首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dating of young (<1 Ma) geological events has long been a challenge for geochronologists. Combining (U‐Th)/He with U‐Pb or U‐Th‐disequilibrium dating methods offers a unique dating tool that can address this important period. We present a new methodology that combines U‐Pb LA‐ICP‐MS and (U‐Th)/He dating of zircon and use it to date two Pleistocene marker tephras (A1Pm and DPm) from the Omachi Tephra suite (Japan). A1Pm and DPm yield U‐Pb ages in the range of 350–850 and ~140–630 ka, respectively, documenting protracted periods of zircon crystallisation (100's of k.y.) prior to eruption. (U‐Th)/He ages constrain the eruption ages of the A1Pm and DPm tephras to 375 ± 13 and 97.1 ± 7.3 ka, respectively, and are in agreement with published estimates. This study demonstrates the potential of combined zircon U‐Pb LA‐ICP‐MS and (U‐Th)/He dating to constrain magmatic and eruption events in the critical ~100 ka–1 Ma interval.  相似文献   

2.
In this study (U‐Th)/He dating of the Penglai zircons, which occur as abundant megacrysts in Neogene alkaline basalts in northern Hainan Province, south‐eastern China, was undertaken. A weighted mean age of 4.06 ± 0.35 Ma (2s) with a mean square weighted deviation (MSWD) of 1.79 was obtained from eighteen fragments of four zircon megacrysts using single‐crystal laser fusion He determinations and the U‐Th isotope dilution (ID) method. The (U‐Th)/He ages are consistent, homogeneous and systematically slightly younger than the preferred 206Pb/238U age of 4.4 ± 0.1 Ma (95% confidence interval) determined by ID‐TIMS and subsequently published U‐Pb results. The U‐Pb isotopic system in zircon has a high closure temperature of ~ 900 °C, and the preferred U‐Pb age may record both the time since eruption and the zircon residence time in the magma chamber. In contrast, the closure temperature of the zircon (U‐Th)/He system is ~ 190 °C and the zircon megacrysts were brought quickly to the surface by the host basaltic magma. Thus, the (U‐Th)/He age represents the timing of the eruption. Based on the unlimited quantity, large grain size, mostly weak broad zoning, rapid cooling and homogenous (U‐Th)/He ages, we consider the Penglai zircons suitable for use as a reference material in (U‐Th)/He isotope geochronology.  相似文献   

3.
Independent geochronological and thermal modelling approaches are applied to a biostratigraphically exceptionally well‐controlled borehole, Alcsútdoboz‐3 (Ad‐3), in order to constrain the age of Cenozoic geodynamic events in the western Pannonian Basin and to test the efficacy of the methods for dating volcanic rocks. Apatite fission track and zircon U–Pb data show two volcanic phases of Middle Eocene (43.4–39.0 Ma) and Early Oligocene (32.72 ± 0.15 Ma) age respectively. Apatite (U–Th)/He ages (23.8–14.8 Ma) and independent thermal and subsidence history models reveal a brief period of heating to 55–70 °C at ~17 Ma caused by an increased heat‐flow related to crustal thinning and mantle upwelling. Our results demonstrate that, contrary to common perception, the apatite (U–Th)/He method is likely to record ‘apparent’ or ‘mixed’ ages resulting from subsequent thermal events rather than ‘cooling’ or ‘eruption’ ages directly related to distinct geological events. It follows that a direct conversion of ‘apparent’ or ‘mixed’ (U‐Th)/He ages into cooling, exhumation or erosion rates is incorrect.  相似文献   

4.
Titanite is a common accessory mineral that preferentially incorporates considerable amounts of U and light rare earth elements in its structure, making it a versatile mineral for in situ U‐Pb dating and Sm‐Nd isotopic measurement. Here, we present in situ U‐Pb ages and Sm‐Nd isotope measurement results for four well‐known titanite reference materials (Khan, BLR‐1, OLT1 and MKED1) and eight titanite crystals that could be considered potential reference material candidates (Ontario, YQ‐82, T3, T4, TLS‐36, NW‐IOA, Pakistan and C253), with ages ranging from ~ 20 Ma to ~ 1840 Ma. Results indicate that BLR‐1, OLT1, Ontario, MKED1 and T3 titanite have relatively homogeneous Sm‐Nd isotopes and low common Pb and thus can serve as primary reference materials for U‐Pb and Sm‐Nd microanalysis. YQ‐82 and T4 titanite can be used as secondary reference materials for in situ U‐Pb analysis because of their low common Pb. However, internal structures and mineral inclusions in YQ‐82 will require careful selection of suitable target domains. Pakistan titanite is almost concordant with an age of 21 Ma and can be used as a reference material when dating Cenozoic titanite samples.  相似文献   

5.
Zircon crystals in the age range of ca. 10–300 ka can be dated by 230Th/238U (U‐Th) disequilibrium methods because of the strong fractionation between Th and U during crystallisation of zircon from melts. Laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) analysis of nine commonly used reference zircons (at secular equilibrium) and a synthetic zircon indicates that corrections for abundance sensitivity and dizirconium trioxide molecular ions (Zr2O3+) are critical for reliable determination of 230Th abundances in zircon. When corrected for abundance sensitivity and interferences, mean activity ratios of (230Th)/(238U) for nine reference zircons analysed on five different days averaged 0.995 ± 0.023 (95% confidence weighted by data‐point uncertainty only, MSWD = 1.6; = 9), consistent with their U‐Pb ages > 4 Ma that imply equilibrium for all intermediate daughter isotopes (including 230Th) within the 238U decay chain. U‐Th zircon ages generated by LA‐ICP‐MS without mitigating (e.g., by high mass resolution) or correcting for abundance sensitivity and molecular interferences on 230Th are potentially unreliable. To validate the applicability of LA‐ICP‐MS to this dating method, we acquired data from three late Quaternary volcanic units: the 41 ka Campanian Ignimbrite (plutonic clasts), the 161 ka Kos Plateau Tuff (juvenile clasts) and the 12 ka Puy de Dôme trachyte lava (all eruption ages by Ar/Ar, with zircon U‐Th ages being of equal or slightly older). A comparison of the corrected LA‐ICP‐MS results with previously published secondary ion mass spectrometry (SIMS) data for these rocks shows comparable ages with equivalent precision for LA‐ICP‐MS and SIMS, but much shorter analysis durations (~ 2 min vs. ~ 15 min) per spot with LA‐ICP‐MS and much simpler sample preparation. Previously undated zircons from the Yali eruption (Kos‐Nisyros volcanic centre, Greece) were analysed using this method. This yielded a large age spread (~ 45 to > 300 ka), suggesting significant antecryst recycling. The youngest zircon age (~ 45 ± 10 ka) provides a reasonable maximum estimate for the eruption age, in agreement with the previously published age using oxygen isotope stratigraphy (~ 31 ka).  相似文献   

6.
The (U‐Th)/He dating technique has been widely used for several decades to constrain the timing of low temperature geological processes. Recent research has shown that the commonly used reference material (the Durango apatite) often yields dispersed fragment dates that are beyond analytical uncertainties. Here, we report a new apatite (U‐Th)/He dating reference material, MK‐1, which was collected from the Mogok metamorphic belt in Burma. Electron probe microanalysis and backscattered electron images of two randomly selected fragments indicate that this apatite is chemically and structurally homogeneous. We performed single‐grain (U‐Th)/He dating on thirty randomly selected fragments of this material. (U‐Th)/He dating results from multiple laboratories show that fragments of the MK‐1 apatite megacryst yielded reproducible results, with a mean date of 18.0 ± 0.2 Ma. The Th/U ratio of this apatite is homogeneous. Nine randomly selected fragments registered a narrow range of effective uranium (eU) mass fractions (326–354 μg g?1), with a mean value of 336.6 ± 10.3 μg g?1. Twenty‐four in situ (U‐Th)/He dates yielded a mean value of 18.0 ± 0.2 Ma (MSWD = 0.41), indistinguishable from the results obtained by the conventional method. All the results suggest that this apatite has the potential to become a new reference material for (U‐Th)/He geochronology.  相似文献   

7.
This study investigates the behaviour of the geochronometers zircon, monazite, rutile and titanite in polyphase lower crustal rocks of the Kalak Nappe Complex, northern Norway. A pressure–temperature–time–deformation path is constructed by combining microstructural observations with P–T conditions derived from phase equilibrium modelling and U–Pb dating. The following tectonometamorphic evolution is deduced: A subvertical S1 fabric formed at ~730–775 °C and ~6.3–9.8 kbar, above the wet solidus in the sillimanite and kyanite stability fields. The event is dated at 702 ± 5 Ma by high‐U zircon in a leucosome. Monazite grains that grew in the S1 fabric show surprisingly little variation in chemical composition compared to a large spread in (concordant) U–Pb dates from c. 800 to 600 Ma. This age spread could either represent protracted growth of monazite during high‐grade metamorphism, or represent partially reset ages due to high‐T diffusion. Both cases imply that elevated temperatures of >600 °C persisted for over c. 200 Ma, indicating relatively static conditions at lower crustal levels for most of the Neoproterozoic. The S1 fabric was overprinted by a subhorizontal S2 fabric, which formed at ~600–660 °C and ~10–12 kbar. Rutile that originally grew during the S1‐forming event lost its Zr‐in‐rutile and U–Pb signatures during the S2‐forming event. It records Zr‐in‐rutile temperatures of 550–660 °C and Caledonian ages of 440–420 Ma. Titanite grew at the expense of rutile at slightly lower temperatures of ~550 °C during ongoing S2 deformation; U–Pb ages of c. 440–430 Ma date its crystallization, giving a minimum estimate for the age of Caledonian metamorphism and the duration of Caledonian shearing. This study shows that (i) monazite can have a large spread in U–Pb dates despite a homogeneous composition; (ii) rutile may lose its Zr‐in‐rutile and U–Pb signature during an amphibolite facies overprint; and (iii) titanite may record crystallization ages during retrograde shearing. Therefore, in order to correctly interpret U–Pb ages from different geochronometers in a polyphase deformation and reaction history, they are ideally combined with microstructural observations and phase equilibrium modelling to derive a complete P–T–t–d path.  相似文献   

8.
Multi‐method thermochronology along the Vakhsh‐Surkhob fault zone reveals the thermotectonic history of the South Tian Shan–Pamirs boundary. Apatite U/Pb analyses yield a consistent age of 251 ± 2 Ma, corresponding to cooling below ~550–350°C, related to the final closure of the Palaeo‐Asian Ocean and contemporaneous magmatism in the South Tian Shan. Zircon (U–Th–Sm)/He ages constrain cooling below ~180°C to the end of the Triassic (~200 Ma), likely related either to deformation induced by the Qiangtang collision or to the closure of the Rushan Ocean. Apatite fission track thermochronology reveals two low‐temperature (<120°C) thermal events at ~25 Ma and ~10 Ma, which may be correlated with tectonic activity at the distant southern Eurasian margin. The late Miocene cooling is confirmed by apatite (U–Th–Sm)/He data and marks the onset of mountain building within the South Tian Shan that is ongoing today.  相似文献   

9.
SIMS U‐Pb zircon dating of metaigneous rocks of the Nordbreen Nappe from the West Ny‐Friesland terrane (Eastern Basement Province of Svalbard) yields crystallization ages of 1,761 ± 4 Ma for a felsic metatuff and 1,373 ± 4 Ma for a metagabbro dyke. The Palaeoproterozoic age of the metatuff is similar to previously obtained ages for various felsic rocks from the study area, whereas the Mesoproterozoic age of the metagabbro has not been thus far documented on Svalbard. However, a similar age pattern has been reported from Northeast Greenland. Therefore, we conclude that the West Ny‐Friesland terrane can be correlated with age equivalent units of Northeast Greenland. We also explore similarities and dissimilarities between the study area and other terranes of Svalbard and speculate on regional‐scale correlations. Together, the presented new ages provide critical piercing points in palaeogeographic reconstructions of the relatively poorly understood circum‐Arctic region.  相似文献   

10.
Highly elevated and well-preserved peneplains are characteristic geomorphic features of the Tibetan plateau in the northern Lhasa Terrane, north–northwest of Nam Co. The peneplains were carved in granitoids and in their metasedimentary host formations. We use multi-method geochronology (zircon U–Pb and [U–Th]/He dating and apatite fission track and [U–Th]/He dating) to constrain the post-emplacement thermal history of the granitoids and the timing and rate of final exhumation of the peneplain areas. LA-ICP-MS U–Pb geochronology of zircons yields two narrow age groups for the intrusions at around 118 Ma and 85 Ma, and a third group records Paleocene volcanic activity (63–58 Ma) in the Nam Co area. The low-temperature thermochronometers indicate common age groups for the entire Nam Co area: zircon (U–Th)/He ages cluster around 75 Ma, apatite fission track ages around 60 Ma and apatite (U–Th)/He ages around 50 Ma. Modelling of the thermochronological data indicates that exhumation of the basement blocks took place in latest Cretaceous to earliest Paleogene time. By Middle Eocene time the relief was already flat, documented by a thin alluvial sediment sequence covering a part of the planated area. The present-day horst and graben structure of the peneplains is a Late Cenozoic feature triggered by E–W extension of the Tibetan Plateau. The new thermochronological data precisely bracket the age of the planation to Early Eocene, i.e. between ca. 55 and 45 Ma. The erosional base level can be deduced from the presence of Early Cretaceous zircon grains in Eocene strata of Bengal Basin. The sediment generated during exhumation of the Nam Co area was transported by an Early Cenozoic river system into the ocean, suggesting that planation occurred at low elevation.  相似文献   

11.
The Ediacaran–Cambrian transition is a critical interval marking drastic biological, oceanic and geochemical co‐evolutions in geological history, but it is poorly constrained geochronologically in South China. We here present two new sets of SIMS U–Pb zircon ages from Ediacaran–Cambrian boundary strata (Dengying, Liuchapo and Niutitang formations) deposited in the slope–basin environments of carbonate platforms. Two weighted‐mean U–Pb ages of 542.1 ± 5.0 Ma and 542.6 ± 3.7 Ma in the basal and mid‐upper Liuchapo Formation, respectively, in slope and basinal settings provide the first direct age set for the Ediacaran–Cambrian boundary in South China. Another two U–Pb ages of 524.2 ± 5.1 Ma and 522.3 ± 3.7 Ma from the base of the overlying Niutitang Formation indicate that this widespread unit in South China was deposited about 20 Ma after the onset of the Cambrian.  相似文献   

12.
As is common in suture zones, widespread high‐pressure rocks in the Caribbean region reached eclogite facies conditions close to ultrahigh‐pressure metamorphism. Besides eclogite lenses, abundant metapelitic rocks in the Chuacús complex (Guatemala Suture Zone) also preserve evidence for high‐pressure metamorphism. A comprehensive petrological and geochronological study was undertaken to constrain the tectonometamorphic evolution of eclogite and associated metapelite from this area in central Guatemala. The integration of field and petrological data allows the reconstruction of a previously unknown segment of the prograde P–T path and shows that these contrasting rock types share a common high‐pressure evolution. An early stage of high‐pressure/low‐temperature metamorphism at 18–20 kbar and 530–580°C is indicated by garnet core compositions as well as the nature and composition of mineral inclusions in garnet, including kyanite–jadeite–paragonite in an eclogite, and chloritoid–paragonite–rutile in a pelitic schist. Peak high‐pressure conditions are constrained at 23–25 kbar and 620–690°C by combining mineral assemblages, isopleth thermobarometry and Zr‐in‐rutile thermometry. A garnet/whole‐rock Lu‐Hf date of 101.8 ± 3.1 Ma in the kyanite‐bearing eclogite indicates the timing of final garnet growth at eclogite facies conditions, while a Lu‐Hf date of 95.5 ± 2.1 Ma in the pelitic schist reflects the average age of garnet growth spanning from an early eclogite facies evolution to a final amphibolite facies stage. Concordant U‐Pb LA‐ICP‐MS zircon data from the pelitic schist, in contrast, yield a mean age of 74.0 ± 0.5 Ma, which is equivalent to a U‐Pb monazite lower‐intercept age of 73.6 ± 2.0 Ma in the same sample, and comparable within errors with a less precise U‐Pb lower‐intercept age of 80 ± 13 Ma obtained in post‐eclogitic titanite from the kyanite‐bearing eclogite. These U‐Pb metamorphic ages are interpreted as dating an amphibolite facies overprint. Protolith U‐Pb zircon ages of 167.1 ± 4.2 Ma and 424.6 ± 5.0 Ma from two eclogite samples reveal that mafic precursors in the Chuacús complex originated in multiple tectonotemporal settings from the Silurian to Jurassic. The integration of petrological and geochronological data suggests that subduction of the continental margin of the North American plate (Chuacús complex) beneath the Greater Antilles arc occurred during an Albian‐Cenomanian pre‐collisional stage, and that a subsequent Campanian collisional stage is probably responsible of the amphibolite facies overprint and late syncollisional exhumation.  相似文献   

13.
Dating the timing of motion on crustal shear zones is of tremendous importance for understanding the assembly of orogenic terranes. This objective is achieved in this paper by combining petrological and structural observations with novel developments in in situ U‐Th‐Pb geochronology of allanite. A greenschist facies shear zone within the Mont Blanc Massif is documented. Allanite is synkinematic and belongs to the mylonitic assemblage. LA‐ICP‐MS U‐Th‐Pb isotope analyses of allanite reveal high contents and highly radiogenic isotopic compositions of the common‐Pb component. The use of measured Pb‐isotope compositions of associated minerals (feldspars and chlorite) is critical for accurate common‐Pb correction, and provides a powerful mechanism for linking allanite growth to the metamorphic assemblage. A mean 208Pb/232Th age of 29.44 ± 0.95 Ma is accordingly taken for synkinematic allanite crystallisation under greenschist facies conditions. This age reflects the timing of the Mont Blanc underthrusting below the Penninic Front and highlights the potential of directly dating deformation with allanite.  相似文献   

14.
We introduce and propose zircon M257 as a future reference material for the determination of zircon U‐Pb ages by means of secondary ion mass spectrometry. This light brownish, flawless, cut gemstone specimen from Sri Lanka weighed 5.14 g (25.7 carats). Zircon M257 has TIMS‐determined, mean isotopic ratios (2s uncertainties) of 0.09100 ± 0.00003 for 206pb/238U and 0.7392 ± 0.0003 for 207pb/235U. Its 206pb/238U age is 561.3 ± 0.3 Ma (unweighted mean, uncertainty quoted at the 95% confidence level); the U‐Pb system is concordant within uncertainty of decay constants. Zircon M257 contains ~ 840 μg g?1 U (Th/U ~ 0.27). The material exhibits remarkably low heterogeneity, with a virtual absence of any internal textures even in cathodoluminescence images. The uniform, moderate degree of radiation damage (estimated from the expansion of unit‐cell parameters, broadening of Raman spectral parameters and density) corresponds well, within the “Sri Lankan trends”, with actinide concentrations, U‐Pb age, and the calculated alpha fluence of 1.66 × 1018 g?1. This, and a (U+Th)/He age of 419 ± 9 Ma (2s), enables us to exclude any unusual thermal history or heat treatment, which could potentially have affected the retention of radiogenic Pb. The oxygen isotope ratio of this zircon is 13.9%o VSMOW suggesting a metamorphic genesis in a marble or calc‐silicate skarn.  相似文献   

15.
This paper outlines the CHIME (chemical Th–U-total Pb isochron method) dating method, which is based on precise electron microprobe analyses of Th, U and Pb in Th- and U-bearing accessory minerals such as monazite, xenotime, zircon and polycrase. The age-mapping technique that is applicable to young monazite and zircon is also described. CHIME dating consists of analyzing multiple spots within homogeneous age domains that show sufficient compositional variation, and then these data are used to construct a “pseudo-isochron” from which an age can be obtained via regression. This method, when coupled with discrimination of possibly concordant age data by chemical criteria such as the (Ca + Si)/(Th + U + Pb + S) ratio for monazite and Ca and S contents for zircon, has the potential advantage of significant precision, and the ability to work with minerals that have a significant initial common Pb component. This technique can identify two or more homogeneous domains that are separated by age gaps smaller than the error on individual spot age analysis. Many features that are insignificant in major element analysis can have major impact in the acquisition of trace element data. Critical factors include the roles of collimator slit, detector gas, background estimation, accelerating voltage, probe current, X-ray interferences and count rate in affecting the accuracy, and a way to apply the Th and U interference correction without pure Th- and U-oxides or synthesized pure ThSiO4. The age-mapping procedure for young monazite and zircon includes acquiring PbMα (or PbMβ) intensity of individual pixels with multiple spectrometers, correcting background with background maps computed from a measured background intensity by the intensity relationships determined in advance of the measurement, calibrating of intensity with standards and calculating of ages from the Th, U and Pb concentrations. This technique provides age maps that show differences in age domains on the order of 20 Ma with in monazite as young as 100 Ma. The effect of sample damage by irradiation of intense and prolonged probe measurement is also described.  相似文献   

16.
Although the U–Pb zircon chronometer has been widely used for dating metamorphism in moderate‐ to high‐grade rocks, it is generally difficult to link the U–Pb age of zircon to specific metamorphic reactions. In this study, the initial Hf isotopic composition of secondary zircon is compared with the evolution of Hf isotopic composition of the bulk sample, back‐projected from the measured value through time. This approach may enhance the interpretation of radiometric ages performed on metamorphic mineral assemblages. Here, U–Pb, Sm–Nd and Lu–Hf geochronology and thermobarometry have been integrated and applied to two metamorphosed diabase dykes in the Sveconorwegian orogen, SW Sweden. The dykes are located ~5 km east of the NNE‐trending Göta Älv deformation zone in the Idefjorden terrane, and trend parallel to this zone. The Lunden dyke is recrystallized into a coronitic, granulite facies assemblage. U–Pb isotopic analyses of baddeleyite in this dyke indicate an emplacement age of c. 1300 Ma. Thermobarometric techniques applied to garnet and omphacitic clinopyroxene coronas indicate high‐pressure metamorphism at ~15 kbar and ~740 °C. The growth of polycrystalline zircon at the expense of baddeleyite occurred at 1046 ± 6 Ma. The identical Hf isotopic composition of polycrystalline zircon and baddeleyite shows that the baddeleyite‐to‐zircon transition took place before Hf equilibration among the other metamorphic minerals and, hence the c. 1046 Ma age of polycrystalline zircon sets an upper age limit of metamorphism of this sample. The Haregården dyke is recrystallized into a granoblastic transitional upper amphibolite to granulite facies assemblage. The estimated P–T conditions are ~10 kbar and ~700 °C. Analyses of small (~30 μm), clear and round zircon in this sample yield a Concordia U–Pb age of 1026 ± 4 Ma, which is indistinguishable from the Lu‐Hf and Sm‐Nd mineral isochron ages of 1027 ± 9 and 1022 ± 34 Ma, respectively. This type of secondary zircon plots at the lower end of the Lu‐Hf isochron and indicates simultaneous growth with garnet at c. 1026 Ma, a time when Hf isotopic equilibrium among minerals must have been reached.  相似文献   

17.
Inter‐laboratory comparison of laser ablation ICP‐MS and SIMS U‐Pb dating of synthetic detrital zircon samples provides an insight into the state‐of‐the art of sedimentary provenance studies. Here, we report results obtained from ten laboratories that routinely perform this type of work. The achieved level of bias was mostly within ± 2% relative to the ID‐TIMS U‐Pb ages of zircons in the detrital sample, and the variation is likely to be attributed to variable Pb/U elemental fractionation due to zircon matrix differences between the samples and the reference materials used for standardisation. It has been determined that ~ 5% age difference between adjacent age peaks is currently at the limit of what can be routinely resolved by the in situ dating of detrital zircon samples. Precision of individual zircon age determination mostly reflects the data reduction and procedures of measurement uncertainty propagation, and it is largely independent of the instrumentation, analytical technique and reference samples used for standardisation. All laboratories showed a bias towards selection of larger zircon grains for analysis. The experiment confirms the previously published estimates of the minimum number of grains that have to be analysed in order to detect minor zircon age populations in detrital samples.  相似文献   

18.
Detrital zircon provenance studies that combine low‐temperature fission‐track and high‐temperature U–Pb single‐grain age dating are powerful in constraining sediment provenance by documenting the tectonothermal evolution of the sediment source(s). We apply these techniques to Miocene (12–6 Ma) sandstones of the Hengchun Peninsula, southern Taiwan, which, based on diametrically opposite palaeocurrents, have a controversial provenance. U–Pb grain ages range from the Miocene (8 Ma) to Archaean (2.5 Ga). Cretaceous thermal cooling is recorded by detrital zircon fission tracks at Loshui and Lilongshan. Permian fission‐track grain ages account for <33% of zircon ages from Loshui, while at Lilongshan, Jurassic/Triassic grain ages account for 33–66% of all zircon fission‐track ages. Minor (<12%) Miocene age components are detected in both formations. These new data suggest that the primary sources of these Miocene sediments were similar. A simple model is proposed invoking sediment reworking in this complex tectonic setting. Terra Nova, 00, 000–000, 2010  相似文献   

19.
In the Ligurian Alps, the Barbassiria massif (a Variscan basement unit of the Briançonnais domain) is made up of orthogneisses derived from K‐rich rhyolite protoliths and minor rhyolite dykes. However, on account of subsequent Alpine deformation and a related blueschist facies metamorphic overprint that are pervasive within the Barbassiria Orthogneisses, little evidence of the earlier Variscan metamorphism is preserved. In this study, new U–Pb laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) dating of zircon from the Barbassiria Orthogneisses and dykes was undertaken to unravel the relationships between protolith magmatism and the Variscan metamorphic overprint. The results suggest a protolith age for the Barbassiria Orthogneisses of ~315–320 Ma (i.e., Early/Late Carboniferous), and constrain the age of a subsequent rhyolite dyke emplacement event to 260.2 ± 3.1 Ma (i.e., Late Permian). The Variscan high‐temperature (greenschist–amphibolite facies) metamorphic event that affected the Barbassiria Orthogneisses was likely associated with both tectonic burial and compression during the final stages of the Variscan collision during the Late Carboniferous period. Emplacement of late‐stage rhyolite dykes that cut the Barbassiria Orthogneisses is linked to a diffuse episode of Late Permian rhyolite volcanism that is commonly observed in the Ligurian Alps. The age of this dyke emplacement event followed a ~10–15 Ma Mid‐Permian gap in the volcano‐sedimentary cover sequence of the Ligurian Alps, and represents the post‐orogenic stage in this segment of the Variscides. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Matrix‐matched reference materials are necessary for accurate microbeam U‐Pb dating and Hf isotopic determination. This study introduces the RMJG rutile as a new potential reference material, which was separated from Palaeoproterozoic pelitic granulites collected in Hebei Province, China. LA‐ICP‐MS measurements indicate the RMJG rutile has extremely low Th (< 0.003 ± 0.01 µg g?1) and common Pb contents, but high Hf (102 ± 34 µg g?1), U (61 ± 11 µg g?1), and radiogenic Pb (~ 20 µg g?1) contents. Moreover, the rutile yields relatively constant U‐Pb ages and Hf isotopic data. The LA‐ICP‐MS analyses suggest that this rutile has a concordant U‐Pb age with a statistical mean 206Pb/238U and 207Pb/235U ages of 1749.9 ± 32.1 Ma and 1750.0 ± 26.4 Ma, respectively (2s), which are statistically indistinguishable from its ID‐TIMS ages (1750.6 ± 8.4 and 1750.1 ± 4.7 Ma). Precise determination of the 176Hf/177Hf ratio by MC‐ICP‐MS in solution mode (0.281652 ± 0.000006) is in good agreement with the statistical mean of the LA‐MC‐ICP‐MS measurements (0.28166 ± 0.00018). Therefore, the limited variations of RMJG U‐Pb age and Hf isotopic composition together with its extremely low common Pb and high Hf, U and Pb contents make it an ideal calibration and monitor reference material for LA‐ICP‐MS measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号