首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Heat flow variations with depth in Europe can be explained by a model of surface temperature changes >10°C. New heat flow map of Europe is based on updated database of uncorrected heat flow values to which paleoclimatic correction is applied across the continent. Correction is depth dependent due to a diffusive thermal transfer of the surface temperature forcing of which glacial–interglacial history has the largest impact. It is obvious that large part of the uncorrected heat flow values in the existing heat flow databases from wells as shallow as few hundreds of meters is underestimated. This explains some very low uncorrected heat flow values 20–30 mW/m2 in the shields and shallow basin areas of the craton. Also, heat flow values in other areas including orogenic belts are likely underestimated. Based on the uncorrected and corrected heat flow maps using 5 km × 5 km grid, we have calculated average heat flow values (uncorrected heat flow: 56.0 mW/m2; SD 20.3 mW/m2 vs. corrected heat flow: 63.2 mW/m2; SD 19.6 m/Wm2) and heat loss for the continental part. Total heat loss is 928 E09 W for the uncorrected values versus corrected 1050 E09 W.  相似文献   

2.
Eleven new estimates of heat flow (q) from the southern Altai-Sayan Folded Area (ASFA) have provided update to the heat flow map of Gorny Altai. Measured heat flow in the area varies from 33 to 90 mW/m2, with abnormal values of >70 mW/mq at four sites. The anomalies may have a deep source only at the Aryskan site in the East Sayan (q = 77 mW/m2) while high heat flows of 75–90 mW/m2 obtained for the Mesozoic Belokurikha and Kalguty plutons appear rather to result from high radiogenic heat production in granite, which adds a 25–30 W/m2 radiogenic component to a deep component of 50–60 mW/m2. The latter value is consistent with heat flow estimates derived from helium isotope ratios (54 mW/m2 in both plutons). Heat flow variations at other sites are in the range from 33 to 60 mW/m2. The new data support the earlier inferences of a generally low heat flow over most of ASFA (average of 45–50 mW/m2) and of a “cold” Cenozoic orogeny in the area (except for southeastern ASFA), possibly driven by shear stresses associated with India indentation into Eurasia.  相似文献   

3.
Terrestrial heat flow is an important physical parameter in the study of heat transfer and thermal structure of the earth and it has great significance in the genesis and development and utilization potential of regional geothermal resources. Although several breakthroughs in geothermal exploration have been made in Guizhou Province. The terrestrial heat flow in this area has not been properly measured, restricting the development of geothermal resources in the province. For this reason, the terrestrial heat flow in Guizhou was measured in this study, during which the characteristics of heat flow were determined using borehole thermometry, geothermal monitoring and thermal property testing. Moreover, the influencing factors of the terrestrial heat flow were analyzed. The results show that the thermal conductivity of rocks ranges from 2.0 W/(m·K) to 5.0 W/(m·K), with an average of 3.399 W/(m·K); the heat flow varies from 30.27 mW/m2 to 157.55 mW/m2, with an average of 65.26 ± 20.93 mW/m2, which is slightly higher than that of the average heat flow in entire land area in China. The heat flow in Guizhou generally follows a dumbbell-shaped distribution, with high values present in the east and west and low values occurring in the north and south. The terrestrial heat flow is related to the burial depths of the Moho and Curie surface. The basaltic eruptions in the Emeishan led to a thinner lithosphere, thicker crust and lateral emplacement, which dominated the basic pattern of heat flow distribution in Guizhou. In addition, the dichotomous structure of regional active faults and concealed deep faults jointly control the heat transfer channels and thus influence the terrestrial heat flow.  相似文献   

4.
Detailed studies of terrestrial heat flow in southern and central Alberta estimated on the basis of an order of magnitude larger data base than ever used before (33653 bottom-hole temperature data from 18711 wells) and thermal conductivity values based on detailed rock studies and measured rock conductivities show significant regional and local variations and variations with depth. Heat flow values were estimated for each 3 × 3 township/range area (28.8 × 28.8 km). A difference in heat flow exists between Paleozoic and Mesozoic strata. Generally lower heat flow values are observed in the strata above the Paleozoic erosional surface (20–75 mW m−2). Much higher values are estimated for the Younger Paleozoic formations, with large local and regional variations between 40 and 100 mW m−2.Average heat flow values based on heat flow determinations below and above the Paleozoic surface that agree within 20% show an increase from values less than 40 mW m−2 in southern and southwestern Alberta to values as high as 70 mW m−2 in central Alberta. The predominance of regional downward groundwater flows in Mesozoic strata seem to be responsible for the generally observed heat flow increase with depth.The results show that the basin heat flow pattern is influenced by water movement and even careful detailed heat flow measurements will not give correct values of background steady-state heat flow within the sedimentary strata.  相似文献   

5.
The GALO system is applied to the numerical reconstruction of burial and thermal histories of the West Bashkirian lithosphere from the Riphean to the present. An analysis of the variation in tectonic subsidence of the basin during its development is utilized to estimate approximately the mantle heat flow variations. Our variant of basin evolution suggests that after cooling in the Early Riphean, the rather weak thermal reactivations have not led to considerable heating of the lithosphere in the study region. Surface heat flow decreased from relatively high values in the Early Riphean (60–70 mW/m2 in the eastern area and 40–50 mW/m2 in the western part) to present-day values of 32–40 mW/m2. In spite of the relatively low temperature regime of the basin as a whole, a syn-rifting deposition of more than 10 km of limestone, shale and sandstone in the Riphean resulted in rather high temperatures (180–190 °C) at the base of present-day sedimentary blanket in the eastern area. In agreement with the observed data, computed present-day heat flow through the sediment surface increases slightly from 32 to 34 mW/m2 near the west boundary of the region to 42 mW/m2 near the boundary of the Ural Foldbelt, whereas the heat flow through the basement surface decreases slightly from 28–32 to 24–26 mW/m2 in the same direction. The mantle heat flow is only 11.3–12.7 mW/m2, which is considerable lower than mean heat flow of the Russian Platform (16–18 mW/m2) and comparable with the low heat flow of Precambrian shields.  相似文献   

6.
We analyze the thermal gradient distribution of the Junggar basin based on oil-test and well-logging temperature data. The basin-wide average thermal gradient in the depth interval of 0–4000 m is 22.6 °C/km, which is lower than other sedimentary basins in China. We report 21 measured terrestrial heat flow values based on detailed thermal conductivity data and systematical steady-state temperature data. These values vary from 27.0 to 54.1 mW/m2 with a mean of 41.8 ± 7.8 mW/m2. The Junggar basin appears to be a cool basin in terms of its thermal regime. The heat flow distribution within the basin shows the following characteristics. (1) The heat flow decreases from the Luliang Uplift to the Southern Depression; (2) relatively high heat flow values over 50 mW/m2 are confined to the northern part of the Eastern Uplift and the adjacent parts of the Eastern Luliang Uplift and Central Depression; (3) The lowest heat flow of smaller than 35 mW/m2 occurs in the southern parts of the basin. This low thermal regime of the Junggar basin is consistent with the geodynamic setting, the extrusion of plates around the basin, the considerably thick crust, the dense lithospheric mantle, the relatively stable continental basement of the basin, low heat generation and underground water flow of the basin. The heat flow of this basin is of great significance to oil exploration and hydrocarbon resource assessment, because it bears directly on issues of petroleum source-rock maturation. Almost all oil fields are limited to the areas of higher heat flows. The relatively low heat flow values in the Junggar basin will deepen the maturity threshold, making the deep-seated widespread Permian and Jurassic source rocks in the Junggar basin favorable for oil and gas generation. In addition, the maturity evolution of the Lower Jurassic Badaowan Group (J1b) and Middle Jurassic Xishanyao Group (J2x) were calculated based on the thermal data and burial depth. The maturity of the Jurassic source rocks of the Central Depression and Southern Depression increases with depth. The source rocks only reached an early maturity with a R0 of 0.5–0.7% in the Wulungu Depression, the Luliang Uplift and the Western Uplift, whereas they did not enter the maturity window (R0 < 0.5%) in the Eastern Uplift of the basin. This maturity evolution will provide information of source kitchen for the Jurassic exploration.  相似文献   

7.
The Dniepr–Donets Basin (DDB) is a Late Devonian rift structure located within the East-European Craton. Numerical heat flow models for 13 wells calibrated with new maturity data were used to evaluate temporal and lateral heat flow variations in the northwestern part of the basin.The numerical models suggest that heat flow was relatively high during Late Carboniferous and/or Permian times. The relatively high heat flow is probably related to an Early Permian re-activation of tectonic activity. Reconstructed Early Permian heat flow values along the axial zone of the rift are about 60 mW/m2 and increase to 90 mW/m2 along the northern basin margin. These values are higher than those expected from tectonic models considering a single Late Devonian rifting phase. The calibration data are not sensitive to variations in the Devonian/Carboniferous heat flow. Therefore, the models do not allow deciding whether heat flows remained high after the Devonian rifting, or whether the reconstructed Permian heat flows represent a separate heating event.Analysis of the vitrinite reflectance data suggest that the northeastern Dniepr–Donets Basin is characterised by a low Mesozoic heat flow (30–35 mW/m2), whereas the present-day heat flow is about 45 mW/m2.  相似文献   

8.
《Geodinamica Acta》2000,13(2-3):119-132
The North Caribbean margin is an example of an oblique convergence zone where the currently exposed HP–LT rocks are systematically localised close to strike-slip faults. The petrological and structural study of eclogite and blueschist facies rocks of the peninsula of Samaná (Hispaniola, Dominican Republic) confirms the presence of two different metamorphic units. The former diplays low metamorphic grade (Santa Barbara unit), characterized by the assemblage albite - lawsonite (7.5 ± 2 kbar and 320 ± 80 °C). The latter (Punta Balandra unit), thrust over the first unit towards the NW, and is characterized by the occurrence of blueschist and eclogite facies assemblages (13 ± 2 kbar and 450 ± 70 °C), within oceanic metasediments. The isothermal retrograde evolution occurred in epidote-blueschist facies conditions (9 ± 2 kbar and 440 ± 60 °C). The late greenschist facies evolution is contemporaneous with conjugate NW–SE extension and E–W strike-slip faulting. This late extension is for regional dome and basin structures. According to their lithotectonic, structural and metamorphic characteristics, the metamorphic nappe stack of Samaná may be interpreted as a fragment of an accretionary wedge thrust onto the North American continental shelf. Evolution of the wedge was associated with the active subduction of the North American plate, under the Greater Antilles arc, at the level of the Puerto Rico trench. During active Late Cretaceous convergence, the HP rocks were initially exhumed, within the accretionary prism, by thrusting parallel to the NE–SW direction of convergence. Subsequently, during the Eocene collision between the Caribbean plate and the North American margin, the installation of a transtensive regime of E–W direction supports the local development of conjugate extension of NW–SE direction that facilitated the final phase of exhumation of the HP rocks.  相似文献   

9.
Heat flow and lithospheric thermal regime in the Northeast German Basin   总被引:3,自引:0,他引:3  
New values of surface heat flow are reported for 13 deep borehole locations in the Northeast German Basin (NEGB) ranging from 68 to 91 mW m− 2 with a mean of 77 ± 3 mW m− 2. The values are derived from continuous temperature logs, measured thermal conductivity, and log-derived radiogenic heat production. The heat-flow values are supposed free of effects from surface palaeoclimatic temperature variations, from regional as well as local fluid flow and from thermal refraction in the vicinity of salt structures and thus represent unperturbed crustal heat flow. Two-D numerical lithospheric thermal models are developed for a 500 km section along the DEKORP-BASIN 9601 deep seismic line across the basin with a north-eastward extension across the Tornquist Zone. A detailed conceptual model of crustal structure and composition, thermal conductivity, and heat production distribution is developed. Different boundary conditions for the thickness of thermal lithosphere were used to fit surface heat flow. The best fit is achieved with a thickness of thermal lithosphere of about 75 km beneath the NEGB. This estimate is corroborated by seismological studies and somewhat less than typical for stabilized Phanerozoic lithosphere. Modelled Moho temperatures in the basin are about 800 °C; heat flow from the mantle is about 35 to 40 mW m− 2. In the southernmost part of the section, beneath the Harz Mountains, higher Moho temperatures up to 900 to 1000 °C are shown. While the relatively high level of surface heat flow in the NEGB obviously is of longer wave length and related to lithosphere thickness, changes in crustal structure and composition are responsible for short-wave-length anomalies.  相似文献   

10.
Thirty-three new measurements on the seaward slope and outer rise of the Japan Trench along a parallel of 38°45′N revealed the existence of high heat flow anomalies on the subducting Pacific plate, where the seafloor age is about 135 m.y.. The most prominent anomaly with the highest value of 114 mW/m2 is associated with a small mound on the outer rise, which was reported to be a kind of mud volcano. On the seaward slope of the trench, heat flow is variable: high (70–90 mW/m2) at some locations and normal for the seafloor age (about 50 mW/m2) at others. The spatial variation of heat flow may be related to development of normal faults and horst/graben structures due to bending of the Pacific plate before subduction, with fluid flow along the fault zones enhancing the vertical heat transfer. Possible heat sources of the high heat flow anomalies are intra-plate volcanism in the last several million years like that discovered recently on the Pacific plate east of the Japan Trench.  相似文献   

11.
Bimodal extrusive volcanic rocks in the northeast Greater Antilles Arc consist of two interlayered suites, including (1) a predominantly basaltic suite, dominated by island arc basalts with small proportions of andesite, and (2) a silicic suite, similar in composition to small volume intrusive veins of oceanic plagiogranite commonly recognized in oceanic crustal sequences. The basaltic suite is geochemically characterized by variable enrichment in the more incompatible elements and negative chondrite-normalized HFSE anomalies. Trace element melting and mixing models indicate the magnitude of the subducted sediment component in Antilles arc basalts is highly variable and decreases dramatically from east to west along the arc. In the Virgin Islands, the sediment component ranges between< 0.5 to  1% in Albian rocks, and between  1 and 2% in succeeding Cenomanian to Campanian strata. In comparison, sediment proportions in central Puerto Rico range between 0.5 to 1.5% in the Albian to 2 to > 4% during the Cenomanian-Campanian interval. The silicic suite, consisting predominantly of rhyolites, is characterized by depleted Al2O3 (average < 16%), low Mg-number (molar Mg/Mg + Fe < 0.5), TiO2 (< 1.0%), and Sr/Y (< 10), oceanic or arc-like Sr, Nd, and Pb isotope signatures, and by the presence of plagioclase. All of these features are consistent with an anatexic origin in gabbroic sources, of both oceanic and arc-related origin, within the sub-arc basement. The abundance of silicic lavas varies widely along the length of the arc platform. In the Virgin Islands on the east, rhyolites comprise up to 80% of Lower Albian strata (112 to 105 Ma), and about 20% in post-Albian strata (105 to 100 Ma). Farther west, in Puerto Rico, more limited proportions (< 20%) of silicic lavas were erupted. The systematic variation of both sediment flux and abundance of crustally derived silicic lavas are consistent with current tectonic models of Caribbean evolution involving approximately perpendicular subduction of the Caribbean spur of the mid-Atlantic Ridge, which was located approximately midway between North and South America until Campanian times. Within this hypothetical setting the centrally positioned Virgin Islands terrain remained approximately fixed above the subducting ridge as the Antilles arc platform swept northeastward into the slot between the Americas. Accordingly, heat flow in the Virgin Islands was elevated throughout the Cretaceous, giving rise to widespread crustal melting, whereas the subducted sediment flux was limited. Conversely, toward the west in central Puerto Rico, which was consistently more remote from the subducting ridge, heat flow was relatively low and produced limited crustal melting, while the sediment flux was comparatively elevated.  相似文献   

12.
As is common in suture zones, widespread high‐pressure rocks in the Caribbean region reached eclogite facies conditions close to ultrahigh‐pressure metamorphism. Besides eclogite lenses, abundant metapelitic rocks in the Chuacús complex (Guatemala Suture Zone) also preserve evidence for high‐pressure metamorphism. A comprehensive petrological and geochronological study was undertaken to constrain the tectonometamorphic evolution of eclogite and associated metapelite from this area in central Guatemala. The integration of field and petrological data allows the reconstruction of a previously unknown segment of the prograde P–T path and shows that these contrasting rock types share a common high‐pressure evolution. An early stage of high‐pressure/low‐temperature metamorphism at 18–20 kbar and 530–580°C is indicated by garnet core compositions as well as the nature and composition of mineral inclusions in garnet, including kyanite–jadeite–paragonite in an eclogite, and chloritoid–paragonite–rutile in a pelitic schist. Peak high‐pressure conditions are constrained at 23–25 kbar and 620–690°C by combining mineral assemblages, isopleth thermobarometry and Zr‐in‐rutile thermometry. A garnet/whole‐rock Lu‐Hf date of 101.8 ± 3.1 Ma in the kyanite‐bearing eclogite indicates the timing of final garnet growth at eclogite facies conditions, while a Lu‐Hf date of 95.5 ± 2.1 Ma in the pelitic schist reflects the average age of garnet growth spanning from an early eclogite facies evolution to a final amphibolite facies stage. Concordant U‐Pb LA‐ICP‐MS zircon data from the pelitic schist, in contrast, yield a mean age of 74.0 ± 0.5 Ma, which is equivalent to a U‐Pb monazite lower‐intercept age of 73.6 ± 2.0 Ma in the same sample, and comparable within errors with a less precise U‐Pb lower‐intercept age of 80 ± 13 Ma obtained in post‐eclogitic titanite from the kyanite‐bearing eclogite. These U‐Pb metamorphic ages are interpreted as dating an amphibolite facies overprint. Protolith U‐Pb zircon ages of 167.1 ± 4.2 Ma and 424.6 ± 5.0 Ma from two eclogite samples reveal that mafic precursors in the Chuacús complex originated in multiple tectonotemporal settings from the Silurian to Jurassic. The integration of petrological and geochronological data suggests that subduction of the continental margin of the North American plate (Chuacús complex) beneath the Greater Antilles arc occurred during an Albian‐Cenomanian pre‐collisional stage, and that a subsequent Campanian collisional stage is probably responsible of the amphibolite facies overprint and late syncollisional exhumation.  相似文献   

13.
Jeffrey Poort  Jan Klerkx   《Tectonophysics》2004,383(3-4):217-241
Heat flow in active tectonic zones as the Baikal rift is a crucial parameter for evaluating deep anomalous structures and lithosphere evolution. Based on the interpretation of the existing datasets, the Baikal rift has been characterized in the past by either high heat flow, or moderately elevated heat flow, or even lacking a surface heat flow anomaly. We made an attempt to better constrain the geothermal picture by a detailed offshore contouring survey of known anomalies, and to estimate the importance of observed heat flow anomalies within the regional surface heat output. A total of about 200 new and close-spaced heat flow measurements were obtained in several selected study areas in the North Baikal Basin. With an outrigged and a violin-bow designed thermoprobe of 2–3-m length, both the sediment temperature and thermal conductivity were measured. The new data show at all investigated sites that the large heat flow highs are limited to local heat flow anomalies. The maximum measured heat flow reaches values of 300–35000 mW/m2, but the extent of the anomalies is not larger than 2 to 4 km in diameter. Aside of these local anomalies, heat flow variations are restricted to near background values of 50–70 mW/m2, except in the uplifted Academician zone. The extent of the local anomalies excludes a conductive source, and therefore heat transport by fluids must be considered. In a conceptual model where all bottom floor heat flow anomalies are the result of upflowing fluids along a conduit, an extra heat output of 20 MW (including advection) is estimated for all known anomalies in the North Baikal Basin. Relative to a basal heat flow of 55–65 mW/m2, these estimations suggest an extra heat output in the northern Lake Baikal of only 5%, corresponding to a regional heat flow increase of 3 mW/m2. The source of this heat can be fully attributed to a regional heat redistribution by topographically driven ground water flow. Thus, the surface heat flow is not expected to bear a signal of deeper lithospheric thermal anomalies that can be separated from heat flow typical for orogenically altered crust (40–70 mW/m2). The new insights on the geothermal signature in the Baikal rift once more show that continental rifting is not by default characterized by high heat flow.  相似文献   

14.
This work deals with 2D thermal modeling in order to delineate the crustal thermal structure of central India along two Deep Seismic Sounding (DSS) profiles, namely Khajuriakalan–Pulgaon and Ujjan–Mahan, traversing the Narmada-Son-Lineament (NSL) in an almost north–south direction. Knowledge of the crustal structure and P-wave velocity distribution up to the Moho, obtained from DSS studies, has been used for the development of the thermal model. Numerical results reveal that the Moho temperature in this region of central India varies between 500 and 580 °C. The estimated heat flow density value is found to vary between 46 and 49 mW/m2. The Curie depth varies between 40 and 42 km and is in close agreement with the Curie depth (40±4 km) estimated from the analysis of MAGSAT data. Based on the present work and previous work, it is suggested that the major part of peninsular India consisting of the Wardha–Pranhita Godavari graben/basin, Bastar craton and the adjoining region of the Narmada Son Lineament between profiles I and III towards the north and northwest of the Bastar craton are characterized with a similar mantle heat flow density value equal to ∼23 mW/m2. Variation in surface heat flow density values in these regions are caused by variation in the radioactive heat production and fluid circulation in the upper crustal layer.  相似文献   

15.
Very few data on heat flow are available in the area around the aseismic front of the Japanese Islands. In order to remedy this situation, measurements of the terrestrial heat flow were made at three locations in the eastern part of Fukushima Prefecture, northeastern Honshu, Japan. The observed values of heat flow were 37 mW/m2 (0.88 μcal/cm2·s) at Soma, 52 mW/m2 (1.25 μcal/cm2·s) at Kashima and 19 mW/m2 (0.46 μcal/cm2·s) at Naraha, respectively. These data partially fill the gaps in the terrestrial heat flow data on land in northeastern Honshu, Japan. These values are considerably lower than the average heat flow over the world, but agree well with the previous estimation for the area.  相似文献   

16.
Heat flow has been determined by combining temperature measurements in 7 boreholes with thermal conductivity measurements in the Upper Vindhyan sedimentary rocks of Shivpuri area, central India. The boreholes are distributed at 5 sites within an area of 15 × 10 km2; their depths range from 174 to 268 m. Geothermal gradients estimated from borehole temperature profiles vary from 8.0–12.7 mK m−1 in the sandstone-rich formations to 25.5–27.5 mK m−1 in the shale-rich formations, consistent with the contrast in thermal conductivities of the two rock types. Heat flow in the area ranges between 45 and 61 mW m−2, with a mean of 52±6 mW m−2. The heat flow values are similar to the >50 mW m−2 heat flow observed in other parts of the northern Indian shield. The heat flow determinations represent the steady-state heat flow because, the thermal transients associated with the initial rifting, convergence and sedimentation in the basin as well as the more recent Deccan volcanism that affected the region to the south of the basin would have decayed, and therefore, the heat flow is in equilibrium with the radiogenic heat production of the crust and the heat flow from the mantle. The present study reports the heat flow measurements from the western part of the Vindhyan basin and provides heat flow information for the Bundhelkhand craton for the first time. Radioelement (Th, U and K) abundances have been measured both in the sedimentary rocks exposed in the area as well as in the underlying basement granite-gneiss of Bundelkhand massif exposed in the adjacent area. Radioactive heat production, estimated from those abundances, indicate mean values of 0.3 μW m−3 for sandstone with inter-bands of shale and siltstone, 0.25 μW m−3 for sandstone with inter-bands siltstone, 0.6 μW m−3 for quartzose sandstone, and 2.7 μW m−3 for the basement granitoids. With a total sedimentary thickness not exceeding a few hundred metres in the area, the heat production of the sedimentary cover would be insignificant. The radioactive heat contribution from the basement granitoids in the upper crust is expected to be large, and together with the heat flow component from the mantle, would control the crustal thermal structure in the region.  相似文献   

17.
1 Introduction It has been understood in the study of terrestrial heat flow that the distribution of heat flow in the interior of continent is influenced by a large number of factors, involving heat sources (e.g. mantle heat flow, heat production of radioactive elements in the crust, magmatic activity, and heat production of tectonic deformation), heat transfercondition (e.g. thermal conductivity and thickness of media), groundwater circulation, etc. On the background of these factors it is pa…  相似文献   

18.
The Reed Bank Basin in the southern margin of the South China Sea is considered to be a Cenozoic rifted basin. Tectono-thermal history is widely thought to be important to understand tectonics as well as oil and gas potential of basin. In order to investigate the Cenozoic tectono-thermal history of the Reed Bank Basin, we carried out thermal modeling on one drill well and 22 pseudo-wells using the multi-stage finite stretching model. Two stages of rifting during the time periods of ∼65.5–40.4 Ma and ∼40.4–28.4 Ma can be recognized from the tectonic subsidence rates, and there are two phases of heating corresponding to the rifting. The reconstructed average basal paleo-heat flow values at the end of the rifting events are ∼60 and ∼66.3 mW/m2, respectively. Following the heating periods, this basin has undergone a persistent thermal attenuation phase since ∼28.4 Ma and the basal heat flow cooled down to ∼57.8–63.5 mW/m2 at present. In combination with the radiogenic heat production of the sedimentary sequences, the surface heat flow of the Reed Bank Basin ranges from ∼60.4 to ∼69.9 mW/m2.  相似文献   

19.
Temperature measurements carried out on 9 hydrocarbon exploration boreholes together with Bottom Simulating Reflectors (BSRs) from reflection seismic images are used in this study to derive geothermal gradients and heat flows in the northern margin of the South China Sea near Taiwan. The method of Horner plot is applied to obtain true formation temperatures from measured borehole temperatures, which are disturbed by drilling processes. Sub-seafloor depths of BSRs are used to calculate sub-bottom temperatures using theoretical pressure/temperature phase boundary that marks the base of gas hydrate stability zone. Our results show that the geothermal gradients and heat flows in the study area range from 28 to 128 °C/km and 40 to 159 mW/m2, respectively. There is a marked difference in geothermal gradients and heat flow beneath the shelf and slope regions. It is cooler beneath the shelf with an average geothermal gradient of 34.5 °C/km, and 62.7 mW/m2 heat flow. The continental slope shows a higher average geothermal gradient of 56.4 °C/km, and 70.9 mW/m2 heat flow. Lower heat flow on the shelf is most likely caused by thicker sediments that have accumulated there compared to the sediment thickness beneath the slope. In addition, the continental crust is highly extended beneath the continental slope, yielding higher heat flow in this region. A half graben exists beneath the continental slope with a north-dipping graben-bounding fault. A high heat-flow anomaly coincides at the location of this graben-bounding fault at the Jiulong Ridge, indicating vigorous vertical fluid convection which may take place along this fault.  相似文献   

20.
Heat flow and thermal modeling of the Yinggehai Basin, South China Sea   总被引:9,自引:0,他引:9  
Geothermal gradients are estimated to vary from 31 to 43 °C/km in the Yinggehai Basin based on 99 temperature data sets compiled from oil well data. Thirty-seven thermal conductivity measurements on core samples were made and the effects of porosity and water saturation were corrected. Thermal conductivities of mudstone and sandstone range from 1.2 to 2.7 W/m K, with a mean of 2.0±0.5 W/m K after approximate correction. Heat flow at six sites in the Yinggehai Basin range from 69 to 86 mW/m2, with a mean value of 79±7 mW/m2. Thick sediments and high sedimentation rates resulted in a considerable radiogenic contribution, but also depressed the heat flow. Measurements indicate the radiogenic heat production in the sediment is 1.28 μW/m3, which contributes 20% to the surface heat flow. After subtracting radiogenic heat contribution of the sediment, and sedimentation correction, the average basal heat flow from basement is about 86 mW/m2.Three stages of extension are recognized in the subsidence history, and a kinematic model is used to study the thermal evolution of the basin since the Cenozoic era. Model results show that the peak value of basal heat flow was getting higher and higher through the Cenozoic. The maximum basal heat flow increased from 65 mW/m2 in the first stage to 75 mW/m2 in the second stage, and then 90 mW/m2 in the third stage. The present temperature field of the lithosphere of the Yinggehai Basin, which is still transient, is the result of the multistage extension, but was primarily associated with the Pliocene extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号