首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The highly hydrated, petrologic type 1 CM and CI carbonaceous chondrites likely derived from primitive, water‐rich asteroids, two of which are the targets for JAXA's Hayabusa2 and NASA's OSIRIS‐REx missions. We have collected visible and near‐infrared (VNIR) and mid infrared (MIR) reflectance spectra from well‐characterized CM1/2, CM1, and CI1 chondrites and identified trends related to their mineralogy and degree of secondary processing. The spectral slope between 0.65 and 1.05 μm decreases with increasing total phyllosilicate abundance and increasing magnetite abundance, both of which are associated with more extensive aqueous alteration. Furthermore, features at ~3 μm shift from centers near 2.80 μm in the intermediately altered CM1/2 chondrites to near 2.73 μm in the highly altered CM1 chondrites. The Christiansen features (CF) and the transparency features shift to shorter wavelengths as the phyllosilicate composition of the meteorites becomes more Mg‐rich, which occurs as aqueous alteration proceeds. Spectra also show a feature near 6 μm, which is related to the presence of phyllosilicates, but is not a reliable parameter for estimating the degree of aqueous alteration. The observed trends can be used to estimate the surface mineralogy and the degree of aqueous alteration in remote observations of asteroids. For example, (1) Ceres has a sharp feature near 2.72 μm, which is similar in both position and shape to the same feature in the spectra of the highly altered CM1 MIL 05137, suggesting abundant Mg‐rich phyllosilicates on the surface. Notably, both OSIRIS‐REx and Hayabusa2 have onboard instruments which cover the VNIR and MIR wavelength ranges, so the results presented here will help in corroborating initial results from Bennu and Ryugu.  相似文献   

2.
Insoluble organic matter (IOM) is the major organic component of chondritic meteorites and may be akin to organic materials from comets and interplanetary dust particles (IDPs). Reflectance spectra of IOM in the range 0.35–25 μm are presented as a tool for interpreting organic chemistry from remote measurements of asteroids, comets, IDPs, and other planetary bodies. Absorptions in the IOM spectra were strongly related to elemental H/C (atom) ratio. The aliphatic 3.4 μm absorption in IOM spectra increased linearly in strength with increasing H/C for H/C > 0.4, but was absent at lower H/C values. When meteorite spectra from the Reflectance Experiment Laboratory (RELAB) spectral catalog (n = 85) were reanalyzed at 3.4 μm, this detection limit (H/C > 0.4) persisted. Aromatic absorption features seen in IOM spectra were not observed in the meteorite spectra due to overlapping absorptions. However, the 3.4 μm aliphatic absorption strength for the bulk meteorites was correlated with both H/C of the meteorite's IOM and bulk C (wt%). Gaussian modeling of the 3 μm region provided an additional estimate of bulk C for the meteorites, along with bulk H (wt%), which is related to phyllosilicate abundance. These relationships lay the foundation for determining organic and phyllosilicate abundances from reflectance spectra. Both the full IOM spectra and the spectral parameters discussed here will aid in the interpretation of data from asteroid missions (e.g., OSIRIS‐REx, Hayabusa2), and may be able to place unknown spectral samples within the context of the meteorite collection.  相似文献   

3.
We review the results of an extensive campaign to determine the physical, geological, and dynamical properties of asteroid (101955) Bennu. This investigation provides information on the orbit, shape, mass, rotation state, radar response, photometric, spectroscopic, thermal, regolith, and environmental properties of Bennu. We combine these data with cosmochemical and dynamical models to develop a hypothetical timeline for Bennu's formation and evolution. We infer that Bennu is an ancient object that has witnessed over 4.5 Gyr of solar system history. Its chemistry and mineralogy were established within the first 10 Myr of the solar system. It likely originated as a discrete asteroid in the inner Main Belt approximately 0.7–2 Gyr ago as a fragment from the catastrophic disruption of a large (approximately 100‐km), carbonaceous asteroid. It was delivered to near‐Earth space via a combination of Yarkovsky‐induced drift and interaction with giant‐planet resonances. During its journey, YORP processes and planetary close encounters modified Bennu's spin state, potentially reshaping and resurfacing the asteroid. We also review work on Bennu's future dynamical evolution and constrain its ultimate fate. It is one of the most Potentially Hazardous Asteroids with an approximately 1‐in‐2700 chance of impacting the Earth in the late 22nd century. It will most likely end its dynamical life by falling into the Sun. The highest probability for a planetary impact is with Venus, followed by the Earth. There is a chance that Bennu will be ejected from the inner solar system after a close encounter with Jupiter. OSIRIS‐REx will return samples from the surface of this intriguing asteroid in September 2023.  相似文献   

4.
Ceres’ surface has commonly been linked with carbonaceous chondrites (CCs) by ground‐based telescopic observations, because of its low albedo, flat to red‐sloped spectra in the visible and near‐infrared (VIS/NIR) wavelength region, and the absence of distinct absorption bands, though no currently known meteorites provide complete spectral matches to Ceres. Spatially resolved data of the Dawn Framing Camera (FC) reveal a generally dark surface covered with bright spots exhibiting reflectance values several times higher than Ceres’ background. In this work, we investigated FC data from High Altitude Mapping Orbit (HAMO) and Ceres eXtended Juling (CXJ) orbit (~140 m/pixel) for global spectral variations. We found that the cerean surface mainly differs by spectral slope over the whole FC wavelength region (0.4–1.0 μm). Areas exhibiting slopes ?1 constitute only ~3% of the cerean surface and mainly occur in the bright material in and around young craters, whereas slopes ≥?10% μm?1 occur on more than 90% of the cerean surface; the latter being denoted as Ceres’ background material in this work. FC and Visible and Infrared Spectrometer (VIR) spectra of this background material were compared to the suite of CCs spectrally investigated so far regarding their VIS/NIR region and 2.7 μm absorption, as well as their reflectance at 0.653 μm. This resulted in a good match to heated CI Ivuna (heated to 200–300 °C) and a better match for CM1 meteorites, especially Moapa Valley. This possibly indicates that the alteration of CM2 to CM1 took place on Ceres.  相似文献   

5.
X‐ray microcomputed tomography and synchrotron X‐ray microcomputed tomography (μCT) are becoming popular tools for the reconnaissance imaging of chondrites. However, there are occasional concerns that the use of μCT may be detrimental to organic components of a chondrite. Soluble organic compounds represent ~2–10% of the total solvent extractable carbon in CI and CM carbonaceous chondrites and amino acids are among the most abundant compounds in the soluble organic fraction. We irradiated two samples of the Murchison CM2 carbonaceous chondrite under conditions slightly harsher (increased beam exposure time) than those typically used for x‐ray μCT imaging experiments to determine if detectable changes in the amino acid abundance and distribution relative to a nonexposed control sample occurred. After subjecting two meteorite portions to ionizing radiation dosages of 1.1 kiloGray (kGy) and 1.2 kGy with 48.6 and 46.6 keV monochromatic X‐rays, respectively, we analyzed the amino acid content of each sample. Within analytical errors, we found no differences in the amino acid abundances or enantiomeric ratios when comparing the control samples (nonexposed Murchison) and the irradiated samples. We show with calculations that any sample heating due to x‐ray exposure is negligible. We conclude that a monochromatic synchrotron X‐ray μCT experiment at beamline 13‐BM‐D of the Advanced Photon Source, which imparts ~1 kGy doses, has no detectable effect on the amino acid content of a carbonaceous chondrite. These results are important for the initial reconnaissance of returned samples from the OSIRIS‐REx and Hayabusa 2 asteroid sample return missions.  相似文献   

6.
A crucial topic in planetology research is establishing links between primitive meteorites and their parent asteroids. In this study, we investigate the feasibility of a connection between asteroids similar to 21 Lutetia, encountered by the Rosetta mission in July 2010, and the CH3 carbonaceous chondrite Pecora Escarpment 91467 (PCA 91467). Several spectra of this meteorite were acquired in the ultraviolet to near‐infrared (0.3–2.2 μm) and in the midinfrared to thermal infrared (2.5–30.0 μm or 4000 to ~333 cm−1), and they are compared here to spectra from the asteroid 21 Lutetia. There are several similarities in absorption bands and overall spectral behavior between this CH3 meteorite and 21 Lutetia. Considering also that the bulk density of Lutetia is similar to that of CH chondrites, we suggest that this asteroid could be similar, or related to, the parent body of these meteorites, if not the parent body itself. However, the apparent surface diversity of Lutetia pointed out in previous studies indicates that it could simultaneously be related to other types of chondrites. Future discovery of additional unweathered CH chondrites could provide deeper insight in the possible connection between this family of metal‐rich carbonaceous chondrites and 21 Lutetia or other featureless, possibly hydrated high‐albedo asteroids.  相似文献   

7.
Abstract— During preliminary examination of 81P/Wild 2 particles collected by the NASA Stardust spacecraft, we analyzed seven, sulfur embedded and ultramicrotomed particles extracted from five different tracks. Sections were analyzed using a scanning transmission X‐ray microscope (SXTM) and carbon X‐ray absorption near edge structure (XANES) spectra were collected. We compared the carbon XANES spectra of these Wild 2 samples with a database of spectra on thirty‐four interplanetary dust particles (IDPs) and with several meteorites. Two of the particles analyzed are iron sulfides and there is evidence that an aliphatic compound associated with these particles can survive high temperatures. An iron sulfide from an IDP demonstrates the same phenomenon. Another, mostly carbon free containing particle radiation damaged, something we have not observed in any IDPs we have analyzed or any indigenous organic matter from the carbonaceous meteorites, Tagish Lake, Orgueil, Bells and Murchison. The carbonaceous material associated with this particle showed no mass loss during the initial analysis but chemically changed over a period of two months. The carbon XANES spectra of the other four particles varied more than spectra from IDPs and indigenous organic matter from meteorites. Comparison of the carbon XANES spectra from these particles with 1. the carbon XANES spectra from thirty‐four IDPs (<15 micron in size) and 2. the carbon XANES spectra from carbonaceous material from the Tagish Lake, Orgueil, Bells, and Murchison meteorites show that 81P/Wild 2 carbon XANES spectra are more similar to IDP carbon XANES spectra then to the carbon XANES spectra of meteorites.  相似文献   

8.
The CM carbonaceous chondrite meteorites experienced aqueous alteration in the early solar system. They range from mildly altered type 2 to almost completely hydrated type 1 chondrites, and offer a record of geochemical conditions on water‐rich asteroids. We show that CM1 chondrites contain abundant (84–91 vol%) phyllosilicate, plus olivine (4–8 vol%), magnetite (2–3 vol%), Fe‐sulfide (<5 vol%), and calcite (<2 vol%). The CM1/2 chondrites contain phyllosilicate (71–88 vol%), olivine (4–20 vol%), enstatite (2–6 vol%), magnetite (2–3 vol%), Fe‐sulfides (1–2 vol%), and calcite (~1 vol%). As aqueous alteration progressed, the abundance of Mg‐serpentine and magnetite in the CM chondrites increased. In contrast, calcite abundances in the CM1/2 and CM1 chondrites are often depleted relative to the CM2s. The modal data support the model, whereby metal and Fe‐rich matrix were the first components to be altered on the CM parent body(ies), before further hydration attacked the coarser Mg‐rich silicates found in chondrules and fragments. Based on the absence of tochilinite, we suggest that CM1 chondrites experienced increased alteration due to elevated temperatures (>120 °C), although higher water/rock ratios may also have played a role. The modal data provide constraints for interpreting the composition of asteroids and the mineralogy of samples returned from these bodies. We predict that “CM1‐like” asteroids, as has been proposed for Bennu—target for the OSIRIS‐REx mission—will have a high abundance of Mg‐rich phyllosilicates and Fe‐oxides, but be depleted in calcite.  相似文献   

9.
Abstract— We present the results of the infrared (IR) microscopic study of the anomalous carbonaceous chondrites Dhofar (Dho) 225 and Dhofar 735 in comparison to typical CM2 chondrites Cold Bokkeveld, Murray, and Mighei. The Fourier transform infrared (FTIR) 2.5–14 μm reflectance measurements were performed on conventional polished sections using an infrared microscope with a synchrotron radiation source. We demonstrate that the synchrotron‐based IR microspectroscopy is a useful, nondestructive tool for studying hydration states of meteorite constituents in situ. Our results show that the matrices of Dho 225 and Dho 735 are dehydrated compared to the matrices of typical CM2 chondrites. The spectra of the Dho 225 and Dho 735 matrices lack the 2.7–2.8 μm absorption feature present in the spectra of Cold Bokkeveld, Murray, and Mighei. Spectral signatures caused by Si‐O vibrations in fine‐grained, Fe‐rich olivines dominate the 10 μm spectral region in the spectra of Dho 225 and Dho 735 matrices, while the spectra of normal CM2 chondrites are dominated by spectral signatures due to Si‐O vibrations in phyllosilicates. We did not detect any hydrated phases in the spectra of Dho 225 and Dho 735 polished sections. In addition, the near‐infrared reflectance spectra of Dho 225 and Dho 735 bulk powders show spectral similarities to the Antarctic metamorphosed carbonaceous chondrites. We confirm the results of previous mineralogical, chemical, and isotopic studies indicating that the two meteorites from Oman are the first non‐Antarctic metamorphosed carbonaceous chondrites.  相似文献   

10.
M-type asteroids, as defined in the Tholen taxonomy (Tholen, D.J. [1984]. Asteroid Taxonomy from Cluster Analysis of Photometry. Ph.D. Dissertation, University of Arizona, Tucson), are medium albedo bodies supposed to have a metallic composition and to be the progenitors both of differentiated iron–nickel meteorites and enstatite chondrites. We carried out a spectroscopic survey in the visible and near infrared wavelength range (0.4–2.5 μm) of 30 asteroids chosen from the population of asteroids initially classified as Tholen M-types, aiming to investigate their surface composition. The data were obtained during several observing runs during the years 2004–2007 at the TNG, NTT, and IRTF telescopes. We computed the spectral slopes in several wavelength ranges for each observed asteroid, and we searched for diagnostic spectral features. We confirm a large variety of spectral behaviors for these objects as their spectra are extended into the near infrared, including the identification of weak absorption bands, mainly of the 0.9 μm band tentatively attributed to orthopyroxene, and of the 0.43 μm band that may be associated to chlorites and Mg-rich serpentines or pyroxene minerals such us pigeonite or augite. A comparison with previously published data indicates that the surfaces of several asteroids belonging to the M-class may vary significantly.We attempt to constrain the asteroid surface compositions of our sample by looking for meteorite spectral analogs in the RELAB database and by modeling with geographical mixtures of selected meteorites/minerals. We confirm that iron meteorites, pallasites, and enstatite chondrites are the best matches to most objects in our sample, as suggested for M-type asteroids. For 22 Kalliope, we demonstrate that a synthetic mixture obtained enriching a pallasite meteorite with small amounts (1–2%) of silicates well reproduce the spectral behavior including the observed 0.9 μm feature.The presence of subtle absorption features on several asteroids confirms that not all objects defined by the Tholen M-class have a pure metallic composition.A statistical analysis of spectral slope distribution vs. orbital parameters shows that our sample originally defined as Tholen M-types tend to be dark in albedo and red in slope for increasing value of the semi-major axis. However, we note that our sample is statistically limited by our number of objects (30) and slightly varying results are found for different subsets. If confirmed, the albedo and slope trends could be due to a difference in composition of objects belonging to the outer main belt, or alternatively to a combination of surface composition, grain size and space weathering effects.  相似文献   

11.
Mg‐phyllosilicate‐bearing, dark surface materials on the dwarf planet Ceres have NH4‐bearing materials, indicated by a distinctive 3.06 μm absorption feature. To constrain the identity of the Ceres NH4‐carrier phase(s), we ammoniated ground particulates of candidate materials to compare their spectral properties to infrared data acquired by Dawn's Visible and Infrared (VIR) imaging spectrometer. We treated Mg‐, Fe‐, and Al‐smectite clay minerals; Mg‐serpentines; Mg‐chlorite; and a suite of carbonaceous meteorites with NH4‐acetate to exchange ammonium. Serpentines and chlorites showed no evidence for ammoniation, as expected due to their lack of exchangeable interlayer sites. Most smectites showed evidence for ammoniation by incorporation of NH4+ into their interlayers, resulting in the appearance of absorptions from 3.02 to 3.08 μm. Meteorite samples tested had weak absorptions between 3.0 and 3.1 μm but showed little clear evidence for enhancement upon ammoniation, likely due to the high proportion of serpentine and other minerals relative to expandable smectite phases or to NH4+ complexing with organics or other constituents. The wavelength position of the smectite NH4 absorption showed no variation between IR spectra acquired under dry‐air purge at 25 °C and under vacuum at 25 °C to ?180 °C. Collectively, data from the smectite samples show that the precise center wavelength of the characteristic ~3.05 μm v3 absorption in NH4 is variable and is likely related to the degree of hydrogen bonding of NH4‐H2O complexes. Comparison with Dawn VIR spectra indicates that the hypothesis of Mg‐saponite as the ammonium carrier phase is the simplest explanation for observed data, and that Ceres dark materials may be like Cold Bokkeveld or Tagish Lake but with proportionally more Mg‐smectite.  相似文献   

12.
High-resolution spectroscopic observations of asteroids Ceres and Pallas have been obtained in the 1.0- to 2.6-μm region. Combined with previous spectralmeasurements at other wavelengths, this work presents the broadband spectral reflectances of these asteroids over the 0.4 to 3.6-um region. This extended coverage permits new analyses of the surface mineralogies of these objects. Using laboratory comparison spectra of meteorites and mixtures of terrestrial minerals, the surfaces of Ceres and Pallas are consistent with mixtures of opaques and hydrated silicates, such as are found in types C1 and C2 meteorites. This research emphasizes the importance of the 3-um spectral region for studying by remote methods the relationship of carbonaceous chondrite mineralogies to asteroid surfaces.  相似文献   

13.
Abstract— Visible and near‐infrared reflectance spectra of a sample of silicate‐bearing meteorites have been used to evaluate the spectral parameters space defined in the pioneering work of Gaffey et al. (1993). The studied sample consisted of 91 ordinary chondrites, 47 basaltic achondrites, and 21 different laboratory mixtures obtained from the RELAB database. Our results indicate that the spectral parameter space, in particular the BAR versus band I center, is not suitable enough to identify the mineralogy of meteorites and asteroids. The grain size of the sample also appears as a very sensitive parameter and can play an important role in locating an object in the spectral parameter space. Finally, the application of our study to the question of a genetic link between V‐type asteroids and HED meteorites shows that these bodies plot in distinct regions in the BAR versus band I center space. This result further confirms that those spectral parameters cannot uniquely define the mineralogy of a sample.  相似文献   

14.
We have observed Rhea (S5) at 1.6 μm and 2.2 μm at Mt. Wilson using the Caltech photometer on the 1.52m and 2.54m telescopes. The infrared spectral reflectances relative to 0.55μm are 0.8 (±0.1 p.e.) at 1.65μm and 0.6 (±0.1 p.e.) at 2.2μm. Such absorption bands in the near infrared are not consistent with spectra of most rocks or minerals; even carbonaceous chondritic materials have nearly flat reflectances over this spectral region. Frosts, however, have strong absorption bands in the 1–3μm region. In particular, the broadband infrared reflectances of Rhea are similar to those of the Galilean satellites Europa (J2) and Ganymede (J3) and also the rings of Saturn (all of which are known from high resolution scans to have water frosts on their surfaces). The broadband photometry does not have sufficient resolution to identify the frost species: but Rhea's low density, high albedo and relatively flat reflectance from 0.3μm to 1.1μm as well as the low infrared reflectances reported here are consistent with the presence of water ice on Rhea's surface.  相似文献   

15.
Abstract– Diagnostic mineral absorption features for pyroxene(s), olivine, phyllosilicates, and hydroxides have been detected in the near‐infrared (NIR: approximately 0.75–2.50 μm) spectra for 60% of the Tholen‐classified ( Tholen 1984, 1989 ) M‐/X‐asteroids observed in this study. Nineteen asteroids (42%) exhibit weak Band I (approximately 0.9 μm) ± Band II (approximately 1.9 μm) absorptions, three asteroids (7%) exhibit a weak Band I (approximately 1.05–1.08 μm) olivine absorption, four asteroids (9%) display multiple absorptions suggesting phyllosilicate ± oxide/hydroxide minerals, one (1) asteroid exhibits an S‐asteroid type NIR spectrum, and 18 asteroids (40%) are spectrally featureless in the NIR, but have widely varying slopes. Tholen M‐asteroids are defined as asteroids exhibiting featureless visible‐wavelength (λ) spectra with moderate albedos ( Tholen 1989 ). Tholen X‐asteroids are also defined using the same spectral criterion, but without albedo information. Previous work has suggested spectral and mineralogical diversity in the M‐asteroid population ( Rivkin et al. 1995, 2000 ; Busarev 2002 ; Clark et al. 2004 ; Hardersen et al. 2005 ; Birlan et al. 2007 ; Ockert‐Bell et al. 2008, 2010 ; Shepard et al. 2008, 2010 ; Fornasier et al. 2010 ). The pyroxene‐bearing asteroids are dominated by orthopyroxene with several likely to include higher‐Ca clinopyroxene components. Potential meteorite analogs include mesosiderites, CB/CH chondrites, and silicate‐bearing NiFe meteorites. The Eos family, olivine‐bearing asteroids are most consistent with a CO chondrite analog. The aqueously altered asteroids display multiple, weak absorptions (0.85, 0.92, 0.97, 1.10, 1.40, and 2.30–2.50 μm) indicative of phyllosilicate ± hydroxide minerals. The spectrally featureless asteroids range from metal‐rich to metal‐poor with meteorite analogs including NiFe meteorites, enstatite chondrites, and stony‐iron meteorites.  相似文献   

16.
We investigated the petrologic, geochemical, and spectral parameters that relate to the type and degree of aqueous alteration in nine CM chondrites and one CI (Ivuna) carbonaceous chondrite. Our underlying hypothesis is that the position and shape of the 3 μm band is diagnostic of phyllosilicate mineralogy. We measured reflectance spectra of the chondrites under dry conditions (elevated temperatures) and vacuum (10?8 to 10?7 torr) to minimize adsorbed water and mimic the space environment, for subsequent comparison with reflectance spectra of asteroids. We have identified three spectral CM groups in addition to Ivuna. “Group 1,” the least altered group as determined from various alteration indices, is characterized by 3 μm band centers at longer wavelengths, and is consistent with cronstedtite (Fe‐serpentine). “Group 3,” the most altered group, is characterized by 3 μm band centers at shorter wavelengths and is consistent with antigorite (serpentine). “Group 2” is an intermediate group between group 1 and 3. Ivuna exhibits a unique spectrum that is distinct from the CM meteorites and is consistent with lizardite and chrysotile (serpentine). The petrologic and geochemical parameters, which were determined using electron microprobe analyses and microscopic observations, are found to be consistent with the three spectral groups. These results indicate that the distinct parent body aqueous alteration environments experienced by these carbonaceous chondrites can be distinguished using reflectance spectroscopy. High‐quality ground‐based telescopic observations of Main Belt asteroids can be expected to reveal not just whether an asteroid is hydrated, but also details of the alteration state.  相似文献   

17.
Identification and characterization of small extraterrestrial samples, such as small Antarctic meteorites <~1 cm, require the development of convenient laboratory‐based nondestructive analytical techniques using X‐ray diffraction (XRD). We explore the characterization criteria using an X‐ray diffractometer with a Gandolfi attachment using sub‐mm small fragments and powder aggregates for various kinds of stony meteorites and develop a new analytical technique. We primarily focus on olivine and pyroxene because they are the most abundant and important minerals for stony meteorite classification. A new calibration is performed to estimate the FeO content of the olivine in unequilibrated ordinary chondrites, which is useful for determining the meteorite chemical group irrespective of powder aggregate diameter but dependent on fragment grain diameter. This is because X‐ray intensity absorption is more effective for grains than for powders. Clinoenstatite (Cen) and orthoenstatite (Oen) were distinguished using the presence or absence of the isolated Oen 511 index peak. The method is also applied to other stony meteorites including carbonaceous chondrites and achondrites. The XRD results are consistent with studies based on polished sections involving textural observations by scanning microscope and chemical compositions of the constituent minerals. The new measurement technique presented here is convenient because of its use in air by the laboratory‐based X‐ray diffractometer, which makes it useful for the initial analyses of restricted extraterrestrial sample characterization.  相似文献   

18.
Except for asteroid sample return missions, measurements of the spectral properties of both meteorites and asteroids offer the best possibility of linking meteorite groups with their parent asteroid(s). Visible plus near‐infrared spectra reveal distinguishing absorption features controlled mainly by the Fe2+ contents and modal abundances of olivine and pyroxene. Meteorite samples provide relationships between spectra and mineralogy. These relationships are useful for estimating the olivine and pyroxene mineralogy of stony (S‐type) asteroid surfaces. Using a suite of 10 samples of the acapulcoite–lodranite clan (ALC), we have developed new correlations between spectral parameters and mafic mineral compositions for partially melted asteroids. A well‐defined relationship exists between Band II center and ferrosilite (Fs) content of orthopyroxene. Furthermore, because Fs in orthopyroxene and fayalite (Fa) content in olivine are well correlated in these meteorites, the derived Fs content can be used to estimate Fa of the coexisting olivine. We derive new equations for determining the mafic silicate compositions of partially melted S‐type asteroid parent bodies. Stony meteorite spectra have previously been used to delineate meteorite analog spectral zones in Band I versus band area ratio (BAR) parameter space for the establishment of asteroid–meteorite connections with S‐type asteroids. However, the spectral parameters of the partially melted ALC overlap with those of ordinary (H) chondrites in this parameter space. We find that Band I versus Band II center parameter space reveals a clear distinction between the ALC and the H chondrites. This work allows the distinction of S‐type asteroids as nebular (ordinary chondrites) or geologically processed (primitive achondrites).  相似文献   

19.
Abstract— Modal mineralogies of individual, equilibrated (petrologic type 4–6 L and LL chondrites have been measured using an electron microprobe mapping technique, and the chemical compositions of coexisting silicate minerals have been analyzed. Progressive changes in the relative abundances and in the molar Fe/Mn and Fe/Mg ratios of olivine, low‐Ca pyroxene, and diopside occur with increasing metamorphic grade. Variations in olivine/low‐Ca pyroxene ratios (Ol/Px) and in metal abundances and compositions with petrologic type support the hypothesis that oxidation of metallic iron accompanied thermal metamorphism in ordinary chondrites. Modal Ol/Px ratios are systematically lower than normative Ol/Px ratios for the same meteorites, suggesting that the commonly used C.I.P.W. norm calculation procedure may not adequately estimate silicate mineral abundances in reduced chondrites. Ol/Px ratios calculated from visible and near‐infrared (VISNIR) reflectance spectra of the same meteorites are not in agreement with other Ol/Px determinations, possibly because of spectral complexities arising from other minerals in chondrites. Characteristic features in VISNIR spectra are sensitive to the proportions and compositions of olivine and pyroxenes, the minerals most affected by oxidative metamorphism. This work may allow spectral calibration for the determination of mineralogy and petrologic type, and thus may be useful for spectroscopic studies of asteroids.  相似文献   

20.
Abstract— Infrared diffuse reflectance spectra (2.53–25 μm) of some carbonaceous (C) chondrites were measured. The integrated intensity of the absorption bands near 3 μm caused by hydrous minerals were compared with the modal content of hydrous minerals for the meteorites. The CM and CI chondrites show larger values of the integrated intensity than those of the unique C chondrites Y82162, Y86720 and B7904, suggesting that the amount of hydrous minerals in the CM and CI chondrites is larger, which supports the contention that hydrous minerals were dehydrated by thermal metamorphism in the unique chondrites. Orgueil (CI) has the largest value of the integrated intensity among the C chondrites we measured and shows a sharp absorption band at 3685 cm?1 (2.71 μm) that is not seen in the spectra of the CM chondrites. There is an excellent correlation between the observed hydrogen content in C chondrites and the integrated intensity. The CM chondrites show a wide variation in the strength of absorption bands at 1470 cm?1 (6.8 μm), despite the similarity in absorption features near 3 μm for all CM chondrites. The 1470 cm?1 band could be due to the presence of some hydrocarbons but may also be a result of terrestrial alteration processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号