首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
This research demonstrates the application of association rule mining to spatio‐temporal data. Association rule mining seeks to discover associations among transactions encoded in a database. An association rule takes the form AB where A (the antecedent) and B (the consequent) are sets of predicates. A spatio‐temporal association rule occurs when there is a spatio‐temporal relationship in the antecedent or consequent of the rule. As a case study, association rule mining is used to explore the spatial and temporal relationships among a set of variables that characterize socioeconomic and land cover change in the Denver, Colorado, USA region from 1970–1990. Geographic Information Systems (GIS)‐based data pre‐processing is used to integrate diverse data sets, extract spatio‐temporal relationships, classify numeric data into ordinal categories, and encode spatio‐temporal relationship data in tabular format for use by conventional (non‐spatio‐temporal) association rule mining software. Multiple level association rule mining is supported by the development of a hierarchical classification scheme (concept hierarchy) for each variable. Further research in spatio‐temporal association rule mining should address issues of data integration, data classification, the representation and calculation of spatial relationships, and strategies for finding ‘interesting’ rules.  相似文献   

2.
Spatio‐temporal prediction and forecasting of land surface temperature (LST) are relevant. However, several factors limit their usage, such as missing pixels, line drops, and cloud cover in satellite images. Being measured close to the Earth's surface, LST is mainly influenced by the land use/land cover (LULC) distribution of the terrain. This article presents a spatio‐temporal interpolation method which semantically models LULC information for the analysis of LST. The proposed spatio‐temporal semantic kriging (ST‐SemK) approach is presented in two variants: non‐separable ST‐SemK (ST‐SemKNSep) and separable ST‐SemK (ST‐SemKSep). Empirical studies have been carried out with derived Landsat 7 ETM+ satellite images of LST for two spatial regions: Kolkata, India and Dallas, Texas, U.S. It has been observed that semantically enhanced spatio‐temporal modeling by ST‐SemK yields more accurate prediction results than spatio‐temporal ordinary kriging and other existing methods.  相似文献   

3.
An Experimental Performance Evaluation of Spatio-Temporal Join Strategies   总被引:1,自引:0,他引:1  
Many applications capture, or make use of, spatial data that changes over time. This requirement for effective and efficient spatio‐temporal data management has given rise to a range of research activities relating to spatio‐temporal data management. Such work has sought to understand, for example, the requirements of different categories of application, and the modelling facilities that are most effective for these applications. However, at present, there are few systems with fully integrated support for spatio‐temporal data, and thus developers must often construct custom solutions for their applications. Developers of both bespoke solutions and of generic spatio‐temporal platforms will often need to support the fusion of large spatio‐temporal data sets. Supporting such requests in a database setting involves the use of join operations with both spatial and temporal conditions – spatio‐temporal joins. However, there has been little work to date on spatio‐temporal join algorithms or their evaluation. This paper presents an evaluation of several approaches to the implementation of spatio‐temporal joins that build upon widely available indexing techniques. The evaluation explores how several algorithms perform for databases with different spatial and temporal characteristics, with a view to helping developers of generic infrastructures or custom solutions in the selection and development of appropriate spatio‐temporal join strategies.  相似文献   

4.
While the incorporation of geographical and environmental modeling with GIS requires software support for storage and retrieval of spatial information that changes over time, it continues to be an unresolved issue with modern GIS software. Two complementary approaches have been used to manage the spatial and temporal heterogeneity within datasets that use a field‐based representation of the world. Some researchers have proposed new data models that partition space into discrete elements on an as‐needed basis following each temporal event, while others have focused on eliminating duplication of repeated data elements present in spatio‐temporal information. It is proposed in this paper that both approaches have merit and can be combined to create a Hybrid Spatio‐Temporal Data Model and Structure (HST‐DMS) that efficiently supports spatio‐temporal data storage and querying. Specifically, Peuquet and Duan's (1995) Event‐based Spatio‐Temporal Data Model (ESTDM) and the Overlapping R‐tree (Guttman 1984, Tzourmanis et al. 2000) are utilized to create a prototype used to store information about urban expansion for the town of Carbondale, Illinois.  相似文献   

5.
Introducing Clifford algebra as the mathematical foundation, a unified spatio‐temporal data model and hierarchical spatio‐temporal index are constructed by linking basic data objects, like pointclouds and Spatio‐Temporal Hyper Cubes of different dimensions, within the multivector structure of Clifford algebra. The transformation from geographic space into homogeneous and conformal space means that geometric, metric and many other kinds of operators of Clifford algebra can be implemented and we then design the shortest path, high‐dimensional Voronoi and unified spatial‐temporal process analyses with spacetime algebra. Tests with real world data suggest these traditional GIS analysis algorithms can be extended and constructed under Clifford Algebra framework, which can accommodate multiple dimensions. The prototype software system CAUSTA (Clifford Algebra based Unified Spatial‐Temporal Analysis) provides a useful tool for investigating and modeling the distribution characteristics and dynamic process of complex geographical phenomena under the unified spatio‐temporal structure.  相似文献   

6.
As tools for collecting data continue to evolve and improve, the information available for research is expanding rapidly. Increasingly, this information is of a spatio‐temporal nature, which enables tracking of phenomena through both space and time. Despite the increasing availability of spatio‐temporal data, however, the methods for processing and analyzing these data are lacking. Existing geocoding techniques are no exception. Geocoding enables the geographic location of people and events to be known and tracked. However, geocoded information is highly generalized and subject to various interpolation errors. In addition, geocoding for spatio‐temporal data is especially challenging because of the inherent dynamism of associated data. This article presents a methodology for geocoding spatio‐temporal data in ArcGIS that utilizes several additional supporting procedures to enhance spatial accuracy, including the use of supplementary land use information, aerial photographs and local knowledge. This hybrid methodology allows for the tracking of phenomenon through space and over time. It is also able to account for reporting inconsistencies, which is a common feature of spatio‐temporal data. The utility of this methodology is demonstrated using an application to spatio‐temporal address records for a highly mobile group of convicted felons in Hamilton County, Ohio.  相似文献   

7.
8.
Spatio‐temporal clustering is a highly active research topic and a challenging issue in spatio‐temporal data mining. Many spatio‐temporal clustering methods have been designed for geo‐referenced time series. Under some special circumstances, such as monitoring traffic flow on roads, existing methods cannot handle the temporally dynamic and spatially heterogeneous correlations among road segments when detecting clusters. Therefore, this article develops a spatio‐temporal flow‐based approach to detect clusters in traffic networks. First, a spatio‐temporal flow process is modeled by combining network topology relations with real‐time traffic status. On this basis, spatio‐temporal neighborhoods are captured by considering traffic time‐series similarity in spatio‐temporal flows. Spatio‐temporal clusters are further formed by successive connection of spatio‐temporal neighbors. Experiments on traffic time series of central London's road network on both weekdays and weekends are performed to demonstrate the effectiveness and practicality of the proposed method.  相似文献   

9.
With fast growth of all kinds of trajectory datasets, how to effectively manage the trajectory data of moving objects has received a lot of attention. This study proposes a spatio‐temporal data integrated compression method of vehicle trajectories based on stroke paths coding compression under the road stroke network constraint. The road stroke network is first constructed according to the principle of continuous coherence in Gestalt psychology, and then two types of Huffman tree—a road strokes Huffman tree and a stroke paths Huffman tree—are built, based respectively on the importance function of road strokes and vehicle visiting frequency of stroke paths. After the vehicle trajectories are map matched to the spatial paths in the road network, the Huffman codes of the road strokes and stroke paths are used to compress the trajectory spatial paths. An opening window algorithm is used to simplify the trajectory temporal data depicted on a time–distance polyline by setting the maximum allowable speed difference as the threshold. Through analysis of the relative spatio‐temporal relationship between the preceding and latter feature tracking points, the spatio‐temporal data of the feature tracking points are all converted to binary codes together, accordingly achieving integrated compression of trajectory spatio‐temporal data. A series of comparative experiments between the proposed method and representative state‐of‐the‐art methods are carried out on a real massive taxi trajectory dataset from five aspects, and the experimental results indicate that our method has the highest compression ratio. Meanwhile, this method also has favorable performance in other aspects: compression and decompression time overhead, storage space overhead, and historical dataset training time overhead.  相似文献   

10.
土地利用动态监测中的时空数据模型研究   总被引:16,自引:0,他引:16  
针对传统GIS数据模型存在的问题,开展了基于特征的时空数据模型研究.结合我国土地利用动态监测,提出了一个新的时空数据模型-基于变化特征状态的时空数据模型(SCFSTDM),该模型保持了地理现象的完整性,地理信息的完备性以及时空专题信息的有机集成,模型有利于面向目标定向分析方法的应用和时空分析与推理的实现,有利于地理数据的共享,设计和开发了基于SCFSTDM的时态土地利用信息系统,实现了基于特征实例的时空复合查询,时空推理以及动态播放等功能.  相似文献   

11.
Data are increasingly spatio‐temporal—they are collected some‐where and at some‐time. The role of proximity in spatial process is well understood, but its value is much more uncertain for many temporal processes. Using the domain of land cover/land use (LCLU), this article asserts that analyses of big data should be grounded in understandings of underlying process. Processes exhibit behaviors over both space and time. Observations and measurements may or may not coincide with the process of interest. Identifying the presence or absence of a given process, for instance disentangling vegetation phenology from stress, requires data analysis to be informed by knowledge of the process characteristics and, critically, how these manifest themselves over the spatio‐temporal unit of analysis. Drawing from LCLU, we emphasize the need to identify process and consider process phase to quantify important signals associated with that process. The aim should be to link the seriality of the spatio‐temporal data to the phase of the process being considered. We elucidate on these points and opportunities for insights and leadership from the geographic community.  相似文献   

12.
Detailed population information is crucial for the micro‐scale modeling and analysis of human behavior in urban areas. Since it is not available on the basis of individual persons, it has become necessary to derive data from aggregated census data. A variety of approaches have been published in the past, yet they are not entirely suitable for use in the micro‐scale context of highly urbanized areas, due mainly to their broad spatial scale and missing temporal scale. Here we introduce an enhanced approach for the spatio‐temporal estimation of building populations in highly urbanized areas. It builds upon other estimation methodologies, but extends them by introducing multiple usage categories and the temporal dimension. This allows for a more realistic representation of human activities in highly urbanized areas and the fact that populations change over time as a result of these activities. The model makes use of a variety of micro‐scale data sets to operationalize the activities and their spatio‐temporal representations. The outcome of the model provides estimated population figures for all buildings at each time step and thereby reveals spatio‐temporal behavior patterns. It can be used in a variety of applications concerning the implications of human behavior in urban areas.  相似文献   

13.
The concept of Volunteered Geographic Information (VGI) has progressed from being an exotic prospect to making a profound impact on GIScience and geography in general, as initially anticipated. However, while massive and manifold data is continuously produced voluntarily and applications are built for information and knowledge extraction, the initially introduced concept of VGI lacks certain methodological perspectives in this regard which have not been fully elaborated. In this article we highlight and discuss an important gap in this concept, i.e. the lack of formal acknowledgment of temporal aspects. By coining the proposed advanced framework ‘Volunteered Geo‐Dynamic Information’ (VGDI), we attempt to lay the ground for full conceptual and applied spatio‐temporal integration. To illustrate that integrative approach of VGDI and its benefits, we describe the potential impact on the field of dynamic population distribution modeling. While traditional approaches in that domain rely on survey‐based data and statistics as well as static geographic information, the use of VGDI enables a dynamic setup. Foursquare venue and user check‐in data are presented for a test site in Lisbon, Portugal. Two core modules of spatio‐temporal population assessment are thereby addressed, namely time use profiling and target zone characterization, motivated by the potential integration in existing population dynamics frameworks such as the DynaPop model.  相似文献   

14.
The clustering of spatio‐temporal events has become one of the most important research branches of spatio‐temporal data mining. However, the discovery of clusters of spatio‐temporal events with different shapes and densities remains a challenging problem because of the subjectivity in the choice of two critical parameters: the spatio‐temporal window for estimating the density around each event, and the density threshold for evaluating the significance of clusters. To make the clustering of spatio‐temporal events objective, in this study these two parameters were adaptively generated from statistical information about the dataset. More precisely, the density threshold was statistically modeled as an adjusted significance level controlled by the cardinality and support domain of the dataset, and the appropriate sizes of spatio‐temporal windows for clustering were determined by the spatio‐temporal classification entropy and stability analysis. Experiments on both simulated and earthquake datasets were conducted, and the results show that the proposed method can identify clusters of different shapes and densities.  相似文献   

15.
动态数据库模型的研究与应用   总被引:4,自引:3,他引:1  
田娇娇  唐新明  杨平  汪汇兵  翟亮 《测绘科学》2006,31(1):123-124,136
现有的时空数据库模型不能完全满足国家基础地理信息动态数据库的要求。本文分析总结了常用的空间数据库模型的结构和功能,提出了动态“版本-差量”模型,并利用此模型对国家基础地理信息动态数据库进行了建库试验。试验表明该模型可以很好的描述和管理复杂的基础地理信息数据,方便的查询任意时刻的空间信息及其空间关系。  相似文献   

16.
Traffic forecasting is a challenging problem due to the complexity of jointly modeling spatio‐temporal dependencies at different scales. Recently, several hybrid deep learning models have been developed to capture such dependencies. These approaches typically utilize convolutional neural networks or graph neural networks (GNNs) to model spatial dependency and leverage recurrent neural networks (RNNs) to learn temporal dependency. However, RNNs are only able to capture sequential information in the time series, while being incapable of modeling their periodicity (e.g., weekly patterns). Moreover, RNNs are difficult to parallelize, making training and prediction less efficient. In this work we propose a novel deep learning architecture called Traffic Transformer to capture the continuity and periodicity of time series and to model spatial dependency. Our work takes inspiration from Google’s Transformer framework for machine translation. We conduct extensive experiments on two real‐world traffic data sets, and the results demonstrate that our model outperforms baseline models by a substantial margin.  相似文献   

17.
Much effort has been applied to the study of land use multi‐objective optimization. However, most of these studies have focused on the final land use scenarios in the projected year, without considering how to reach the final optimized land use scenario. To fill this gap, a spatio‐temporal land use multi‐objective optimization (STLU‐MOO) model is innovatively proposed in this research to determine possible spatial land use solutions over time. The STLU‐MOO is an extension of a genetic land use multi‐objective optimization model (LU‐MOO) in which the LU‐MOO is generally carried out in different years, and the solutions at year T will affect the solutions at year T + 1. We used the Wuhan agglomeration (WHA) as our case study area. The STLU‐MOO model was employed separately for the nine cities in the WHA, and social, economic, and environmental objectives have been considered. The success of the experiments in the case study demonstrated the value and novelty of our proposed STLU‐MOO model. In addition, the results also indicated that the objectives considered in the case study were in conflict. According to the results, the optimal land use plan in 2050 can be traced back to 2040, 2030, and 2020, providing a series of Pareto solutions over the years which can provide spatio‐temporal land use multi‐objective optimization solutions to support the land use planning process.  相似文献   

18.
Collaborative spatial decision support systems (C‐SDSS) have been used to help groups of stakeholders understand data and search for opportunities at resolving local and regional decision problems in various domains including land use, trans‐ portation, and water resources. The key issue in designing an effective C‐SDSS is the anticipation of user information needs. Knowledge of user information needs can guide system designers in achieving a C‐SDSS that fits the decision process. In this paper we present a design approach that is informed by stakeholder concerns, as part of a user needs assessment. The approach is based on the premise that knowing stakeholders’ concerns can help anticipate user information needs and consequently lead to a more usable C‐SDSS. We demonstrate the approach with the example of a spatio‐temporal decision problem involving conjunctive water administration in the Boise River Basin in southwestern Idaho. The spatial dimension of the decision task involves delineating the areas of conjunctive water administration while the temporal dimension involves selecting the year in which a given area will start to be administered. We show how the elicitation of stakeholder concerns leads to functional specification of a collaborative spatio‐temporal decision support system.  相似文献   

19.
随着云计算技术的不断发展,大数据与信息化时代的优势越来越突出,应用越来越广泛。时空信息平台作为智慧城市建设的重要内容,管理海量基础地理信息数据,是智慧城市建设的基础。因此,海量数据的管理成为时空信息平台设计的关键。以智慧唐山建设为例,结合云计算技术,探讨时空信息平台数据库的构建,针对云平台基础地理信息数据体系、云平台数据库体系架构以及云平台数据库管理系统等方面进行设计,明确基于云计算时空信息平台数据库建设内容,探讨适用于智慧城市建设的时空信息云平台解决方案。  相似文献   

20.
城市交通网络面向对象的时空数据模型研究   总被引:3,自引:0,他引:3  
余志文 《测绘科学》2002,27(4):31-34
原有的城市交通网络数据模型无法对大比例地图中道路的面状特征进行描述。本文引入面向对象的时空数据模型 ,把各种实体作为对象 ,把道路作为面状要素描述。作为面状要素的道路对象直接继承原有道路的非空间特征 ,通过道路中心线对象和交点对象来继承原有线状要素的道路特征 ,包括网络关系和叠加关系等 ,通过车道段对象来增加作为面状要素的道路特征  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号