首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Applied Geochemistry》2006,21(4):547-562
Reducing the concentration of dissolved organic C (DOC) in water is one of the main challenges in the process of artificial groundwater recharge. At the Tuusula waterworks in southern Finland, surface water is artificially recharged into an esker by pond infiltration and an equal amount of groundwater is daily pumped from the aquifer. This groundwater study was conducted to consider the role of redox processes in the decomposition of DOC. The isotopic composition of dissolved inorganic C (δ13CDIC) in the recharged water was used as a tracer for redox reactions. The isotopic composition of O and H in water was determined in order to calculate mixing ratios between the local groundwater and the infiltrated surface water. Three distinct processes in the reduction of the DOC content were traced using isotopic methods and concentration analyses of DIC and DOC: (1) the decomposition of DOC, (2) adsorption of DOC on mineral matter, and (3) the dilution of artificially recharged water by mixing with local groundwater. The largest decrease (44%) in the DOC content occurred during the early stage of subsurface flow, within 350 m of the infiltration ponds. The reduction of DOC was accompanied by an equal increase in DIC and a significant drop in δ13CDIC. This change is attributed to the oxidative decomposition of DOC. A further 23% decrease in DOC is attributed to adsorption and a final drop of 14% to dilution with local groundwater.  相似文献   

2.
Relative recharge areas are evaluated using geochemical and isotopic tools, and inverse modeling. Geochemistry and water quality in springs discharging from a volcanic aquifer system in Guatemala are related to relative recharge area elevations and land use. Plagioclase feldspar and olivine react with volcanically derived CO2 to produce Ca-montmorillonite, chalcedony and goethite in the groundwater. Alkalinity, Mg, Ca, Na, and SiO2(aq) are produced, along with minor increases in Cl and SO4 concentrations. Variations in groundwater δD and δ18O values are attributed to recharge elevation and used in concert with geochemical evolution to distinguish local, intermediate, and regional flow systems. Springs with geochemically inferred short flow paths provided useful proxies to estimate an isotopic gradient for precipitation (??.67 δ18O/100?m). No correlation between spring discharge and relative flow-path length or interpreted recharge elevation was observed. The conceptual model was consistent with evidence of anthropogenic impacts (sewage and manure) in springs recharged in the lower watershed where livestock and humans reside. Spring sampling is a low-budget approach that can be used to develop a useful conceptual model of the relative scale of groundwater flow (and appropriate watershed protection areas), particularly in volcanic terrain where wells and boreholes are scarce.  相似文献   

3.
With the increased demand for groundwater resulting from fast demographic growth, accelerated urbanization, economic and agricultural activity diversification, and the increase of per capita consumption, ground water resources, in particular in coastal regions, remain relatively low, compared to demand. The groundwater quality and piezometric variations result mainly from intensive exploitation, agricultural activities and the intrusion of seawater. This phenomenon is observed mostly in semi-arid areas, such as the oriental Sahel of Tunisia, where an apparent reduction in rainfall in recent years can be seen. Groundwater becomes overexploited especially as its natural recharge by rainwater does not succeed in maintaining the hydrologic balance. The imbalance between water demand and resources induces the degradation of the water quality. In such a case, the artificial recharge of water-table aquifers by water from dams is a credible alternative to improve the hydrodynamic and physicochemical conditions of the groundwater. Like most coastal aquifers, the Teboulba water-table aquifer is threatened by overexploitation for at least three decades. This threat appears by a considerable piezometric level drop and by water salinisation, due to seawater intrusion. Given this alarming situation, since 1971, artificial recharge through wells with surface water from a dam was tested in order to restore the water levels and to improve water quality. The piezometric and chemical surveys of the Teboulba aquifer permitted one to describe the temporal and spatial piezometric and geochemical conditions of the aquifer and to show the effect of the artificial recharge. Indeed, the artificial recharge undertaken since 1971 made the geochemical and piezometric conditions of the Teboulba aquifer improve. This example is a rare, well-documented case-study of the benefits of artificial recharge in a coastal aquifer, over the long term.  相似文献   

4.
The southwestern Chad basin is a semi-arid region with annual rainfall that is generally less than 500 mm and over 2,000 mm of evapotranspiration. Surface water in rivers is seasonal, and therefore groundwater is the perennial source of water supply for domestic and other purposes. Stable isotope has been measured for rainwater, surface water and groundwater samples in this region. The stable isotope data have been used to understand the inter-relationships between the rainwater, surface water, shallow and deep groundwater of this region. This is being used in a qualitative sense to demonstrate present day recharge to the groundwater. Stable isotope in rainwater for the region has an average value of –4‰ δ18O and –20‰ δ2H. Surface water samples from rivers and Lake Chad fall on the evaporation line of this average value. The Upper Zone aquifer water samples show stable isotope signal with a wide range of values indicating the complex character of the aquifer Zone with three distinguishable units. The wide range of values is attributable to waters from individual unit and/or mixture of waters of different units. The Middle and Lower aquifers Zones’ waters show similar stable isotopes values, probably indicating similarity in timing and/or mechanism of recharge. These are palaeowaters probably recharged under a climate that is different from today. The Upper Zone aquifer is presently being recharged as some of its waters show stable isotope compositions similar to those of average rainfall waters of the region.  相似文献   

5.
Since July 2002, tertiary treated wastewater has been artificially recharged through two infiltration ponds in the dunes of the Belgian western coastal plain. This has formed a lens of artificially recharged water in the dunes’ fresh water lens. Recharged water is recovered by extraction wells located around the ponds. Hydraulic aspects of the artificial recharge and extraction are described using field observations such as geophysical borehole loggings and a tracer test. Borehole logs indicate recharged water up to 20 m below surface, whereas the tracer test gives field data about the residence times of the recharged water. Furthermore, a detailed solute transport model was made of the area surrounding the ponds. Groundwater flow, capture zone, residence times and volume of recharged water in the aquifer are calculated. This shows that the residence time varies between 30 days and 5 years due to the complex flow pattern. The extracted water is a mix of waters with different residence times and natural groundwater, assuring a relatively stable water quality of the extracted water.  相似文献   

6.
Runoff has increased many fold in urban areas due to increase in paved areas, training of streams and construction of storm water drains. The recharge is therefore continuously decreasing; resulting in depleting groundwater reserves beneath large cities, especially those situated on water divides. In order to reduce surface runoff and replenish groundwater many advocate artificial recharge through rainwater harvesting. Conventionally, detailed hydrogeological survey is needed by expert hydrogeologists to suggest suitable sites for rooftop rainwater harvesting and storage in the subsurface aquifers. Pune, a rapidly growing city, is under severe stress due to shortage of water in some areas. An effort has been made in this study to identify areas suitable for rooftop rainwater harvesting by integrating traditional hydrogeological survey data with the help of Remote Sensing and Geographic Information System. This endeavour has led to develop a program called SLUGGER-DQL which helps to identify potential sites for rooftop rainwater harvesting and artificial recharge. The program is open ended and several other factors controlling potential recharge can be easily added on. Based on the results of the present study, potential sites for rainwater harvesting and artificial recharge have been identified in the Pune University-Shivajinagar-Kothrud area. The present paper demonstrates the utility of traditional hydrogeological surveys combined with modern techniques in solving problems related to urban hydrogeology and town planning.  相似文献   

7.
8.
Groundwater levels in hard-rock areas in India have shown very large declines in the recent past. The situation is becoming more critical due to a paucity of rainfall, limited surface water resources and an increasing pattern of groundwater extraction in these areas. Consequently, the Ground Water Department with the aid of World Bank has implemented the water structuring programme to mitigate groundwater scarcity and to develop a viable solution for sustainable development in the region. The present study has been undertaken to assess the impact of artificial groundwater recharge structures in the hard-rock area of Rajasthan, India. In this study groundwater level data (pre-monsoon and post-monsoon) of 85 dug-wells are used, spread over an area of 413.59 km2. The weathered and fractured gneissic basement rocks act as major aquifer in the area. Spatial maps for pre- and post-monsoon groundwater levels were prepared using the kriging interpolation technique with best fitted semi-variogram models (Spherical, Exponential and Gaussian). The groundwater recharge is calculated spatially using the water level fluctuation method. The entire study period (2004–2011) is divided into pre- (2004–2008) and post-intervention (2009–2011) periods. Based on the identical nature of total monsoon rainfall, two combinations of average (2007 and 2009) and more than average (2006 and 2010) rainfall years are selected from the pre- and post-intervention periods for further comparisons. All of the water harvesting structures are grouped into the following categories: as anicuts (masonry overflow structure); percolation tanks; subsurface barriers; and renovation of earthen ponds/nadis. A buffer of 100 m around the intervention site is taken for assessing the influence of these structures on groundwater recharge. The relationship between the monsoon rainfall and groundwater recharge is fitted by power and exponential functions for the periods of 2004–2008 and 2008–2011 with R 2 values of 0.95 and 0.98, respectively. The average groundwater recharge is found to be 18% of total monsoon rainfall prior to intervention and it became 28% during the post-intervention period. About 70.9% (293.43 km2) of the area during average rainfall and more than 95% (396.26 km2) of the area during above-average rainfalls show an increase in groundwater recharge after construction of water harvesting structures. The groundwater recharge pattern indicates a positive impact within the vicinity of intervention sites during both average and above-average rainfall. The anicuts are found to be the most effective recharge structures during periods of above-average rainfall, while subsurface barriers are responded well during average rainfall periods. In the hard-rock terrain, water harvesting structures produce significant increases in groundwater recharge. The geo-spatial techniques that are used are effective for evaluating the response of different artificial groundwater recharge techniques.  相似文献   

9.
The groundwater flow systems and chemistry in the deep part of the coastal area of Japan have attracted attention over recent decades due to government projects such as geological disposal of radioactive waste. However, the continuous groundwater flow system moving from the shallow to deep parts of the sedimentary soft rock has not yet been characterized. Therefore, the Cl, δD and δ18O values of the pore water in the Horonobe coastal area in Hokkaido, Japan, were measured to 1,000 m below the ground surface, and a vertical profile of the pore-water chemistry was constructed to assist in elucidating groundwater circulation patterns in the coastal area. The results show that the groundwater flow regime may be divided into five categories based on groundwater age and origin: (1) fresh groundwater recharged by modern rainwater, (2) fresh groundwater recharged by paleo rainwater during the last glacial age, (3) low-salinity groundwater recharged during the last interglacial period, (4) mixed water in a diffusion zone, and (5) connate water consisting of paleo seawater. These results suggest that the appearance of hydrological units is not controlled by the boundaries of geological formations and that paleo seawater is stored in younger Quaternary sediments.  相似文献   

10.
A major problem of the islanders is the availability of fresh water for drinking purpose. Groundwater is the only source of fresh water for the islanders. The demand for groundwater is increasing very year due to growing population and urbanization. A proper understanding of the groundwater condition is important in order to meet this increasing demand and to formulate future development and management strategies. It is in this context, principal hydrogeologic units; water table fluctuation pattern, general groundwater potential, existing groundwater withdrawal structures and draft, water quality, etc. have been studied in an elliptical shape Andrott Island of Union Territory of Lakshadweep, India, through field investigation and secondary data collection. Groundwater occurs under phreatic condition and seawater is in hydraulic continuity with the groundwater as evidenced by the tidal influence in almost all the wells. Groundwater level fluctuation due to seasonal variation varies from 0 to 0.542 m depending on the distance of the well from the coast. Depth to groundwater level varies from less than 1.234 to 3.520 m depending on the topography. Groundwater level fluctuation is due to the combination of factors like rainfall, tidal activities, sub-surface runoff, and draft. Large diameter dug wells are the main groundwater extraction structures in this island. There are 2,143 dug wells with almost each family having its own well and the density of the dug wells is about 437/km2. The stage of groundwater development is estimated as 37% and hence “Safe” for further groundwater development in this island. However, considering the very limited fresh-water resources and also the growing demand for groundwater, various management strategies such as rainwater harvesting, artificial recharge of groundwater, public participation in water conservation and wise use of groundwater, etc., have been suggested.  相似文献   

11.
Stable isotope data, a dissolved gas tracer study, groundwater age dating, and geochemical modeling were used to identify and characterize the effects of introducing low-TDS recharge water in a shallow aerobic aquifer affected by a managed aquifer recharge project in California’s San Joaquin Valley. The data all consistently point to a substantial degree of mixing of recharge water from surface ponds with ambient groundwater in a number of nearby wells screened at depths above 60 m below ground surface. Groundwater age data indicate that the wells near the recharge ponds sample recently recharged water, as delineated by stable O and C isotope data as well as total dissolved solids, in addition to much older groundwater in various mixing proportions. Where the recharge water signature is present, the specific geochemical interactions between the recharge water and the aquifer material appear to include ion exchange reactions (comparative enrichment of affected groundwater with Na and K at the expense of Ca and Mg) and the desorption of oxyanion-forming trace elements (As, V, and Mo), possibly in response to the elevated pH of the recharge water.  相似文献   

12.
Large karstic springs in east-central Florida, USA were studied using multi-tracer and geochemical modeling techniques to better understand groundwater flow paths and mixing of shallow and deep groundwater. Spring water types included Ca–HCO3 (six), Na–Cl (four), and mixed (one). The evolution of water chemistry for Ca–HCO3 spring waters was modeled by reactions of rainwater with soil organic matter, calcite, and dolomite under oxic conditions. The Na–Cl and mixed-type springs were modeled by reactions of either rainwater or Upper Floridan aquifer water with soil organic matter, calcite, and dolomite under oxic conditions and mixed with varying proportions of saline Lower Floridan aquifer water, which represented 4–53% of the total spring discharge. Multiple-tracer data—chlorofluorocarbon CFC-113, tritium (3H), helium-3 (3Hetrit), sulfur hexafluoride (SF6)—for four Ca–HCO3 spring waters were consistent with binary mixing curves representing water recharged during 1980 or 1990 mixing with an older (recharged before 1940) tracer-free component. Young-water mixing fractions ranged from 0.3 to 0.7. Tracer concentration data for two Na–Cl spring waters appear to be consistent with binary mixtures of 1990 water with older water recharged in 1965 or 1975. Nitrate-N concentrations are inversely related to apparent ages of spring waters, which indicated that elevated nitrate-N concentrations were likely contributed from recent recharge.The online version of the original article can be found at  相似文献   

13.
The continuous abstraction of groundwater from Arusha aquifers in northern Tanzania has resulted in a decline in water levels and subsequent yield reduction in most production wells. The situation is threatening sustainability of the aquifers and concise knowledge on the existing groundwater challenge is of utmost importance. To gain such knowledge, stable isotopes of hydrogen and oxygen, and radiocarbon dating on dissolved inorganic carbon (DIC), were employed to establish groundwater mean residence time and recharge mechanism.14C activity of DIC was measured in groundwater samples and corrected using a δ13C mixing method prior to groundwater age dating. The results indicated that groundwater ranging from 1,400 years BP to modern is being abstracted from deeper aquifers that are under intensive development. This implies that the groundwater system is continuously depleted due to over-pumping, as most of the sampled wells and springs revealed recently recharged groundwater. High 14C activities observed in spring water (98.1?±?7.9 pMC) correspond with modern groundwater in the study area. The presence of modern groundwater suggests that shallow aquifers are actively recharged and respond positively to seasonal variations.  相似文献   

14.
Large karstic springs in east-central Florida, USA were studied using multi-tracer and geochemical modeling techniques to better understand groundwater flow paths and mixing of shallow and deep groundwater. Spring water types included Ca–HCO3 (six), Na–Cl (four), and mixed (one). The evolution of water chemistry for Ca–HCO3 spring waters was modeled by reactions of rainwater with soil organic matter, calcite, and dolomite under oxic conditions. The Na–Cl and mixed-type springs were modeled by reactions of either rainwater or Upper Floridan aquifer water with soil organic matter, calcite, and dolomite under oxic conditions and mixed with varying proportions of saline Lower Floridan aquifer water, which represented 4–53% of the total spring discharge. Multiple-tracer data—chlorofluorocarbon CFC-113, tritium (3H), helium-3 (3Hetrit), sulfur hexafluoride (SF6)—for four Ca–HCO3 spring waters were consistent with binary mixing curves representing water recharged during 1980 or 1990 mixing with an older (recharged before 1940) tracer-free component. Young-water mixing fractions ranged from 0.3 to 0.7. Tracer concentration data for two Na–Cl spring waters appear to be consistent with binary mixtures of 1990 water with older water recharged in 1965 or 1975. Nitrate-N concentrations are inversely related to apparent ages of spring waters, which indicated that elevated nitrate-N concentrations were likely contributed from recent recharge.An erratum to this article can be found at  相似文献   

15.
Climatic instability during the late Pleistocene has been reflected in the pattern of groundwater recharge. This report summarizes palaeoclimate knowledge during the late Weichselian in Europe. During this period the majority of northern Europe was covered by thick ice sheets and permafrost, preventing aquifers from recharging. In contrast, southern Europe was generally free of these palaeoclimatic features. Palaeoclimatic information has been combined with isotope data to better understand the palaeorecharge conditions and recharge timing across the European continent. The 18O and 2H relationship shows latitudinal plus climatic influences. Radiocarbon data show that while southern European aquifers have generally been recharged continuously during the last 40,000 years, northern European aquifers typically show a recharge gap during the Last Glacial Maximum. Areas that underwent continuous recharge during the entire late Pleistocene period can also be distinguished from areas where recharge to aquifers was prevented during the Last Glacial Maximum. Finally, several examples are presented of melt-water recharge or subglacial recharge. The identification of such diversity in the groundwater palaeorecharge in Europe is of great importance for modellers developing management schemes for groundwater resources.  相似文献   

16.
High water demand for domestic use in Douala with over 3 million inhabitants is met mainly by shallow groundwater. Field measurements and water sampling in January 2015 were carried out to examine the major controls on the groundwater composition and spatial view of ions in the water, timing of recharge and link between the recharge process and quality of the water. Fifty-two water samples were analysed for major ions and stable hydrogen and oxygen isotopes. Low pH values (3.61–6.92) in the groundwater indicated an acidic aquifer; thus, prone to acidification. The dominant water type was Na–Cl. Nitrate, which exceeded the WHO guide value of 50 mg/l in 22% of the groundwater, poses a health problem. Mass ratios of Cl?/Br? in the water ranged from 54 to 3249 and scattered mostly along the mixing lines between dilute waters, septic-tank effluent and domestic sewage. A majority of the samples, especially the high NO3 ? shallow wells, clustered around the septic-tank effluent-end-member indicating high contamination by seepage from pit latrines; hence, vulnerable to pollution. Stable isotopes in the groundwater indicated its meteoric origin and rapid infiltration after rainfall. The δ18O values showed narrow ranges and overlaps in rivers, springs, open wells and boreholes. These observations depict hydraulic connectivity, good water mixing and a homogeneous aquifer system mainly receiving local direct uniform areal recharge from rainfall. The rapid and diffused recharge favours the leaching of effluent from the pit toilets into the aquifer; hence, the high NO3 ? and Cl? in shallow wells. Silicate weathering, ion exchange and leaching of waste from pit toilets are the dominant controls on the groundwater chemistry. Drilling of deep boreholes is highly recommended for good-quality water supply. However, due the hydraulic connection to the shallow aquifer, geochemical modelling of future effects of such an exploitation of the deeper aquifer should support groundwater management and be ahead of the field actions.  相似文献   

17.
Groundwater is typically the only water source in arid regions, and its circulation processes should be better understood for rational resource exploitation. Stable isotopes and major ions were investigated in the northeastern Tengger Desert, northern China, to gain insights into groundwater recharge and evolution. In the northern mountains, Quaternary unconsolidated sediments, exposed only in valleys between hills, form the main aquifer, which is mainly made of aeolian sand and gravel. Most of the mountain groundwater samples plot along the local meteoric water line (LMWL), with a more depleted signature compared to summer precipitation, suggesting that mountain groundwater was recharged by local precipitation during winter. Most of the groundwater was fresh, with total dissolved solids less than 1 g/L; dominant ions are Na+, SO4 2? and Cl?, and all mineral saturation indices are less than zero. Evaporation, dissolution and cation exchange are the major hydrogeochemical processes. In the southern plains, however, the main aquifers are sandstone. The linear regression line of δD and δ 18O of groundwater parallels the LMWL but the intercept is lower, indicating that groundwater in the plains has been recharged by ancient precipitation rather than modern. Both calcite and dolomite phases in the plains groundwater are close to saturation, while gypsum and halite can still be dissolved into the groundwater. Different recharge mechanisms occur in the northern mountains and the southern plains, and the hydraulic connection between them is weak. Because of the limited recharge, groundwater exploitation should be limited as much as possible.  相似文献   

18.
A drilling project was carried out in Syria to assess the potential of the deep groundwater resources of the Cretaceous aquifer, composed of Cenomanian-Turonian limestones and dolomites. In this context, isotope (14C, 3H, δ13C, δ18O, δ2H) and hydrochemical analyses were performed on wells in and around the Aleppo and Steppe basins. The interpretation includes complementary results from published and unpublished literature. The results provide evidence that many new wells pump mixed groundwater from the Cretaceous aquifer and the overlying Paleogene aquifer. Radiocarbon measurements confirmed dominating Pleistocene groundwater in the Cretaceous aquifer and mainly Holocene groundwater in the Paleogene aquifer. Most groundwater in the Cretaceous aquifer seems to be recharged in the western limestone ridges, stretching from Jebel az Zawiyah (south of Idlep) via Jebel Samane (south of Afrin and A’zaz) to the region north of Aleppo, and in the Northern Palmyrides mountain belt. Some recharge also occurs around the basalt plateau of the Jebel al Hass, south east of Aleppo. It is concluded that the Taurus Mountains and the Euphrates River do not recharge the Cretaceous aquifer. The sources of recharge seem to be occasionally occurring intensive winter storms that approach from Siberia.  相似文献   

19.
In southern Iran’s Gareh Bygone Plain, water-supply qanats in four mixed farming communities were desiccated by over-pumping of illegal dug wells throughout the area. Emergency situations developed, resulting in city-ward migration. Since 1983, 193 million m3 of water has been supplied to those communities by floodwater spreading (FWS) to facilitate spate irrigation of sandy rangeland (2,034 ha) and artificial recharge of groundwater (ARG), of which 76 % has recharged the aquifer. This resulted in a reverse migration of the population. The irrigated area in the 2010–2011 growing season increased 13.2 fold when compared to the pre-FWS period, and year-round forage for about 700 sheep has been provided since 1991. The ARG is a logical alternative to building large dams in Iran; 420,000 km2 of coarse-grained alluvium provides capacity to store 5,000 km3 of water, representing more than ten times the annual precipitation of the whole country. As the equivalent cost for building dams to accommodate that volume is estimated at US$12.5?×?1012, the potential value of the alluvium may be realized. ARG on the recharge areas of 33,000 of the desiccated qanats eventually could rejuvenate them. As agricultural commodities absorb 19 % of the monetary value of Iran’s imports, and ARG activities could supply the water to produce them, alluvium is even more valuable than oil, which provides foreign exchange. More importantly, ARG on 140,000 km2 of the alluvium could strengthen the capacity to adapt to droughts and reduce the number and impact of water-related emergency situations.  相似文献   

20.
屋顶雨水回灌裂隙岩溶含水层连通示踪试验   总被引:1,自引:0,他引:1  
雨水回灌后对岩溶水的影响分析和效果需要对回灌井和下游的观测井监测数据说明。由于岩溶含水层中岩溶发育极不均匀,在测定地下水位并判定出地下水流向的基础上,连通示踪试验是选择与回灌井相对应的观测井的有效办法。用氯化钠作为示踪剂,监测不同测井不同埋深地下水电导率随时间变化的方法确定了岩溶水观测井选址、岩溶含水层的结构及水文地质条件。示踪试验结果表明,3#观测井(西院井)可用来监测雨水回灌效果,并计算出该地区的地下水势流速在9 m/h~20 m/h之间。该成果对北方地区岩溶含水层回灌和环境评价具有重要的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号