首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study describes surface cyclone activity associated with the interannual variability in summer precipitation in northern Eurasia and how that activity may be connected to other climate signals. An east–west seesaw oscillation of precipitation across Siberia is the primary mode of interannual variability in the summer hydrological cycle over northern Eurasia. This variation occurs at sub-decadal timescales of about 6–8 years. The spatial characteristics of cyclone frequency and cyclone tracks at the two poles in variability [eastern Siberia (ES)-wet–western Siberia (WS)-dry and WS-wet–ES-dry] were examined, and temporal variability in regional cyclone frequency was compared to basin-scale precipitation variability. The analysis period was from 1973 to 2002, when the precipitation variability signal was predominant.Cyclone behavior suggested that the regions of enhanced (reduced) cyclone activity coincided with regions of increased (decreased) precipitation in each phase of the oscillation. Such behavior reflects the zonal displacement of the track of frequent storm activity that accompanies the changes in precipitation. Comparisons of the temporal characteristics confirmed the importance of regional cyclone frequency on precipitation variability in both eastern and western Siberia. Low-frequency changes in regional cyclone activity may produce the precipitation oscillation. We used various climate signals to explore connections between regional precipitation and cyclone activity in Siberia. Results suggest that the North Atlantic Oscillation (NAO) from the preceding winter is significantly and negatively correlated with summer surface cyclone frequency and precipitation over western Siberia. Enhanced (reduced) summer cyclone activity and precipitation in western Siberia follows low- (high-) winter NAO. However, the physical mechanisms linking summer cyclone activity and precipitation over western Siberia with the preceding climate conditions associated with the winter NAO remain unclear.  相似文献   

2.
We utilize a regional climate model with detailed land surface processes (RegCM2) to simulate East Asian monsoon climates at 0 ka, 6 ka and 21 ka BP, and evaluate the changes in hydrology process, including vapor transportation, precipitation, evapotranspiration and runoff in the eastern and western China during these periods. Results indicate that the Tibetan Plateau climate presents a wet–cold status during the LGM while it exhibits a wet–warm climate at 6 ka BP. The LGM wetter climate over the Tibetan Plateau mainly results from the increased vapor inflow through its south boundary, while the increase in the vapor import over the Tibetan Plateau at 6 ka BP mostly sources from its west boundary. The increase in the LGM runoff over the Tibetan Plateau is mainly caused by the decrease in evapotranspiration, while the increase in runoff at the 6 ka BP mainly by the enhanced precipitation. Eastern China (including southern China) presents a dry status during the LGM, which precipitation and runoff decreases significantly due largely to weakened Asian summer monsoon that results in the decreased vapor inflow through the south boundary of eastern China. The variation pattern in the hydrological cycle in eastern China is contrary to that in western China during the LGM. The increase in precipitation and runoff at 6 ka BP in eastern China is tightly related to the strong Asian summer monsoon that leads to increased vapor import through the south boundary. Long term decrease trend in precipitation and runoff in northern China since the last 20 000 years may be attributed to the steady increase in vapor export through the east boundary as a result of the changes of East Asian monsoon and the adjustments of local atmospheric circulations in this area.  相似文献   

3.
Sea level observed by altimeter during the 1993–2004 period, thermosteric sea level from 1945 through 2004, and tide gauge records are analyzed to investigate the interannual variability of sea level in the South China Sea (SCS) and its relationship with ENSO (El Niño and Southern Oscillation). Both the interannual variations of the observed sea level and the thermosteric sea level are closely related to ENSO. An ‘enigma’ that the SST and sea level in the SCS have inverse response to ENSO is revealed. It is found that the thermosteric sea level has an excellent correspondence to seawater temperature at 100 m depth, and their variations are unsynchronized to SST. Detailed analysis denotes that the warming of seawater occurs only in the upper 75 m during and after the mature phase of El Niño, while the cooling appears in the layers deeper than 75 m during El Niño years. The volume transports between the SCS and the adjacent oceans and the anomalous Ekman pumping contribute a lot for the sea level fall in the developing stage of El Niño, while the mass exchange, which is dominated by precipitation, plays a more significant role in the following continuous negative sea level anomalies.  相似文献   

4.
New paleovegetation and paleoclimatic reconstructions from the Sierra Madre Occidental (SMO) in northwestern Mexico are presented. This work involves climate and biome reconstruction using Plant Functional Types (PFT) assigned to pollen taxa. We used fossil pollen data from four Holocene peat bogs located at different altitudes (1500‑2000 m) at the border region of Sonora and Chihuahua at around 28° N latitude (Ortega-Rosas, C.I. 2003. Palinología de la Ciénega de Camilo: datos para la historia de la vegetación y el clima del Holoceno medio y superior en el NW de la Sierra Madre Occidental, Sonora, Mexico. Master Thesis, Universidad Nacional Autónoma de México, México D.F.; Ortega-Rosas, C.I., Peñalba, M.C., Guiot, J. Holocene altitudinal shifts in vegetation belts and environmental changes in the Sierra Madre Occidental, Northwestern Mexico. Submitted for publication of Palaeobotany and Palynology). The closest modern pollen data come from pollen analysis across an altitudinal transect from the Sonoran Desert towards the highlands of the temperate SMO at the same latitude (Ortega-Rosas, C.I. 2003. Palinología de la Ciénega de Camilo: datos para la historia de la vegetación y el clima del Holoceno medio y superior en el NW de la Sierra Madre Occidental, Sonora, Mexico. Master Thesis, Universidad Nacional Autónoma de México, México D.F.). An additional modern pollen dataset of 400 sites across NW Mexico and the SW United States was compiled from different sources (Davis, O.K., 1995. Climate and vegetation pattern in surface samples from arid western U.S.A.: application to Holocene climatic reconstruction. Palynology 19, 95–119, North American Pollen Database, Latin-American Pollen Database, personal data, and different scientific papers). For the biomization method (Prentice, I.C., Guiot, J., Huntley, B., Jolly, D., Cheddadi, R., 1996. Reconstructing biomes from paleoecological data: a general method and its application to European pollen data at 0 and 6 ka. Climate Dynamics 12, 185–194), we modified the pollen-PFT and PFT-biomes assignation of Thompson and Anderson (Thompson, R.S., Anderson, K.H., 2000. Biomes of western North America at 18,000; 6000 and 0 14C yr BP reconstructed from pollen and packrat midden data. Journal of Biogeography 27, 555–584) for a better representation of the modern vegetation of NW Mexico. The biome reconstruction method was validated with the modern pollen sites and applied to the fossil sites. Our results show that, during the early Holocene, a cool conifer forest extended at least down to 1700 m, while today this biome is present above 2000 m in the Chihuahua state. The Younger Dryas event was recorded in one site with cold and dry conditions. The reconstructed annual temperature for this period was 3°–6 °C colder than today, and annual precipitation was 250 mm lower than at present (900 mm/yr). The middle Holocene after 9200 cal yr BP was marked by a warming trend, reaching temperatures 2 °C warmer than today at 7000 cal yr BP, and by the installation of a warm mixed forest, the present day biome, at 1700 m elevation, while at higher elevations (1900 m) the cool conifer forest was still present. Summer precipitation was 200 mm/yr above the early Holocene values, suggesting that monsoon-like conditions strengthened since 9200 cal yr BP at this region. During the last 4000 yr, the same warm mixed forest was reconstructed below 1700 m and a conifer forest above 1700 m. A great variability of vegetation and climate patterns was recorded for the last 3000 yr particularly at high elevation sites, where warming and cooling trends would be coeval of the Medieval warm period and Little Ice Age, likely related to ENSO variability.  相似文献   

5.
The Chinese Loess Plateau (CLP) comprises an extensive record of eolian deposition that contains important information about climate change. The objective of this study is to investigate if mineralogy can provide more insight into the long-term evolution of the East Asian monsoon. Comparisons between mineralogy and other paleoclimatic records (grain size and magnetic susceptibility) from the CLP have been made to evaluate the efficacy of mineralogy as a paleoclimatic tool.Here we present data from a mineralogical study of a red clay–loess sequence at Lingtai, central Chinese Loess Plateau. Changes related to source area(s), transport processes and weathering regime over time are recorded in mineral variation.Higher average concentrations of kaolinite, chlorite and quartz in the red clay, together with abrupt changes in relative mineral abundances across the red clay–loess boundary suggest a change of source area at 2.6 Ma. From 2.6 Ma to about 1.7 Ma the summer monsoon influence increases, destroying chlorite and contributing fine illite particles to the sediment. At around 1.7 Ma the mineralogy becomes relatively constant, suggesting that the monsoon was fairly stable during this period. At 0.7–0.5 Ma an increase of both summer monsoon and winter monsoon activity is inferred from illite, kaolinite, chlorite and plagioclase concentrations. Over the last 0.5 Ma mineralogy suggests an aridification of source area(s) as chlorite and plagioclase concentrations increase where illite concentration decreases. The last major change occurred around 0.07 Ma and indicates reducing summer monsoon influence as chlorite and quartz concentrations increase and illite concentration, as well as the < 2 μm size fraction, decreases. The mineralogical trends and differences between loess and paleosols units suggest different source areas in the last 0.5 Ma.  相似文献   

6.
The precipitation and low-level air temperature in East Asia from a regional climate model (RCM) hindcast for the 22-year period 1979–2000 is evaluated against observational data in preparation for the model use in regional climate change research. Emphasis of the evaluation is placed on the RCM capability in capturing the temporal and spatial variability of precipitation and low-level temperature, especially in conjunction with important climatological events such as, ENSO and East Asian monsoon, at three spatial scales of continental, subcontinental, and river basins.Spatial anomaly correlation time series of geopotential height and temperature show that the simulated upper-air fields remain consistent with the driving large-scale fields, NCEP Reanalysis 2 (R2), throughout the period. The simulated seasonal shifts in 850 hPa winds also agree well with R2 over eastern China and the western Pacific Ocean although the magnitudes of the shifts are overestimated, especially over the eastern slope of the Tibetan Plateau and in northern Manchuria. The simulated precipitation climatology agrees reasonably with that from two analysis datasets based on station- and remote-sensing data. Outstanding characteristics of precipitation including the location of the main rainband, climatological means, and the spatiotemporal variability in association with East Asian Monsoon, ENSO, and extreme events, are well represented in the hindcast. The most notable bias in the simulated precipitation is an overestimation of winter rainfall in southwestern coast of China, near the border with Vietnam. The simulation overestimates the interannual variability of seasonal precipitation especially in southern China, however, the corresponding coefficients of variation agree reasonably with observations except in very dry regions. This suggests that climate sensitivity of scaled precipitation can be useful for projecting climate change signals. The simulated low-level temperature climatology agrees reasonably with observational data as well. The most noticeable biases in the simulated low-level temperature are the warm (cold) biases in southern Siberia (northeastern China) during winter (summer) and the systematic underestimation of low-level temperature in the Tibetan Plateau for all seasons. The daily maximum temperature is underestimated for all seasons by 2−3 K with the largest biases in spring and fall except in the northwestern Mongolia region where it has been overestimated during winter. The daily minimum temperature biases ranges from 0.3 K in spring to 2 K in winter, and are much smaller than those in daily maximum temperature. The evaluation of the multidecadal hindcast shows that model errors mostly confined in the region near the lateral boundaries of the model domain with only minor biases in eastern China. This allows us to be cautiously optimistic about the RCM usefulness for studies of precipitation and low-level temperature changes in East Asia induced by increased emissions of greenhouse gases.  相似文献   

7.
This paper presents a synopsis of recently published studies by the co-authors, which show that several land surface characteristics unique to Northern Eurasia are responsible for facilitating a causal relationship between autumn snow anomalies in this region and subsequent hemispheric winter climate patterns. The large size and extratropical location of the contiguous Eurasian land mass results in broad, continental-scale interannual snow cover extent and depth variations throughout autumn and winter, and corresponding diabatic heating anomalies. These surface anomalies occur in the presence of a large region of stationary wave activity, produced in part by the orographic barriers that separate northern/central Eurasia from southern/eastern Eurasia. This co-location of snow-forced anomalies and ambient wave energy is unique to Northern Eurasia, and initiates a teleconnection pathway involving stationary wave–mean flow interaction throughout the troposphere and stratosphere, ultimately resulting in a modulation of the winter Arctic Oscillation (AO). Complementary new results are also presented which show that partial snow cover extent or snow depth only anomalies in Northern Eurasia are insufficient to initiate the teleconnection pathway and produce a winter AO signal. This synopsis provides a useful interpretation of the earlier studies in the specific context of Northern Eurasia regional climate and environmental change.  相似文献   

8.
A simulation model based on satellite observations of monthly vegetation cover was used to estimate monthly carbon fluxes in terrestrial ecosystems from 1982 to 1998. The NASA–CASA model was driven by vegetation properties derived from the Advanced Very High Resolution Radiometer (AVHRR) and radiative transfer algorithms that were developed for Moderate Resolution Imaging Spectroradiometer (MODIS). For the terrestrial biosphere, predicted net ecosystem production (NEP) flux for atmospheric CO2 has varied widely between an annual source of −0.9 Pg C per year and a sink of +2.1 Pg C per year. The southern hemisphere tropical zones (SHT, between 0° and 30°S) have a major influence over the predicted global trends in interannual variability of NEP. In contrast, the terrestrial NEP sink for atmospheric CO2 on the North American (NA) continent has been fairly consistent between +0.2 and +0.3 Pg C per year, except during relatively cool annual periods when continental NEP fluxes are predicted to total to nearly zero. The predicted NEP sink for atmospheric CO2 over Eurasia (EA) increased notably in the late 1980s and has been fairly consistent between +0.3 and +0.55 Pg C per year since 1988. High correlations can be detected between the El Niño Southern Oscillation (ENSO) and predicted NEP fluxes on the EA continent and for the SHT latitude zones, whereas NEP fluxes for the North American continent as a whole do not correlate strongly with ENSO events over the same time series since 1982. These observations support the hypothesis that regional climate warming has had notable but relatively small-scale impacts on high latitude ecosystem (tundra and boreal) sinks for atmospheric CO2.  相似文献   

9.
The sensitivity of climate phenomena in the low latitudes to enhanced greenhouse conditions is a scientific issue of high relevance to billions of people in the poorest countries of the globe. So far, most studies dealt with individual model results. In the present analysis, we refer to 79 coupled ocean–atmosphere simulations from 12 different climate models under 6 different IPCC scenarios. The basic question is as to what extent various state-of-the-art climate models agree in predicting changes in the main features of El Niño-Southern Oscillation (ENSO) and the monsoon climates in South Asia and West Africa. The individual model runs are compared with observational data in order to judge whether the spatio-temporal characteristics of ENSO are well reproduced. The model experiments can be grouped into multi-model ensembles. Thus, climate change signals in the classical index time series, in the principal components and in the time series of interannual variability can be evaluated against the background of internal variability and model uncertainty.There are large differences between the individual model predictions until the end of the 21st century, especially in terms of monsoon rainfall and the Southern Oscillation index (SOI). The majority of the models tends to project La Niña-like anomalies in the SOI and an intensification of the summer monsoon precipitation in India and West Africa. However, the response barely exceeds the level of natural variability and the systematic intermodel variations are larger than the impact of different IPCC scenarios. Nonetheless, there is one prominent climate change signal, which stands out from model variations and internal noise: All forced model experiments agree in predicting a substantial warming in the eastern tropical Pacific. This oceanic heating does not necessarily lead to a modification of ENSO towards more frequent El Niño and/or La Niña events. It simply represents a change in the background state of ENSO. Indeed, we did not find convincing multi-model evidence for a modification of the wavelet spectra in terms of ENSO or the monsoons. Some models suggest an intensification of the annual cycle but this signal is fairly model-dependent. Thus, large model uncertainty still exists with respect to the future behaviour of climate in the low latitudes. This has to be taken into account when addressing climate change signals in individual model experiments and ensembles.  相似文献   

10.
Recent studies have drawn attention to differences in the seasonal impact of the 8.2 ka event, with longer cooler summers and shorter cooler/drier winters. However, there are no data available on the simultaneity or the rate of onset of the seasonal changes in Europe. Based on the microfacies and geochemical analyses of seasonally laminated varved sediments from Holzmaar, we present evidence of differences in duration and onset time of changes in summer temperature and winter rainfall during the 8.2 ka event. Since both summer and winter climate signals are co-registered within a single varve, there can be no ambiguity about the phasing and duration of the signals. Our data show that the onset and withdrawal of the 8.2 ka summer cooling occurred within a year, and that summer rains were reduced or absent during the investigated period. The onset of cooler summers preceded the onset of winter dryness by ca. 28 years. In view of the differences in nature and duration of the impact of the 8.2 ka event we suggest that a clearer definition of the 8.2 ka event (summer cooling or winter cooling/dryness) needs to be developed. Based on regional comparison and available modelling studies we also discuss the roles of solar variability, changes in North Atlantic Thermohaline circulation, and North Atlantic Circulation (NAO) during the period under consideration. Wavelet analyses of seasonal laminae indicates that the longer NAO cycles, linked to changes in the N. Atlantic temperatures, were more frequent during the drier periods.  相似文献   

11.
We obtained the high-resolution record of terrestrial biomarkers (C29 and C31 n-alkanes) for the last 26,000 years from Oki Ridge in the south Japan Sea that enabled us to discuss millennial scale climate changes. Our sampling resolution for the biomarker during the major deglaciation period (10–19.5 cal ka BP) is 300 years and for the elemental analyses (total organic carbon and total nitrogen) is as good as ca 200 years. The estimated mass accumulation rate of these molecules during the last glacial period is substantially higher than during the Holocene. They also exhibited two distinct peaks at 17.6 cal ka BP and 11.4 cal ka BP, which are coincident with Heinrich Event 1 and the latest stage of the Younger Dryas, respectively. The unique oceanographic setting of the Japan Sea tends to preferentially preserve organic material of aeolian origin. The nature of our biomarker record in fact suggests a strong aeolian signal, and hence their flux to the Japan Sea potentially reflects the climate conditions of the dust source regions and transport intensity. Our results are consistent with previously reported monsoon variations based on other proxies that is indicative of a strong linkage between North Atlantic climate and Asian monsoon intensity.  相似文献   

12.
The hydrographic changes in the western tropical South Atlantic during the last 30 kyr were reconstructed based in the faunal and isotopic analyses of planktonic foraminifera of three cores taken along the Brazilian Continental Margin between 14°S and 25°S. The application of the SIMMAX–MAT method on faunal counts data provided the sea surface temperature estimates. Sea surface salinity estimates were based on the oxygen isotope composition of Globigerinoides ruber (white). Additionally, the abundance record of the planktonic foraminifera Globorotalia truncatulinoides (right) was used as a proxy for vertical mixing of surface waters. Sea surface temperature estimates suggest a relative stability of the area during the last 30 kyr. However, significant changes in the isotopic composition of G. ruber (white) suggest that the isotopic signal is dominated by the influence of sea surface salinity changes. The observed salinity changes are related to both the local hydrological balance and global circulation. Orbital forcing and sea surface salinity changes were responsible for considerable changes in the stability of the upper water column and consequently in the depth of the mixed layer, as indicated by the abundance record of G. truncatulinoides (right).  相似文献   

13.
In the western United States, more than 79 000 km2 has been converted to irrigated agriculture and urban areas. These changes have the potential to alter surface temperature by modifying the energy budget at the land–atmosphere interface. This study reports the seasonally varying temperature responses of four regional climate models (RCMs) – RSM, RegCM3, MM5-CLM3, and DRCM – to conversion of potential natural vegetation to modern land-cover and land-use over a 1-year period. Three of the RCMs supplemented soil moisture, producing large decreases in the August mean (− 1.4 to − 3.1 °C) and maximum (− 2.9 to − 6.1 °C) 2-m air temperatures where natural vegetation was converted to irrigated agriculture. Conversion to irrigated agriculture also resulted in large increases in relative humidity (9% to 36% absolute change). Modeled changes in the August minimum 2-m air temperature were not as pronounced or consistent across the models. Converting natural vegetation to urban land-cover produced less pronounced temperature effects in all models, with the magnitude of the effect dependent upon the preexisting vegetation type and urban parameterizations. Overall, the RCM results indicate that the temperature impacts of land-use change are most pronounced during the summer months, when surface heating is strongest and differences in surface soil moisture between irrigated land and natural vegetation are largest.  相似文献   

14.
We correlate Upper Pleistocene glacial and fluvial deposits of the Cinca and Gállego River valleys (south central Pyrenees and Ebro basin, Spain) using geomorphic position, luminescence dates, and time-related trends in soil development. The ages obtained from glacial deposits indicate glacial periods at 85 ± 5 ka, 64 ± 11 ka, and 36 ± 3 ka (from glacial till) and 20 ± 3 ka (from loess). The fluvial drainage system, fed by glaciers in the headwaters, developed extensive terrace systems in the Cinca River valley at 178 ± 21 ka, 97 ± 16 ka, 61 ± 4 ka, 47 ± 4 ka, and 11 ± 1 ka, and in the Gállego River valley at 151 ± 11 ka, 68 ± 7 ka, and 45 ± 3 ka. The times of maximum geomorphic activity related to cold phases coincide with Late Pleistocene marine isotope stages and Heinrich events. The maximum extent of glaciers during the last glacial occurred at 64 ± 11 ka, and the terraces correlated with this glacial phase are the most extensive in both the Cinca (61 ± 4 ka) and Gállego (68 ± 7 ka) valleys, indicating a strong increase in fluvial discharge and availability of sediments related to the transition to deglaciation. The global Last Glacial Maximum is scarcely represented in the south central Pyrenees owing to dominantly dry conditions at that time. Precipitation must be controlled by the position of the Iberian Peninsula with respect to the North Atlantic atmospheric circulation system. The glacial systems and the associated fluvial dynamic seem sensitive to 1) global climate changes controlled by insolation, 2) North Atlantic thermohaline circulation influenced by freshwater pulses into the North Atlantic, and 3) anomalies in atmospheric circulation in the North Atlantic controlling precipitation on the Iberian Peninsula. Our scenario of glacial and fluvial evolution during the Late Pleistocene in northern Spain could be extrapolated to other glaciated mountainous areas in southern Europe.  相似文献   

15.
A palynological study of oil exploration wells in the Gippsland Basin southeastern Australia has provided a record of southern high latitude climate variability for the last 12 million years of the Cretaceous greenhouse world. During this time, the vegetation was dominated by a cool to temperate flora of Podocarpaceae, Proteaceae and Nothofagidites spp. at a latitude of 60°S. Milankovitch forced cyclic alternations from drier to wetter climatic periods caused vegetation variability from 72 to 77 Ma. This climate change was probably related to the waxing and waning of ephemeral (100 ky) small ice sheets in Antarctica during times of insolation minima and maxima. Drying and cooling after 72 Ma culminated from 68 to 66 Ma, mirroring trends in global δ18O data. Quantitative palynofloral analyses have the potential to provide realistic proxies for small-scale climate variability in the predominantly ice-free Late Cretaceous.  相似文献   

16.
In this study, more than 13 yr of merged altimetry sea level anomalies (SLA) data were used to analyze the trends of sea level variations in the South China Sea (SCS). The result shows that the mean sea level over the SCS has a rise rate of 11.3 mm/yr during 1993–2000 and a fall rate of 11.8 mm/yr during 2001–2005. The geographical distribution of the sea level variations over the SCS is asymmetric with a pronounced variation existing in the deep water. The trends of thermosteric sea level variations were also examined using Ishii data and MITgcm assimilation data. The result indicates that the thermal change of the upper layer of the SCS has a significant contribution to the sea level variations. Heat budget analysis suggests that heat advection may be a key factor influencing the thermal change. Apart from thermal contribution, the effect of water exchange on the sea level variations was also studied.  相似文献   

17.
Cryospheric change in China   总被引:16,自引:0,他引:16  
This paper provides an overview of the current status of the cryosphere in China and its changes. Up-to-date statistics of the cryosphere in China are summarized based on the latest available data. There are 46,377 glaciers in China, covering an area of 59,425 km2. The glacier ice reserve is estimated to be about 5600 km3 and the annual glacier runoff is about 61.6 × 109 m3. The continuous snow cover extent (> 60 days) in China is about 3.4 × 106 km2 and the maximum water equivalent is 95.9 × 109 m3 yr− 1. The permafrost area in China is about 1.72 × 106 km2. The total ground ice reserve on the Qinghai–Tibetan Plateau is estimated to be about 10,923 km3. Recent investigations indicated that glacier areas in China have shrunk about 2–10% over the past 45 yr. Total glacier area has receded by about 5.5%. Snow mass has increased slightly. Permafrost is clearly degrading, as indicated by shrinking areas of permafrost, increasing depth of the active layer, rising of lower limit of permafrost, and thinning of the seasonal frost depth. Some models predict that glacier area shrinkage could be as high as 26.7% in 2050, with glacier runoff increasing until its maximum in about 2030. Although snow mass shows an increasing trend in western China, in eastern China the trend is toward decreasing snow mass, with increasing interannual fluctuations. Permafrost degradation is likely to continue, with one-third to one-half of the permafrost on the Qinghai–Tibetan Plateau anticipated to degrade by 2100. Most of the high-temperature permafrost will disappear by then. The permafrost in northeastern China will retreat further northward.  相似文献   

18.
Air and ground temperatures measured in Eastern Siberia has been compiled and analyzed. The analysis of mean annual air temperatures measured at 52 meteorological stations within and near the East-Siberian transect during the period from 1956 through 1990 demonstrates a significant and statistically significant (at 0.05 level) positive trend ranging from 0.065 to 0.59 °C/10 yr. A statistically significant (at 0.05 level) positive trend was also observed in mean annual ground temperatures for the same period. The permafrost temperature reflects changes in air temperature on a decadal time scale much better than on an interannual time scale. Generally, positive trends in mean annual ground temperatures are slightly smaller in comparison with trends in mean annual air temperatures, except for several sites where the discordance between the air and ground temperatures can be explained by the winter snow dynamics. The average trend for the entire region was 0.26 °C/10 yr for ground temperatures at 1.6 m depth and 0.29 °C/10 yr for the air temperatures. The most significant trends in mean annual air and ground temperatures were in the southern part of the transect, between 55° and 65° N. Numerical modeling of ground temperatures has been performed for Yakutsk and Tiksi for the last 70 yr. Comparing the results of these calculations with a similar time series obtained for Fairbanks and Barrow in Alaska shows that similar variations of ground temperatures took place at the same time periods in Yakutsk and Fairbanks, and in Tiksi and Barrow. The decadal and longer time scale fluctuations in permafrost temperatures were pronounced in both regions. The magnitudes of these fluctuations were on the order of a few degrees centigrade. The fluctuations of mean annual ground temperatures were coordinated in Fairbanks and Yakutsk, and in Barrow and Tiksi. However, the magnitude and timing of these fluctuations were slightly different for each of the sites.  相似文献   

19.
The importance of orbital forcing and ocean impact on the Asian summer monsoon in the Holocene is investigated by comparing simulations with a fully coupled ocean–atmosphere general circulation model (FOAM) and with the atmospheric component of this model (FSSTAM) forced with prescribed modern sea-surface temperatures (SSTs). The results show: (1) the ocean amplifies the orbitally-induced increase in African monsoon precipitation, makes somewhat increase in southern India and damps the increase over the southeastern China. (2) The ocean could change the spatial distribution and local intensity of the orbitally-induced latitudinal atmospheric oscillation over the southeastern China and the subtropical western Pacific Ocean. (3) The orbital forcing mostly enhances the Asian summer precipitation in the FOAM and FSSTAM simulations. However, the ocean reduces the orbitally-induced summer precipitation and postpones the time of summer monsoon onset over the Asian monsoon region. (4) The orbital forcing considerably enhances the intensity of upper divergence, which is amplified by ocean further, over the eastern hemisphere. But the divergence is weaker in the FOAM simulations than in the FSSTAM simulations when the orbital forcing is fixed. (5) The orbital forcing can enhance the amplitude of precipitation variability over the subtropical Africa, the southeastern China and northwestern China, inversely, reduce it over central India and North China in the FOAM and FSSTAM simulations. The ocean obviously reduces the amplitude of precipitation variability over most of the Asian monsoon regions in the fixed orbital forcing simulations. (6) The areas characterized by increased summer precipitation in the long-term mean are mostly characterized by increased amplitude of short-term variability, whereas regions characterized by decreased precipitation are primarily characterized by decreased amplitude of short-term variability. However, the influences of orbital forcing or dynamical ocean on regional climate depend on the model.  相似文献   

20.
Pathfinder AVHHR Land (PAL) database has been used for the retrieval of Land Surface Temperature (LST) over South America, which, along with NDVI parameter, will allow the studying of the evolution of the vegetation between July 1981 and September 2001. To this end, a classification has been built, based on PAL NDVI and Reanalysis air temperature at 2 m height data. This classification takes into account both vegetation and thermal patterns, and has been validated by a comparison with CAZALAC's map of arid zones (Centro del Agua para Zonas Áridas y semiáridas de Latino-América y el Caribe), as well as with Global Land Cover Characteristics' classification built by the USGS (United States Geological Survey). The principal advantage of this new classification is that it is a dynamic classification, that considers the actual state of the cover, since no assumption on land occupation is made for its construction. LST and NDVI yearly and long-term evolutions are analyzed with the help of this classification. Yearly evolutions are compared with Reanalysis air temperature at 2 m height and precipitation, and show good concordance. LST long-term evolution shows to be strongly affected by satellite changes and orbital drift. These latter require an adequate correction to allow deeper study. On the other hand, NDVI does not show this trend, but aerosol absorption from Mount Pinatubo's eruption in June 1991 corrupts temporarily the data. These results also validate the above-mentioned classification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号