However, long-term economic projections are highly uncertain. This paper provides five new long-term economic scenarios as part of the newly developed shared socio-economic pathways (SSPs) which represent a set of widely diverging narratives. A method of GDP scenario building is presented that is based on assumptions about technological progress, and human and physical capital formation as major drivers of long-term GDP per capita growth. The impact of these drivers differs significantly between different shared socio-economic pathways and is traced back to the underlying narratives and the associated population and education scenarios. In a highly fragmented world, technological and knowledge spillovers are low. Hence, the growth impact of technological progress and human capital is comparatively low, and per capita income diverges between world regions. These factors play a much larger role in globalization scenarios, leading to higher economic growth and stronger convergence between world regions. At the global average, per capita GDP is projected to grow annually in a range between 1.0% (SSP3) and 2.8% (SSP5) from 2010 to 2100. While this covers a large portion of variety in future global economic growth projections, plausible lower and higher growth projections may still be conceivable. The GDP projections are put into the context of historic patterns of economic growth (stylized facts), and their sensitivity to key assumptions is explored.  相似文献   

3.
城市化水平预测与减缓及适应气候变化研究息息相关。基于国家统计局2005—2015年全国各省区城镇和乡村人口,以各省区2015年人均地区生产总值为指标进行分组,结合IPCC 5种共享社会经济路径(SSPs)的发展特征设置模型参数,运用Logistic模型预测了我国各省区2016—2050年城市化水平。结果表明,到2050年,各省区(除天津、北京、上海、西藏外)在5种典型SSPs下城市化水平收敛于75%左右。其中,SSP1、SSP3、SSP4、SSP5路径下,各省城市化水平比较趋同。而在SSP2路径下,全国总体上从东部到西部城市化程度逐渐降低,空间分布具有明显梯次递减性。5种SSPs路径下城市化速度方面,基本上呈现出中西部快而东部慢、西南快而东北慢的空间分布格局。同时,高收入省份不同路径下的城市化水平差别小,而中低收入省份的差别较大。  相似文献   

4.
Exploring the environmental impact of dietary consumption has become increasingly important to understand the carbon-water-food nexus, vital to achieving UN sustainable development goals. However, the research on diet-based nexus assessment is still lacking. Here, we developed an Environmentally Extended Multi-Regional Input-Output (EE-MRIO) model with compiling a global MRIO table based on the latest Global Trade Analysis Project (GTAP) 10 database, where we specifically constructed a water withdrawal account and matched it to each economy at the sectoral level. The regional heterogeneity and synergy of carbon-water nexus affected by dietary patterns in nine countries was explored. The results show that: (1) Dietary consumption is the main use of water withdrawal for each country; Japan, the US, South Korea, and India have a high per capita dietary water footprint. Mainly due to consumption of processed rice, Japan has the highest per capita value of 488 M3/year, accounting for 63.4% of the total water footprint. (2) The total dietary carbon footprints in China, India, and the US are high, which is mainly caused by the high consumption of animal products (including dairy) either due to the large population (China, India) or animal-based diet (the US). Americans have the highest per capita dietary carbon footprint, reaching 755.4 kg/year, 2.76 times that of the global average. (3) Generally, imported/foreign footprints account for a greater share in dietary water and carbon footprints of developed countries with an animal-based diet. (4) In the nexus analysis, the US, Japan, and South Korea are key-nexus countries, vegetables, fruit and nuts, tobacco and beverages, and other food products are selected as key-nexus sectors with relatively high dietary water and carbon footprint. Furthermore, dietary consumption choices lead to different environmental impacts. It is particularly important to find a sustainable dietary route adapted to each country considering that heterogeneity and synergism exist in key-nexus sectors to achieve the relevant Sustainable Development Goals.  相似文献   

5.
共享社会经济路径下中国及分省经济变化预测   总被引:1,自引:0,他引:1  
基于中国历次人口和经济普查及逐年统计年鉴,率定柯布道格拉斯(Cobb-Douglas)经济预测模型的参数,依据共享社会经济路径(SSPs)框架情景,构建2020—2100年中国31个省(区、市)经济变化格点(0.5°×0.5°)数据库。未来中国经济呈现如下特点:(1)沿可持续路径(SSP1)和不均衡路径(SSP4),GDP将呈现先增后降趋势,峰值出现在2070—2080年;沿中间路径(SSP2)和化石燃料为主的发展路径(SSP5),GDP则呈现持续增长趋势;区域竞争路径(SSP3)下,2050年以后GDP增长处于停滞状态。(2)无论采用何种路径,2020年前GDP仍旧保持6.0%左右的增速,随后增速均低于5.0%并出现放缓或停滞,甚至负增长态势。(3)社会经济发展政策对中国分省经济增长产生直接影响。2020年代SSP1~SSP5路径下江苏、广东和山东省GDP总量位列前三;2090年代,SSP1和SSP5路径下广东、山东和江苏省GDP总量依旧位列前三;SSP2路径下,浙江位列第二;SSP3路径下,河南跻身前三;SSP4路径下,排名前三省份为广东、江苏和浙江省。(4) 2020年代SSP1、SSP2和SSP5路径下,山东、浙江等省GDP增速超过6.0%,SSP3和SSP4路径下仅广东和浙江省GDP增速可维持5.0%左右,个别省还出现负增长;2090年代各省GDP增速均降至不足1.0%。  相似文献   

6.
There is an urgent need for developing policy-relevant future scenarios of biodiversity and ecosystem services. This paper is a milestone toward this aim focusing on open ocean fisheries. We develop five contrasting Oceanic System Pathways (OSPs), based on the existing five archetypal worlds of Shared Socioeconomic Pathways (SSPs) developed for climate change research (e.g., Nakicenovic et al., 2014 and Riahi et al., 2016). First, we specify the boundaries of the oceanic social-ecological system under focus. Second, the two major driving forces of oceanic social-ecological systems are identified in each of three domains, viz., economy, management and governance. For each OSP (OSP1 “sustainability first”, OSP2 “conventional trends”, OSP3 “dislocation”, OSP4 “global elite and inequality”, OSP5 “high tech and market”), a storyline is outlined describing the evolution of the driving forces with the corresponding SSP. Finally, we compare the different pathways of oceanic social-ecological systems by projecting them in the two-dimensional spaces defined by the driving forces, in each of the economy, management and governance domains. We expect that the OSPs will serve as a common basis for future model-based scenario studies in the context of the Intergovernmental Panel on Climate Change (IPCC) and the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES).  相似文献   

7.
“一带一路”沿线国家2020—2060年人口经济发展情景预测   总被引:1,自引:0,他引:1  
本文应用IPCC共享社会经济路径(SSPs),开展“一带一路”沿线国家的人口和经济情景预测,研究可持续路径(SSP1)、中间路径(SSP2)、区域竞争路径(SSP3)、不均衡路径(SSP4)和化石燃料为主发展路径(SSP5)下,“一带一路”沿线国家社会经济的变化趋势,构建“一带一路”沿线国家人口和经济发展情景数据库,服务于气候变化影响、风险、适应和减缓路径方案设计。研究表明:(1)2016年“一带一路”沿线国家总人口占全球人口的62.3%,GDP总量占全球的31.2%。其中“21世纪海上丝绸之路”经过的东南亚和南亚地区经济总量大,但人口密集,人均GDP较低;“丝绸之路经济带”涵盖的中亚、西亚、东欧等地区人口密度小,经济相对发达。(2)“一带一路”沿线国家未来人口和经济整体呈增长趋势,但不同的社会经济发展政策对人口经济变化有重大影响。不同的SSPs路径下,2060年人口将比2016年水平增加3.3亿(SSP5)~18.3亿(SSP3),经济总量达到2016年水平的3.0(SSP3)~6.4倍(SSP5)。人口占全球总量的比重持续减少,经济比重则有所增加。(3)21世纪中期(2051—2060年),“一带一路”沿线国家平均人口密度约95人/km2,GDP约164万美元/km2。不同社会经济发展政策间人口经济分布有一定差异,SSP3路径下大部分国家人口增长迅速,但经济发展缓慢,人均GDP多低于2万美元;SSP5路径下人口相对较少,经济发展迅速,大多数国家人均GDP超过2.5万美元;其他3种路径下人口经济发展介于SSP3和SSP5之间。  相似文献   

8.
IPCC共享社会经济路径下中国和分省人口变化预估   总被引:3,自引:0,他引:3  
基于2010年第六次中国人口普查数据,采用IPCC发布的可持续发展(SSP1)、中度发展(SSP2)、局部或不一致发展(SSP3)、不均衡发展(SSP4)、常规发展(SSP5)这5种共享社会经济路径,率定人口-发展-环境分析(PDE)模型中的人口生育率、死亡率、迁移率、教育水平等参数,对2011-2100年中国和31个省(区/市)人口变化进行预估。结果表明:1) 不同SSP路径下,中国人口均呈先增加后减少的趋势,在高气候变化挑战的SSP3路径下人口最多,于2035年达到峰值,约14.27亿;在以适应挑战为主的SSP4路径下,人口出现最小值7.02亿。2) SSP1、SSP4和SSP5路径下人均寿命长,人口老龄化严重,其中SSP1和SSP5路径下人均教育水平高,到2100年教育水平在大学以上人口约占总人口的60%;SSP2路径下各年龄段分布比较均衡;SSP3路径下新生人口数量较多,劳动力充足,但教育水平较低。3) 到2100年,SPP3路径下广西人口呈现最大值1.13亿,在其他路径下广东人口最多,达1.29亿。  相似文献   

9.
This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).  相似文献   

10.
基于最新的经济和人口普查及逐年统计年鉴,采用柯布?道格拉斯(Cobb-Douglas)经济预测模型,分析了共享社会经济路径(SSPs)框架下中国“全面二孩”政策后2010—2100年经济发展趋势,并解析了劳动投入量、资本投入量和全要素生产率对经济发展的贡献率。研究发现:(1)不同的社会经济发展政策下,21世纪中国经济均呈增加趋势,GDP增速在2030年前基本维持在6%上下,但2030—2060年代迅速下降,2070年代起SSP1和SSP4路径下增幅低于0.5%,SSP2、SSP3和SSP5路径下增幅保持在0.5%~1.5%。(2)影响经济发展的三要素中,劳动投入量在SSP3路径下先减后增,于2060年代达到谷值;在其他路径下均先增后减,于2020年代达到峰值。资本投入量在SSP1路径下持续增加,2080年代起趋于平缓;其他路径下均呈持续增加趋势,但在SSP4路径下,在2060和2070年代有所下降。全要素生产率在所有路径下均呈增加趋势。(3)改革开放以来,资本投入量是影响我国经济增长最主要的因素。未来,SSP1和SSP2路径下,全要素生产率逐渐成为经济发展的主导因素;而SSP5路径下,资本投入量仍是影响经济发展的主要因素。  相似文献   

11.
This study quantifies the Shared Socioeconomic Pathways (SSPs) using AIM/CGE (Asia-Pacific Integrated Assessment/Computable General Equilibrium). SSP3 (regional rivalry) forms the main focus of the study, which is supposed to face high challenges both in mitigation and adaptation. The AIM model has been selected as the model to quantify the SSP3 marker scenario, a representative case illustrating a particular narrative. Multiple parameter assumptions in AIM/CGE were differentiated across the SSPs for quantification. We confirm that SSP3 quantitative scenarios outcomes are consistent with its narrative. Moreover, four key features of SSP3 are observed. First, as SSP3 was originally designed to contain a high level of challenges to mitigation, mitigation costs in SSP3 were relatively high. This results from the combination of high greenhouse gas emissions in the baseline (no climate mitigation policy) scenario and low mitigative capacity. Second, the climate forcing level in 2100 for the baseline scenarios of SSP3 was similar to that of SSP2, whereas CO2 emissions in SSP3 are higher than those in SSP2. This is mainly due to high aerosol emissions in SSP3. A third feature was the high air pollutant emissions associated with weak implementation of air quality legislation and a high level of coal dependency. Fourth, forest area steadily decreases with a large expansion of cropland and pasture land. These characteristics indicate at least four potential uses for SSP3. First, SSP3 is useful for both IAM and impact, adaptation, vulnerability (IAV) analyses to present the worst-case scenario. Second, by comparing SSP2 and SSP3, IAV analyses can clarify the influences of socioeconomic elements under similar climatic conditions. Third, the high air pollutant emissions would be of interest to atmospheric chemistry climate modelers. Finally, in addition to climate change studies, many other environmental studies could benefit from the meaningful insights available from the large-scale land use change resulting in SSP3.  相似文献   

12.
The European Union (EU) has proposed in its Resource-efficiency roadmap a ‘dashboard of indicators’ consisting of four headline indicators for carbon, water, land and materials. The EU recognizes the need to use a consumption-based (or ‘footprint’) perspective to capture the global dimension of resources and their impacts. In this paper, we analyse how the EU’s footprints compare to those of other nations, to what extent the EU and other major economies of the world rely on embodied resource imports, and what the implications are for policy making based on this comparison. This study is the first comprehensive multi-indicator comparison of all four policy relevant indicators, and uses a single consistent global Multi-Regional Input Output (MRIO) database with a unique and high level of product detail across countries. We find that Europe is the only region in the world that relies on net embodied imports for all indicators considered. We further find that the powerful economies of China and others in the Asia-Pacific already dominate global resource consumption from a footprint perspective, while they still haven’t reached the prosperity of developed countries. Competition for resources is hence likely to increase, making Europe even more vulnerable. A hot spot analysis suggests that final consumption of food, transport and housing are priorities for reduction efforts along the life cycle. Further, countries with a similar Human Development Index can have very different footprints, pointing at societal organisation at macro-level as option for improvement. This points at options for countries for lowering their footprint, becoming less dependent on embodied imports, while maintaining a high quality of life.  相似文献   

13.
中国城镇和乡村住房建筑地震设防水平差距较大,暴露在低设防农村与高密集城镇下的人口因此面临较高的地震风险,面向地震设防风险分析未来城乡人口及暴露特征具有重要意义。本文基于地震烈度区划图和人口-发展-环境(PDE)模型,模拟分析了5种共享社会经济路径(SSPs)情景下的未来城乡人口地震灾害时空暴露。结果表明:(1)除SSP3下城镇人口数量持续增加外,其他SSP情景下各地区城镇人口数量均先增后降,农村人口数量受城镇化影响呈持续下降趋势;(2)城镇与农村地震灾害高、较高人口暴露等级空间分布相似,集中在华北、西南与东部沿海地区;(3)相较于有设防的城镇地区,无设防农村地震人口暴露等级偏高,高暴露、较高暴露等级的数量偏多,未来城镇人口暴露等级有所上升,而农村人口暴露等级逐渐降低。  相似文献   

14.
根据共享社会经济情景(SSPs)分为“双碳”路径(SSP1-1.9、SSP1-2.6、SSP2-4.5、SSP4-3.4、SSP4-6.0)和“高碳”路径(SSP3-7.0、SSP5-8.5)。在碳达峰(2028—2032年)和碳中和(2058—2062年)两个时期,采用5个气候模式,7个情景驱动SWAT水文模型,分析赣江流域径流演变特征,主要结论如下:1961—2017年赣江流域观测到的年均气温以0.17℃/(10 a)的速率呈显著上升趋势(p<0.01),降水以17 mm/(10 a)的速率呈不显著上升。“双碳”和“高碳”路径下,2021—2100年赣江流域均呈现暖湿态,气温持续变暖,降水有所增加;碳达峰、碳中和时期,“双碳”路径下年径流呈现增加趋势;“双碳”路径下,月径流在汛期呈现增加趋势,枯水期在SSP1-1.9、SSP1-2.6、SSP2-4.5、SSP4-3.4下呈现增加趋势,在SSP4-6.0下呈现减少趋势。“双碳”路径下极端水文事件强度将可能小于“高碳”路径。  相似文献   

15.
Affluence drives the global displacement of land use   总被引:2,自引:0,他引:2  
Increasing affluence is often postulated as a main driver for the human footprint on biologically productive areas, identified among the main causes of biodiversity loss, but causal relationships are obscured by international trade. Here, we trace the use of land and ocean area through international supply chains to final consumption, modeling agricultural, food, and forestry products on a high level of resolution while also including the land requirements of manufactured goods and services. In 2004, high-income countries required more biologically productive land per capita than low-income countries, but this connection could only be identified when land used to produce internationally traded products was taken into account, because higher-income countries tend to displace a larger fraction of land use. The equivalent land and ocean area footprint of nations increased by a third for each doubling of income, with all variables analyzed on a per capita basis. This increase came largely from imports, which increased proportionally to income. Export depended mostly on the capacity of countries to produce useful biomass, the biocapacity. Our analysis clearly shows that countries with a high biocapacity per capita tend to spare more land for nature. Biocapacity per capita can be increased through more intensive production or by reducing population density. The net displacement of land use from high-income to low-income countries amounted to 6% of the global land demand, even though high-income countries had more land available per capita than low-income countries. In particular, Europe and Japan placed high pressure on ecosystems in lower-income countries.  相似文献   

16.
Projections of greenhouse gas (GHG) emissions are critical to enable a better understanding and anticipation of future climate change under different socio-economic conditions and mitigation strategies. The climate projections and scenarios assessed by the Intergovernmental Panel on Climate Change, following the Shared Socioeconomic Pathway (SSP)-Representative Concentration Pathway (RCP) framework, have provided a rich understanding of the constraints and opportunities for policy action. However, the current emissions scenarios lack an explicit treatment of urban emissions within the global context. Given the pace and scale of urbanization, with global urban populations expected to increase from about 4.4 billion today to about 7 billion by 2050, there is an urgent need to fill this knowledge gap. Here, we estimate the share of global GHG emissions driven by urban areas from 1990 to 2100 based on the SSP-RCP framework. The urban consumption-based GHG emissions are presented in five regional aggregates and based on a combination of the urban population share, 2015 urban per capita CO2eq carbon footprint, SSP-based national CO2eq emissions, and recent analysis of urban per capita CO2eq trends. We find that urban areas account for the majority of global GHG emissions in 2015 (61.8%). Moreover, the urban share of global GHG emissions progressively increases into the future, exceeding 80% in some scenarios by the end of the century. The combined urban areas in Asia and Developing Pacific, and Developed Countries account for 65.0% to 73.3% of cumulative urban consumption-based emissions between 2020 and 2100 across the scenarios. Given these dominant roles, we describe the implications for potential urban mitigation in each of the scenario narratives in order to meet the goal of climate neutrality within this century.  相似文献   

17.
Agricultural land use to meet the demands of a growing population, changing diets, lifestyles and biofuel production is a significant driver of biodiversity loss. Globally applicable methods are needed to assess biodiversity impacts hidden in internationally traded food items. We used the countryside species area relationship (SAR) model to estimate the mammals, birds, amphibians and reptiles species lost (i.e. species ‘committed to extinction’) due to agricultural land use within each of the 804 terrestrial ecoregion. These species lost estimates were combined with high spatial resolution global maps of crop yields to calculate species lost per ton for 170 crops in 184 countries. Finally, the impacts per ton were linked with the bilateral trade data of crop products between producing and consuming countries from FAO, to calculate the land use biodiversity impacts embodied in international crop trade and consumption. We found that 83% of total species loss is incurred due to agriculture land use devoted for domestic consumption whereas 17% is due to export production. Exports from Indonesia to USA and China embody highest impacts (20 species lost at the regional level each). In general, industrialized countries with high per capita GDP tend to be major net importers of biodiversity impacts from developing tropical countries. Results show that embodied land area is not a good proxy for embodied biodiversity impacts in trade flows, as crops occupying little global area such as sugarcane, palm oil, rubber and coffee have disproportionately high biodiversity impacts.  相似文献   

18.
The new scenario process for climate change research includes the creation of Shared Socioeconomic Pathways (SSPs) describing alternative societal development trends over the coming decades. Urbanization is a key aspect of development that is relevant to studies of mitigation, adaptation, and impacts. Incorporating urbanization into the SSPs requires a consistent set of global urbanization projections that cover long time horizons and span a full range of uncertainty. Existing urbanization projections do not meet these needs, in particular providing only a single scenario over the next few decades, a period during which urbanization is likely to be highly dynamic in many countries. We present here a new, long-term, global set of urbanization projections at country level that cover a plausible range of uncertainty. We create SSP-specific projections by choosing urbanization outcomes consistent with each SSP narrative. Results show that the world continues to urbanize in each of the SSPs but outcomes differ widely across them, with urbanization reaching 60%, 79%, and 92% by the end of century in SSP3, SSP2, and SSP1/SSP4/SSP5, respectively. The degree of convergence in urbanization across countries also differs substantially, with largely convergent outcomes by the end of the century in SSP1 and SSP5 and persistent diversity in SSP3. This set of global, country-specific projections produces urbanization pathways that are typical of regions in different stages of urbanization and development levels, and can be extended to further elaborate assumptions about the styles of urban growth and spatial distributions of urban people and land cover occurring in each SSP.  相似文献   

19.
This paper presents a preliminary assessment of the relative effects of rate of climate change (four Representative Concentration Pathways - RCPs), assumed future population (five Shared Socio-economic Pathways - SSPs), and pattern of climate change (19 CMIP5 climate models) on regional and global exposure to water resources stress and river flooding. Uncertainty in projected future impacts of climate change on exposure to water stress and river flooding is dominated by uncertainty in the projected spatial and seasonal pattern of change in climate. There is little clear difference in impact between RCP2.6, RCP4.5 and RCP6.0 in 2050, and between RCP4.5 and RCP6.0 in 2080. Impacts under RCP8.5 are greater than under the other RCPs in 2050 and 2080. For a given RCP, there is a difference in the absolute numbers of people exposed to increased water resources stress or increased river flood frequency between the five SSPs. With the ‘middle-of-the-road’ SSP2, climate change by 2050 would increase exposure to water resources stress for between approximately 920 and 3,400 million people under the highest RCP, and increase exposure to river flood risk for between 100 and 580 million people. Under RCP2.6, exposure to increased water scarcity would be reduced in 2050 by 22-24 %, compared to impacts under the RCP8.5, and exposure to increased flood frequency would be reduced by around 16 %. The implications of climate change for actual future losses and adaptation depend not only on the numbers of people exposed to changes in risk, but also on the qualitative characteristics of future worlds as described in the different SSPs. The difference in ‘actual’ impact between SSPs will therefore be greater than the differences in numbers of people exposed to impact.  相似文献   

20.
This article introduces and evaluates the implications for global environmental change of the rising power and authority of big brand companies as global environmental governors. Contributing to the private governance literature and, in particular, addressing the gap in this research with respect to the political implications of individual firm ‘buyer power’, the article provides evidence and analysis of how big brand sustainability is altering the power relations within global supply chains, and the governance prospects and limits of this trend. The authors argue that recent brand company efforts through their global supply chains, while still a long way off from their goals, are achieving environmental gains in product design and production. Yet, these advances are also fundamentally limited. Total environmental impacts of consumption are increasing as brand companies leverage corporate sustainability for competitive advantage, business growth, and increased sales. Big brand sustainability, while important, will not on its own resolve the problems of global environmental change. In conclusion, the article highlights the importance of a co-regulatory governance approach that includes stronger state regulations, sustained advocacy, more responsible individual consumerism, and tougher international legal constraints to go beyond the business gains from big brand sustainability to achieve more transformational, ‘absolute’ global environmental progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号